Гормоны физические и химические свойства. Полезные свойства гормонов. Основные сведения о гормонах

1. Какие вещества называют гормонами? Каковы их основ-ные свойства?

Гормоны — химические соединения, обладающие вы-сокой биологической активностью, выделяются железами внутренней секреции.

Свойства гормонов:

  • вырабатываются в небольшом количестве;
  • дистантный характер действия (органы и системы, на которые действуют гормоны, расположены далеко от места их образования, поэтому гормоны с током крови разносятся по всему организму);
  • длительное время сохраняются в активном состоянии;
  • строгая специфичность действия;
  • высокая биологическая активность;
  • регулируют процессы обмена веществ, обеспечивают постоянство состава среды, влияют на рост и развитие органов, обеспечивают ответную реакцию организма на воздействие внешней среды.

По химической природе гормоны делят на три группы полипептиды и белки (инсулин); аминокислоты и их про изводные (тироксин, адреналин); стероиды (половые гор-моны).

Если образуется и выделяется в кровь увеличенное ко-личество гормонов — это гиперфункция. Если количество гормонов, образующихся и выделяющихся в кровь, умень-шается, то это — гипофункция.

2. Какие железы вырабатывают гормоны? Назовите их. Какое действие на организм оказывают гормоны этих желез?

Щитовидная железа находится на шее, впереди гортани, вырабатывает гормоны, богатые йодом — тироксин и др. Они стимулируют обмен веществ в организме. От их количества в крови зависит уровень потребления кислорода органами и тканями организма, т.е. гормоны щитовидной железы стиму-лируют окислительные процессы в клетках. Кроме того, они регулируют водный, белковый, жировой, углеводный, мине-ральный обмен, рост и развитие организма. Оказывают дей-ствие на функции центральной нервной системы и высшую нервную деятельность. Недостаток гормона в детском возрас-те приводит к кретинизму (задерживается рост, половое и психическое развитие, нарушаются пропорции тела). При гипофункции у взрослого человека развивается микседема (снижение обмена веществ, ожирение, понижение темпера-туры тела, апатия). При гиперфункции у взрослых возникает базедова болезнь (увеличение щитовидной железы, развитие зоба, пучеглазие, повышенный обмен веществ, повышенная возбудимость нервной системы).

Надпочечники. Небольшие тельца над почками. Они со-стоят из двух слоев: наружного (коркового) и внутреннего (мозгового). Наружное вещество вырабатывает гормоны, которые регулируют обмен веществ (натрий, калий, белки, углеводы, жиры), и половые гормоны (обуславливают раз-витие вторичных половых признаков). При недостаточной функции коры надпочечников развивается заболевание, ко-торое называется бронзовой болезнью. Кожа приобретает бронзовую окраску, наблюдается повышенная утомляе-мость, потеря аппетита, тошнота. При гиперфункции над-почечников отмечается увеличение синтеза половых гормо-нов. При этом меняются вторичные половые признаки. Например, у женщин появляются усы, борода и т.д.

Внутреннее вещество вырабатывает гормоны адрена-лин и норадреналин. Адреналин ускоряет кругооборот крови, усиливает частоту сердечных сокращений, мобили-зует все силы организма при стрессовых ситуациях, повы-шает содержание сахара в крови (расщепляет гликоген). Количество адреналина находится под контролем ЦНС, недостатка не бывает. При избытке учащает работу сердца, сужает кровеносные сосуды. Норадреналин замедляет час-тоту сердечных сокращений.

Поджелудочная железа. Находится в брюшной полости тела, ниже желудка. Это железа смешанной секреции, име-ет выводные протоки и выделяет ферменты, участвующие в пищеварении. Отдельные клетки поджелудочной железы выделяют в кровь гормоны. Одна группа клеток вырабаты-вает гормон глюкагон, способствующий превращению гликогена печени в глюкозу, в результате уровень сахара в крови повышается. Другие клетки вырабатывают инсулин. Это единственный гормон, который понижает содержание сахара в крови (способствует синтезу гликогена в клетках печени). При недостаточности функции поджелудочной железы развивается сахарный диабет. При этом повышает-ся уровень сахара в крови. Углеводы не задерживаются в организме, а выводятся с мочой в виде глюкозы.

Половые железы — семенники у мужчин и яичники у женщин — также относятся к железам смешанной секреции. За счет внешнесекреторной функции образуются сперматозоиды и яйцеклетки. Эндокринная функция свя-зана с выработкой мужских и женских половых гормонов, которые регулируют развитие вторичных половых призна-ков. Они оказывают влияние на формирование тела, обмен веществ и половое поведение. В семенниках вырабатыва-ются андрогены. Они стимулируют развитие вторичных половых признаков, характерных для мужчин (рост боро-ды, усов, развитие мускулатуры и др.), повышают основ-ной обмен, необходимы для созревания сперматозоидов.

В яичниках образуются женские половые гормоны — эстрогены, под влиянием которых происходит формирова-ние вторичных половых признаков, характерных для жен-щин (форма тела, развитие молочных желез и др.) Материал с сайта

Гипофиз. Располагается ниже моста головного мозга и состоит из трех долей: передней, промежуточной и задней. Передняя доля выделяет гормон роста, который влияет на рост костей в длину, ускоряет процессы обмена веществ, приводит к усилению роста, увеличению массы тела. Недос-таток гормона — карликовость, при этом пропорции тела и умственное развитие не нарушаются. Гиперфункция в дет-ском возрасте приводит к гигантизму (у детей длинные ко-нечности, они недостаточно физически выносливые), у взрослых возникает акромегалия (увеличиваются размеры кисти, стопы, лицевая часть черепа, нос, губы, подбородок). Гипофункция у взрослых приводит к изменению обмена веществ: либо к ожирению, либо к резкому похуданию.

Промежуточная доля гипофиза выделяет гормон, влияющий на пигментацию кожи.

Задняя доля образована нервной тканью. Гормоны она не синтезирует. В заднюю долю гипофиза транспортируют-ся биологически активные вещества, вырабатываемые яд-рами гипоталамуса. Одно из них избирательно влияет на сокращения гладкой мускулатуры матки и секрецию мо-лочных желез. Другое повышает кровяное давление и за-держивает выведение мочи. При уменьшении количества этого вещества мочевыделение возрастает до 10-20 л. в су-тки. Эту болезнь называют несахарным диабетом.

Не нашли то, что искали? Воспользуйтесь поиском

Нормальная физиология: конспект лекций Светлана Сергеевна Фирсова

2. Свойства гормонов, механизм их действия

Выделяют три основных свойства гормонов:

1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования);

2) строгую специфичность действия (ответные реакции на действие гормона строго специфичны и не могут быть вызваны другими биологически активными агентами);

3) высокую биологическая активность (гормоны вырабатываются железами в малых количествах, эффективны в очень небольших концентрациях, небольшая часть гормонов циркулирует в крови в свободном активном состоянии).

Действие гормона на функции организма осуществляется двумя основными механизмами: через нервную систему и гуморально, непосредственно на органы и ткани.

Гормоны функционируют как химические посредники, переносящие информацию или сигнал в определенное место – клетку-мишень, которая имеет высокоспециализированный белковый рецептор, с которым связывается гормон.

По механизму воздействия клеток с гормонами гормоны делятся на два типа.

Первый тип (стероиды, тиреоидные гормоны) – гормоны относительно легко проникают внутрь клетки через плазматические мембраны и не требуют действия посредника (медиатора).

Второй тип – плохо проникают внутрь клетки, действуют с ее поверхности, требуют присутствия медиатора, их характерная особенность – быстровозникающие ответы.

В соответствии с двумя типами гормонов выделяют и два типа гормональной рецепции: внутриклеточный (рецепторный аппарат локализован внутри клетки), мембранный (контактный) – на ее наружной поверхности. Клеточные рецепторы – особые участки мембраны клетки, которые образуют с гормоном специфические комплексы. Рецепторы имеют определенные свойства , такие как:

1) высокое сродство к определенному гормону;

2) избирательность;

3) ограниченная емкость к гормону;

4) специфичность локализации в ткани.

Эти свойства характеризуют количественную и качественную избирательную фиксацию гормонов клеткой.

Связывание рецептором гормональных соединений является пусковым механизмом для образования и освобождения медиаторов внутри клетки.

Механизм действия гормонов с клеткой-мишенью происходит следующие этапы:

1) образование комплекса «гормон-рецептор» на поверхности мембраны;

2) активацию мембранной аденилциклазы;

3) образование цАМФ из АТФ у внутренней поверхности мембраны;

4) образование комплекса «цАМФ-рецептор»;

5) активацию каталитической протеинкиназы с диссоциацией фермента на отдельные единицы, что ведет к фосфорилированию белков, стимуляции процессов синтеза белка, РНК в ядре, распада гликогена;

6) инактивацию гормона, цАМФ и рецептора.

Действие гормона может осуществляться и более сложным путем при участии нервной системы. Гормоны воздействуют на интерорецепторы, которые обладают специфической чувствительностью (хеморецепторы стенок кровеносных сосудов). Это начало рефлекторной реакции, которая изменяет функциональное состояние нервных центров. Рефлекторные дуги замыкаются в различных отделах центральной нервной системы.

Выделяют четыре типа воздействия гормонов на организм:

1) метаболическое воздействие – влияние на обмен веществ;

2) морфогенетическое воздействие – стимуляция образования, дифференциации, роста и метаморфозы;

3) пусковое воздействие – влияние на деятельность эффекторов;

4) корригирующее воздействие – изменение интенсивности деятельности органов или всего организма.

Из книги Из сосуда своего автора Геннадий Петрович Малахов

Глава 4 Механизм действия мочетерапии Моча после приема внутрь фильтруется: она становится все прозрачней и прозрачней даже в течение одного дня поста (при этом принимается лишь сырая вода из-под крана, если в этом есть необходимость). Сперва моча очищает организм, затем

Из книги Судебная медицина автора Д. Г. Левин

51. Механизм действия электрического тока на организм Электрический ток оказывает тепловое действие – от местных ожогов до обугливания, механическое – повреждение тканей от судорожных сокращений мышц, при отбрасывании тела от проводника и электрическое – электролиз

Из книги Фармакология: конспект лекций автора Валерия Николаевна Малеванная

3. Механизм действия лекарственных средств В основе действия большинства лекарственных средств лежит процесс воздействия на физиологические системы организма, выражающиеся изменением скорости протекания естественных процессов. Возможны следующие механизмы действия

автора Марина Геннадиевна Дрангой

26. Свойства гормонов, механизм их действия в организме Выделяют три основных свойства гормонов:1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования);2) строгую специфичность действия;3) высокую

Из книги Целительные свойства перекиси водорода автора Уильям Дуглас

Глава 2. Механизм действия перекиси водорода Перекись водорода - это бесцветная (в больших объемах - чуть синеватая) жидкость без запаха. Точка замерзания перекиси -0,5 °C, а кипит она при 67 °C.Перекись растворима в воде в любой концентрации, а используют ее чаще всего в

Из книги Как перестать храпеть и дать спать другим автора Юлия Сергеевна Попова

Механизм действия гормонов Гормоны были открыты учеными в 1902 году. Согласно определению большинства специалистов, это органические химические соединения, вырабатываемые определенными железами и клетками и оказывающие сложное и многогранное воздействие на

Из книги Современные хирургические инструменты автора Геннадий Михайлович Семенов

5.1. Механизм действия В ультразвуковой хирургии используют инструменты, режущий край которых непрерывно колеблется с частотой от 10 до 100 кГц и амплитудой 5-50 мкм.Источники получения ультразвука подразделяют на две группы:1) механические;2) электрические.В механических

Из книги Как сбалансировать гормоны щитовидной железы, надпочечников, поджелудочной железы автора Галина Ивановна Дядя

6.1. Механизм действия Механизм действия криохирургических инструментов основан на быстром локальном замораживании криоагентом патологического образования.Указанное действие может быть произведено в двух режимах:1) контактном – с последующим удалением (извлечением)

Из книги Экологичное питание: натуральное, природное, живое! автора Любава Живая

7.1. Механизм действия Плазменный поток, предназначенный для рассечения тканей, образуется при пропускании через высокоскоростную струю инертного газа электрического тока большой силы:– плазмообразующий газ – аргон;– ток разряда – 10–30 А;– напряжение разряда – 25–35

Из книги Нормальная физиология автора Николай Александрович Агаджанян

II. Синтез, секреция, метаболизм и механизм действия тиреоидных гормонов Щитовидная железа продуцирует ряд гормонов. Рассмотрим основные из них:1) Т3– трийодтиронин;2) Т4 – тироксин.Гормон Т4 впервые был получен в 1915 г., а гормон Т3 – только в 1952 г. Трийодтиронин более

Из книги Похудеть может каждый автора Геннадий Михайлович Кибардин

II. Гормоны поджелудочной железы и механизм их действия Инсулин является гормоном и образуется в?-клетках поджелудочной железы из его предшественника – проинсулина, который синтезируется на рибосомах грубой эндоплазматической сети. Относительная молекулярная масса

Из книги автора

III. Физиологические эффекты гормонов коры надпочечников в организме и механизм их действия Продуцируемые надпочечниками соединения оказывают влияние на многие процессы обмена веществ и функции организма.Гормоны коры надпочечников активно влияют на обменные процессы

Из книги автора

IV. Физиологические эффекты гормонов мозгового слоя надпочечников – катехоламинов и механизм их действия Эффекты катехоламинов начинаются с взаимодействия со специфическими рецепторами клеток-«мишеней». Если рецепторы тиреоидных и стероидных гормонов локализуются

Из книги автора

Механизм возникновения и принцип действия пищемании Мы поняли, что токсины поступают в организм в основном через пищевые продукты. И этот способ поступления является для нас самым легко контролируемым. То есть, мы можем снизить токсическое воздействие на организм на 70 %,

Из книги автора

Механизмы действия гормонов. Существуют два основных механизма действия гормонов на уровне клетки: реализация эффекта с наружной поверхности клеточной мембраны и реализация эффекта после проникновения гормона внутрь клетки.В первом случае рецепторы расположены на

Из книги автора

Механизм действия гормонов Протеиновые и стероидные гормоны отличаются друг от друга не только по химической структуре, но и по механизму действия.Стероидные гормоны и производные аминокислот (тироксин) действуют внутриклеточно. Они распознаются специфическими

Биологически активное вещество (БАВ), физиологически активное вещество (ФАВ) - вещество, которое в малых количествах (мкг, нг) оказывает выраженный физиологический эффект на различные функции организма.

Гормон — физиологически активное вещество, вырабатываемое или специализированными эндокринными клетками, выделяемое во внутреннюю среду организма (кровь, лимфа) и оказывающее дистантное действие на клетки-мишени.

Гормон - это сигнальная молекула, секретируемая эндокринными клетками, которая посредством взаимодействия со специфическими рецепторами клеток-мишеней регулирует их функции. Поскольку гормоны являются носителями информации, то они, как и другие сигнальные молекулы, обладают высокой биологической активностью и вызывают ответные реакции клеток-мишеней в очень малых концентрациях (10 -6 — 10 -12 М/л).

Клетки-мишени (ткани-мишени, органы-мишени) — клетки, ткани или органы, в которых имеются специфичные для данного гормона рецепторы. Некоторые гормоны имеют единственную ткань-мишень, тогда как другие оказывают влияние повсеместно в организме.

Таблица. Классификация физиологически активных веществ

Свойства гормонов

Гормоны имеют ряд общих свойств. Обычно они образуются специализированными эндокринными клетками. Гормоны обладают избирательностью действия, которая достигается благодаря связыванию со специфическими рецепторами, находящимися на поверхности клеток (мембранные рецепторы) или внутри них (внутриклеточные рецепторы), и запуску каскада процессов внутриклеточной передачи гормонального сигнала.

Последовательность событий передачи гормонального сигнала может быть представлена в виде упрощенной схемы «гормон (сигнал, лиганд) -> рецептор -> второй (вторичный) посредник -> эффекторные структуры клетки -> физиологический ответ клетки». У большинства гормонов отсутствует видовая специфичность (за исключением ), что позволяет изучать их эффекты на животных, а также использовать гормоны, полученные от животных, для лечения больных людей.

Различают три варианта межклеточного взаимодействия с помощью гормонов:

  • эндокринный (дистантный), когда они доставляются к клеткам-мишеням от места продукции кровью;
  • паракринный — гормоны диффундируют к клетке-мишени от рядом расположенной эндокринной клетки;
  • аутокринный — гормоны воздействуют на клетку-продуцент, которая одновременно является для него клеткой-мишенью.

По химической структуре гормоны делят на три группы:

  • пептиды (число аминокислот до 100, например тиротропина рилизинг-гормон, АКТГ) и белки (инсулин, гормон роста, и др.);
  • производные аминокислот: тирозина (тироксин, адреналин), триптофана — мелатонин;
  • стероиды, производные холестерола (женские и мужские половые гормоны, альдостерон, кортизол, кальцитриол) и ретиноевая кислота.

По выполняемой функции гормоны делят на три группы:

  • эффекторные гормоны , действующие непосредственно на клетки-мишени;
  • тронные гормоны гипофиза , контролирующие функцию периферических эндокринных желез;
  • гормоны гипоталамуса , регулирующие секрецию гормонов гипофизом.

Таблица. Типы действия гормонов

Тип действия

Характеристика

Гормональное (гемокринное)

Действие гормона на значительном удалении от места образования

Изокринное (местное)

Гормон, синтезируемый в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой. Его высвобождение осуществляется в межтканевую жидкость и кровь

Нейрокринное (нейроэндокринное)

Действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейромедиатора или нейромодулятора

Паракринное

Разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости

Юкстакринное

Разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передастся через плазматическую мембрану рядом расположенной клетки

Аутокринное

Высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность

Соликринное

Высвобождающийся из клетки гормон поступает в просвет протока и достигает, таким образом, другой клетки, оказывая на нес специфическое воздействие (характерно для желудочно- кишечных гормонов)

Гормоны циркулируют в крови в свободном (активная форма) и связанном (неактивная форма) состоянии с белками плазмы или форменных элементов. Биологической активностью обладают гормоны в свободном состоянии. Содержание их в крови зависит от скорости секреции, степени связывания, захвата и скорости метаболизма в тканях (связывания со специфическими рецепторами, разрушения или инактивации в клетках-мишенях или гепатоцитах), удаления с мочой или желчью.

Таблица. Физиологически активные вещества, открытые в последнее время

Ряд гормонов может подвергаться в клетках-мишенях химическим превращениям в более активные формы. Так, гормон «тироксин», подвергаясь дейодированию, превращается в более активную форму — трийодтиронин. Мужской половой гормон тестостерон в клетках-мишенях может не только превращаться в более активную форму — дегидротестостерон, но и в женские половые гормоны группы эстрогенов.

Действие гормона на клетку-мишень обусловлено связыванием, стимуляцией специфического к нему рецептора, после чего происходит передача гормонального сигнала на внутриклеточный каскад превращений. Передача сигнала сопровождается его многократным усилением, и действие на клетку небольшого числа молекул гормона может сопровождаться мощной ответной реакцией клеток-мишеней. Активация гормоном рецептора сопровождается также включением внутриклеточных механизмов, прекращающих ответ клетки на действие гормона. Это могут быть механизмы, понижающие чувствительность (десенситизация/адаптация) рецептора к гормону; механизмы, дефосфорилирующие внутриклеточные ферментные системы и др.

Рецепторы к гормонам, как и к другим сигнальным молекулам, локализованы на клеточной мембране или внутри клетки. С рецепторами клеточной мембраны (1-TMS, 7-TMS и лигандзависимые ионные каналы) взаимодействуют гормоны гидрофильной (лииофобной) природы, для которых клеточная мембрана не проницаема. Ими являются катехоламины, мелатонин, серотонин, гормоны белково-пептидной природы.

Гормоны гидрофобной (липофильной) природы диффундируют через плазматическую мембрану и связываются с внутриклеточными рецепторами. Эти рецепторы делятся на цитозольные (рецепторы стероидных гормонов — глюко- и минералокортикоидов, андрогенов и прогестинов) и ядерные (рецепторы тиреоидных йодсодержащих гормонов, кальцитриола, эстрогенов, ретиноевой кислоты). Цитозольные рецепторы и рецепторы эстрогенов связаны с белками теплового шока (БТШ), что предотвращает их проникновение в ядро. Взаимодействие гормона с рецептором приводит к отделению БТШ, образованию гормон-рецепторного комплекса и активации рецептора. Комплекс гормон-рецептор перемещается в ядро, где он взаимодействует со строго определенными гормон-чувствительными (узнающими) участками ДНК. Это сопровождается изменением активности (экспрессией) определенных генов, контролирующих синтез белков в клетке и другие процессы.

По использованию тех или иных внутриклеточных путей передачи гормонального сигнала наиболее распространенные гормоны можно разделить на ряд групп (табл. 8.1).

Таблица 8.1. Внутриклеточные механизмы и пути действия гормонов

Гормоны контролируют разнообразные реакции клеток-мишеней и через них — физиологические процессы организма. Физиологические эффекты гормонов зависят от их содержания в крови, количества и чувствительности рецепторов, состояния пострецепторных структур в клетках-мишенях. Под действием гормонов может происходить активация или торможение энергетического и пластического метаболизма клеток, синтеза различных, в том числе белковых веществ (метаболическое действие гормонов); изменение скорости деления клетки, ее дифференцировки (морфогенетическое действие), инициирование запрограммированной гибели клетки (апоптоз); запуск и регуляция сокращения и расслабления гладких миоцитов, секреции, абсорбции (кинетическое действие); изменение состояния ионных каналов, ускорение или торможение генерации электрических потенциалов в водителях ритма (корригирующее действие), облегчение или угнетение влияния других гормонов (реактогенное действие) и т.д.

Таблица. Распределение гормона в крови

Скорость возникновения в организме и продолжительность ответных реакций на действие гормонов зависит от типа стимулируемых рецепторов и скорости метаболизма самих гормонов. Изменения физиологических процессов могут наблюдаться через несколько десятков секунд и длиться кратковременно при стимуляции рецепторов плазматической мембраны (например, сужение сосудов и повышение артериального давления крови под действием адреналина) или наблюдаться через несколько десятков минут и длиться часами при стимуляции ядерных рецепторов (например, усиление обмена в клетках и увеличение потребления кислорода организмом при стимуляции тиреоидных рецепторов трийодтиронином).

Таблица. Время действия физиологически активных веществ

Поскольку одна и та же клетка может содержать рецепторы к разным гормонам, то она способна быть одновременно клеткой-мишенью для нескольких гормонов и других сигнальных молекул. Действие одного гормона на клетку нередко сочетается с влиянием других гормонов, медиаторов, цитокинов. При этом в клетках-мишенях может происходить запуск ряда путей передачи сигналов, в результате взаимодействия которых может наблюдаться усиление или торможение ответной реакции клетки. Например, на гладкий миоцит стенки сосудов могут одновременно действовать норадреналин и , суммируя их сосудосуживающее влияние. Сосудосуживающее действие вазопрессина может быть устранено или ослаблено одновременным действием на гладкие миоциты сосудистой стенки брадикинина или оксида азота.

Регуляция образования и секреции гормонов

Регуляция образования и секреции гормонов является одной из важнейших функций и нервной систем организма. Среди механизмов регуляции образования и секреции гормонов выделяют влияние ЦНС, «тройных» гормонов, влияние по каналам отрицательной обратной связи концентрации гормонов в крови, влияние конечных эффектов гормонов на их секрецию, влияние суточных и других ритмов.

Нервная регуляция осуществляется в различных эндокринных железах и клетках. Это регуляция образования и секреции гормонов нейросекреторными клетками переднего гипоталамуса в ответ на поступление к нему нервных импульсов с различных областей ЦНС. Эти клетки обладают уникальной способностью возбуждаться и трансформировать возбуждение в образование и секрецию гормонов, стимулирующих (рилизинг-гормоны, либерины) или тормозящих (статины) секрецию гормонов гипофизом. Например, при увеличении притока нервных импульсов к гипоталамусу в условиях психоэмоционального возбуждения, голода, болевого воздействия, действии тепла или холода, при инфекции и в других чрезвычайных условиях, нейросекреторные клетки гипоталамуса высвобождают в портальные сосуды гипофиза кортикотропина рилизинг-гормон, который усиливает секрецию адренокортикотропного гормона (АКТГ) гипофизом.

Непосредственное влияние на образование и секрецию гормонов оказывает АНС. При повышении тонуса СНС увеличивается секреция тройных гормонов гипофизом, секреция катехоламинов мозговым веществом надпочечников, тиреоидных гормонов щитовидной железой, снижается секреция инсулина. При повышении тонуса ПСНС увеличивается секреция инсулина, гастрина и тормозится секреция тиреоидных гормонов.

Регуляции тронными гормонами гипофиза используется для контроля образования и секреции гормонов периферическими эндокринными железами (щитовидной, корой надпочечников, половыми железами). Секреция тропных гормонов находится под контролем гипоталамуса. Тропные гормоны получили свое название из-за их способности связываться (обладать сродством) с рецепторами клеток-мишеней, формирующих отдельные периферические эндокринные железы. Троп- ный гормон к тироцитам щитовидной железы называют тиро- тропином или тиреотропным гормоном (ТТГ), к эндокринным клеткам коры надпочечников — адренокортикотропным гормоном (АКГТ). Тропные гормоны к эндокринным клеткам половых желез получили название: лютропин или лютеинизирующий гормон (ЛГ) — к клеткам Лейдига, желтому телу; фоллитропин или фолликулостимулирующий гормон (ФСГ) — к клеткам фолликулов и клеткам Сертоли.

Тропные гормоны при повышении их уровня в крови многократно стимулируют секрецию гормонов периферическими эндокринными железами. Они могут оказывать на них также другие эффекты. Так, например, ТТГ усиливает в щитовидной железе кровоток, активирует метаболические процессы в тироцитах, захват ими йода из крови, ускоряет процессы синтеза и секреции тиреоидных гормонов. При избыточном количестве ТТГ наблюдается гипертрофия щитовидной железы.

Регуляция обратными связями используется для контроля секреции гормонов гипоталамуса и гипофиза. Ее суть заключается в том, что нейросекреторные клетки гипоталамуса имеют рецепторы и являются клетками-мишенями гормонов периферической эндокринной железы и тройного гормона гипофиза, контролирующего секрецию гормонов этой периферической железой. Таким образом, если под влиянием гипоталамического тиреотропин-рилизинг-гормона (ТРГ) увеличится секреция ТТГ, то последний свяжется не только с рецепторами тирсоцитов, но и с рецепторами нейросекреторных клеток гипоталамуса. В щитовидной железе ТТГ стимулирует образование тиреоидных гормонов, а в гипоталамусе — тормозит дальнейшую секрецию ТРГ. Связь между уровнем ТТГ в крови и процессами образования и секреции ТРГ в гипоталамусе получила название короткой петли обратной связи.

На секрецию ТРГ в гипоталамусе оказывает влияние и уровень гормонов щитовидной железы. Если их концентрация в крови повышается, то они связываются с рецепторами тиреоидных гормонов нейросекреторных клеток гипоталамуса и тормозят синтез и секрецию ТРГ. Связь между уровнем тиреоидных гормонов в крови и процессами образования и секреции ТРГ в гипоталамусе получила название длинной петли обратной связи. Имеются экспериментальные данные о том, что гормоны гипоталамуса не только регулируют синтез и выделение гормонов гипофиза, но и тормозят собственное выделение, что определяют понятием сверхкороткой петли обратной связи.

Совокупность железистых клеток гипофиза, гипоталамуса и периферических эндокринных желез и механизмов их взаимного влияния друг на друга назвали системами или осями гипофиз — гипоталамус — эндокринная железа. Выделяют системы (оси) гипофиз — гипоталамус — щитовидная железа; гипофиз — гипоталамус — кора надпочечников; гипофиз — гипоталамус — половые железы.

Влияние конечных эффектов гормонов на их секрецию имеет место в островковом аппарате поджелудочной железы, С-клетках щитовидной железы, паращитовидных железах, гипоталамусе и др. Это демонстрируется следующими примерами. При повышении в крови уровня глюкозы стимулируется секреция инсулина, а при понижении — глюкагона. Эти гормоны по паракринному механизму тормозят секрецию друг друга. При повышении в крови уровня ионов Са 2+ стимулируется секреция кальцитонина, а при понижении — паратирина. Прямое влияние концентрации веществ на секрецию гормонов, контролирующих их уровень, является быстрым и эффективным способом поддержания концентрации этих веществ в крови.

Среди рассматриваемых механизмов регуляции секреции гормонов их конечными эффектами можно отметить регуляцию секреции антидиуретического гормона (АДГ) клетками заднего гипоталамуса. Секреция этого гормона стимулируется при повышении осмотического давления крови, например при потере жидкости. Снижение диуреза и задержка жидкости в организме под действием АДГ ведут к снижению осмотического давления и торможению секреции АДГ. Похожий механизм используется для регуляции секреции натрийуретического пептида клетками предсердий.

Влияние суточных и других ритмов на секрецию гормонов имеет место в гипоталамусе, надпочечниках, половых, шишковидной железах. Примером влияния суточного ритма является суточная зависимость секреции АКТГ и кортикостероидных гормонов. Самый низкий их уровень в крови наблюдается в полночь, а самый высокий — утром после пробуждения. Наиболее высокий уровень мелатонина регистрируется ночью. Хорошо известно влияние лунного цикла на секрецию половых гормонов у женщин.

Определение гормонов

Секреция гормонов - поступление гормонов во внутреннюю среду организма. Полипептидные гормоны накапливаются в гранулах и секретируются путем экзоцитоза. Стероидные гормоны не накапливаются в клетке и секретируются сразу после синтеза путем диффузии через клеточную мембрану. Секреция гормонов в большинстве случаев имеет циклический, пульсирующий характер. Периодичность секреции — от 5-10 мин до 24 ч и более (распространенный ритм — около 1 ч).

Связанная форма гормона — образование обратимых, соединенных нековалентными связями комплексов гормонов с белками плазмы и форменными элементами. Степень связывания различных гормонов сильно варьирует и определяется их растворимостью в плазме крови и наличием транспортного белка. Например, 90 % кортизола, 98 % тестостерона и эстрадиола, 96 % трийодтиронина и 99 % тироксина связываются с транспортными белками. Связанная форма гормона не может взаимодействовать с рецепторами и формирует резерв, который может быть быстро мобилизован для пополнения пула свободного гормона.

Свободная форма гормона — физиологически активное вещество в плазме крови в несвязанном с белком состоянии, способное взаимодействовать с рецепторами. Связанная форма гормона находится в динамическом равновесии с пулом свободного гормона, который в свою очередь находится в равновесии с гормоном, связанным с рецепторами в клетках-мишенях. Большинство полипептидных гормонов, за исключением соматотропина и окситоцина, циркулирует в низких концентрациях в крови в свободном состоянии, не связываясь с белками.

Метаболические превращения гормона - его химическая модификация в тканях-мишенях или других образованиях, обусловливающая снижение/повышение гормональной активности. Важнейшим местом обмена гормонов (их активации или инактивации) является печень.

Скорость метаболизма гормона - интенсивность его химического превращения, которая определяет длительность циркуляции в крови. Период полураспада катехоламинов и полипептидных гормонов составляет несколько минут, а тиреоидных и стероидных гормонов — от 30 мин до нескольких суток.

Гормональный рецептор — высокоспециализированная клеточная структура, входящая в состав плазматических мембран, цитоплазмы или ядерного аппарата клетки и образующая специфичное комплексное соединение с гормоном.

Органоспецифичность действия гормона - ответные реакции органов и тканей на физиологически активные вещества; они строго специфичны и не могут быть вызваны другими соединениями.

Обратная связь — влияние уровня циркулирующего гормона на его синтез в эндокринных клетках. Длинная цепь обратной связи — взаимодействие периферической эндокринной железы с гипофизарными, гипоталамическими центрами и с супрагипоталамическими областями ЦНС. Короткая цепь обратной связи — изменение секреции гипофизарного тронного гормона, модифицирует секрецию и высвобождение статинов и либеринов гипоталамуса. Ультракороткая цепь обратной связи — взаимодействие в пределах эндокринной железы, при котором выделение гормона влияет на процессы секреции и высвобождения его самого и других гормонов из данной железы.

Отрицательная обратная связь - повышение уровня гормона, приводящее к торможению его секреции.

Положительная обратная связь — повышение уровня гормона, обусловливающее стимуляцию и возникновение пика его секреции.

Анаболические гормоны - физиологически активные вещества, способствующие образованию и обновлению структурных частей организма и накоплению в нем энергии. К таким веществам относятся гонадотропные гормоны гипофиза (фоллитропин, лютропин), половые стероидные гормоны (андрогены и эстрогены), гормон роста (соматотропин), хориони- ческий гонадотропин плаценты, инсулин.

Инсулин — белковое вещество, вырабатываемое в β-клетках островков Лангерганса, состоящее из двух полипептидных цепей (А-цепь — 21 аминокислота, В-цепь — 30), снижающее уровень глюкозы крови. Первый белок, у которого была полностью определена первичная структура Ф. Сенгером в 1945-1954 гг.

Катаболические гормоны — физиологически активные вещества, способствующие распаду различных веществ и структур организма и высвобождению из него энергии. К таким веществам относятся кортикотропин, глюкокортикоиды (корти- зол), глюкагон, высокие концентрации тироксина и адреналина.

Тироксин (тетрайодтиронин) - йодсодержащее производное аминокислоты тирозина, вырабатываемое в фолликулах щитовидной железы, повышающее интенсивность основного обмена, теплопродукцию, оказывающее влияние на рост и дифференцировку тканей.

Глюкагон - полипептид, вырабатываемый в а-клетках островков Лангерганса, состоящий из 29 аминокислотных остатков, стимулирующий распад гликогена и повышающий уровень глюкозы крови.

Кортикостероидные гормоны - соединения, образующиеся в корковом веществе надпочечников. В зависимости от числа атомов углерода в молекуле делят на С 18 -стероиды — женские половые гормоны — эстрогены, С 19 -стероиды — мужские половые гормоны — андрогены, С 21 -стероиды — собственно кортикостероидные гормоны, обладающие специфическим физиологическим действием.

Катехоламины — производные пирокатехина, активно участвующие в физиологических процессах в организме животных и человека. К катехоламинам относятся адреналин, норадреналин и дофамин.

Симпатоадреналовая система — хромаффинные клетки мозгового вещества надпочечников и иннервирующие их преганглионарные волокна симпатической нервной системы, в которых синтезируются катехоламины. Хромаффинные клетки также обнаружены в аорте, каротидном синусе, внутри и около симпатических ганглиев.

Биогенные амины — группа азотсодержащих органических соединений, образующихся в организме путем декарбоксилирования аминокислот, т.е. отщепления от них карбоксильной группы — СООН. Многие из биогенных аминов (гистамин, серотонин, норадреналин, адреналин, дофамин, тирамин и др.) оказывают выраженный физиологический эффект.

Эйкозаноиды - физиологически активные вещества, производные преимущественно арахидоновой кислоты, оказывающие разнообразные физиологические эффекты и подразделяющиеся на группы: простагландины, простациклины, тром- боксаны, левугландины, лейкотриены и др.

Регуляторные пептиды — высокомолекулярные соединения, представляющие собой цепочку аминокислотных остатков, соединенных пептидной связью. Регуляторные пептиды, насчитывающие до 10 аминокислотных остатков, называют олигопептидами, от 10 до 50 — полипептидами, свыше 50 — белками.

Антигормон — защитное вещество, вырабатываемое организмом при длительном введении белковых гормональных препаратов. Образование антигормона является иммунологической реакцией на введение извне чужеродного белка. По отношению к собственным гормонам организм не образует антигормоны. Однако могут быть синтезированы вещества, близкие по строению к гормонам, которые при введении в организм действуют как антиметаболиты гормонов.

Антиметаболиты гормонов — физиологически активные соединения, близкие по строению к гормонам и вступающие с ними в конкурентные, антагонистические отношения. Антиметаболиты гормонов способны занимать их место в физиологических процессах, совершающихся в организме, или блокировать гормональные рецепторы.

Тканевой гормон (аутокоид, гормон местного действия) — физиологически активное вещество, вырабатываемое неспециализированными клетками и оказывающее преимущественно местный эффект.

Нейрогормон — физиологически активное вещество, вырабатываемое нервными клетками.

Эффекторный гормон - физиологически активное вещество, оказывающее непосредственный эффект на клетки и органы-мишени.

Тронный гормон — физиологически активное вещество, действующее на другие эндокринные железы и регулирующее их функции.

Гормоны - биологически активные вещества, которые способны включаться в биохимических реакций и регулировать обмен веществ и энергии. Термин "гормон" принадлежит Е. Стерлинге и В. Бейлис, которые в 1905 году применили его для поджелудочной секреторной вещества - секретина. У позвоночных животных гормоны синтезируются преимущественно эндокринными железами. Образуются они и беспозвоночными животными. Так в узлах кольчатых червей происходит хромафинной ткань, аналогичная мозговой части надпочечников позвоночных, у насекомых синтезируются половые аттрактанты (вещества, привлекающие) и др.

Свойства. Установлено, что гормоны синтезируются не только эндокринными железами, но и некоторыми тканями и органами - желудком, сердцем, почками, плацентой и др. Для них являются общими такие свойства, как:

1) высокая биологическая активность - обусловливают значительный эффект в очень низких концентрациях: большинство гормонов способны в количестве 10-6 - 10-3 мг вызвать изменения обмена веществ);

2) специфичность действия - способны взаимодействовать с определенными клетками-мишенями благодаря наличию в них молекул рецепторов внутри клетки гормональную действие продолжают не одни гормоны, а молекулы-посредники вещества циклической АМФ (цАМФ).

3) отсутствие видовой специфичности- в подавляющем большинстве, кроме гормона роста, среди них нет таких, которые были бы присущи только данному виду организмов, например, гормоны щитовидной железы млекопитающих есть и в древнейших организмов на Земле - цианобактерий;

4) дистантность действия - переносятся в от места синтеза к клеткам-мишеням, где взаимодействуют с определенным рецептором на мембранах клеток (белково-пептидные гормоны) или проникают внутрь клетки и далее в ядро (стероидные гормоны)

5) кратковременность действия- в процессе действия быстро распадаются в печени, почках, пищеварительной системе и т.п. или выводятся из организма;

6) разнообразие механизмов действия - свое действие на обмен веществ проявляют различными путями: а) повышают проницаемость мембран; б) регулируют активность ферментов как эффекторы и ингибиторы; в) действуют на генетический аппарат клетки и регулируют процессы транскрипции и др.

Разнообразие. Известно более 50 гормонов, а также много гормоноподобных соединений, которые можно классифицировать по различным параметрам. По химической природе гормоны делят на три группы: 1) гормоны белково-пептидной природы: гормоны гипофиза, гипоталамуса, поджелудочной железы, паращитовидных желез 2) гормоны - производные аминокислот: гормоны эпифиза, мозговой части надпочечников, щитовидной железы; 3) гормоны стероидной природы: гормоны коры части надпочечников, половых желез. По характеру действия различают пусковые (тропные гормоны) и исполнительные (гормоны периферических желез). По месту синтеза выделяют эндокринные (например, соматотропин), тканевые (например, гистамин, серотонин) и нейрогормоны (например, вазопрессин, окситоцин). Нейрогормоны (от нейро... и гормоны ) нейросекрета, физиологически активные вещества, вырабатываемые особыми нейронами - нейросекреторными клетками. Как и медиаторы, нейрогормонн секретируются нервными окончаниями, но, в отличие от первых, выделяются в кровь или тканевую жидкость, что свойственно гормонам. Нейрогормонн обнаружены как у позвоночных (вазопрессин , окситоцин ), так и во многих беспозвоночных - моллюсков, червей, членистоногих и др. По химической природе большинство нейрогормонов - пептиды. Биосинтез пептидных ней- рогормонив происходит в эндоплазматической сети тела нейрона, а упаковка их в гранулы - в комплексе Гольджи, откуда они по аксону транспортируются к нервным окончаниям. В головном мозге млекопитающих источником нейрогормонов является нейросекреторные клетки гипоталамуса. Нейрогормонн регулируют деятельность клеток некоторых эндокринных желез, а также влияют на клетки других органов.

Значение . В организме нет ни одной физиологической функции, не находилась бы в сфере гормонального действия. Гормоны обеспечивают гуморальную регуляцию, оказывая влияние на: обмен веществ и энергии (тироксин) процессы роста и развития органов (соматотропин) половое созревание (андрогены и эстрогены) физическое и психическое развитие (эндорфины) реакцию организма на стресс в комплексе с нервной системой (адреналин)

БИОЛОГИЯ + тироксин - основной тиреоидином гормон позвоночных и человека, вырабатываемый щитовидной железой. У земноводных и некоторых костистых рыб (угри, Камбалообразные ) тироксин стимулирует метаморфоз. У человека и теплокровных животных повышает интенсивность обмена веществ и температуру тела, влияет на формирование тканей. Синтез и секреция тироксина регулируется с помощью тиреотропного гормона, который вырабатывается гипофизом факторов среды (температура. Стресс, наличие в пище й оду т.д. ) . Нарушение баланса тироксина в организме приводит к различным заболеваниям (зоб, кретинизм, микседема ).

Гормоны представляют собой биологически активные вещества, различные по химической природе, которые вырабатываются клетками эндокринных желез и специфическими клетками, рассеяными по всему организму в рабочих органах и тканях.

Все гормоны имеют несколько важных свойств, которые отличают их от других биологически активных веществ:

1. Гормоны вырабатываются в клетках эндокринных желез и секретируются в кровь.

2. Все гормоны являются чрезвычайно активными веществами, они вырабатываются в малых дозировках (0,001-0,01 моль/л), но оказывают выраженный и быстрый биологический эффект.

3. Гормоны специфически воздействуют на органы и ткани посредством рецепторов. Они подходят к рецептору как ключ к замку, а потому воздействуют только на восприимчивые клетки и ткани.

4. Гормоны отличаются тем, что имеют определенный ритм секреции, например, гормоны коры надпочечников имеют суточный ритм секреции, а иногда ритм является месячным (половые гормоны у женщин) или интенсивность секреции изменяется в течение более продолжительного периода времени (сезонные ритмы).

Стоит отметить, что биологически активные вещества, которые вырабатывают рассеянные по организму клетки, зачастую относят к так называемым тканевым гормонам. Их отличительными особенностями является секреция в тканевую жидкость и преимущественно местное действие, тогда как гормоны оказывают свой эффект дистанционно.

По своей химической природе все гормоны могут быть белками (пептидами), производными аминокислот или веществами стероидной природы.

Регуляция работы

Работа эндокринных желез (интенсивность синтеза гормонов) регулируется центральной нервной системой. При этом деятельность всех периферических желез внутренней секреции определяется также корригирующими влияниями из центральных структур эндокринной системы.

Существует два механизма влияния нервной системы на эндокринную: нейро-проводниковый и нейро-эндокринный. Первый заключается в непосредственном влиянии нервной системы за счет нервных импульсов на периферические железы. Например, интенсивность синтеза гормонов может изменяться за счет снижения или увеличения тонуса сосудов железы, т.е. изменения интенсивности ее кровоснабжения. Второй механизм заключается во влиянии нервной системы на гипоталамус, который посредством рилизинг факторов (стимуляторы – либерины, и подавляющие секрецию - статины) определяет работу гипофиза. Гипофиз, в свою очередь, продуцирует тропные гормоны, регулирующие деятельность периферических желез.

Все железы внутренней секреции связаны с центральными структурами по механизму обратной отрицательной связи – повышение концентрации гормонов в крови ведет к уменьшению стимулирующего влияния со стороны нервной системы и центральных структур эндокринной системы.

Образование

Большинство гормонов синтезируется эндокринными железами в активной форме. Некоторые поступают в плазму в виде неактивных веществ – прогормонов. Например, проинсулин, который становится активным только после отщепления от него небольшой части - так называемого С-пептида.

Выделение

Секреция гормонов – это всегда активный процесс, который строго регулируется нервными и эндокринными механизмами. При необходимости может не только снижаться продукция гормона, но и происходить его депонирование в клетках эндокринных желез, например, за счет связывания с белком, РНК, двухвалентными ионами.

Транспортировка

Транспорт гормона осуществляется исключительно кровью. При этом большая его часть в крови находится в связанной форме с белками (около 90%). Стоит отметить, что почти все гормоны связываются со специфическими белками, тогда как с неспецифическим белком (альбумином) связано лишь 10% пула. Связанные гормоны являются неактивными, они переходят в активную форму лишь после выхода из комплекса. Если гормон не понадобился организму, то со временем он выходит из комплекса и метаболизируется.

Рецепторные взаимодействия

Связывание гормона с рецептором является важнейшим этапом гуморальной передачи сигнала. Именно рецепторное взаимодействие обуславливает специфическое действие гормона на клетки-мишени. Большая часть рецепторов представляет собой гликопротеиды, которые встроены в мембрану, т.е. находятся в специфическом фосфолипидном окружении.

Взаимодействие рецептора и гормона происходит по закону действующих масс согласно кинетике Михаэлиса. В ходе взаимодействия возможно проявление как положительного, так и отрицательного кооперативного эффектов. Иными словами, связывание гормона с рецептором может улучшить связывание с ним всех последующих молекул, либо сильно затруднить его.

Взаимодействие гормона и рецептора может приводить к разным биологическим эффектам, во многом они определяются типом рецептора, а именно его расположением. В связи с этим выделяют следующие варианты локализации рецепторов:

1. Поверхностные. При взаимодействии с гормоном меняют свою структуру (конформацию), за счет чего увеличивается проницаемость мембраны, и в клетку проходят определенные вещества.

2. Трансмембранные. Поверхностная часть взаимодействует с гормоном, а противоположная ей (внутри клетки) - с ферментом (аденилатциклаза или гаунилатциклаза), способствует выработке внутриклеточных медиаторов (циклический аденин- или гаунинмонофосфат). Последние являются так называемыми внутриклеточными мессенджерами, они усиливают синтез белка или его транспортировку, т.е. оказывают определенный биологический эффект.

3. Цитоплазматические. Находятся в цитоплазме в свободном виде. С ними связывается гормон, комплекс поступает в ядро, где усиливает синтез

Информационной РНК и, таким образом, стимулирует образование белка на рибосомах.

4. Ядерные. Это негистоновый белок, который связан с ДНК. Взаимодействие гормона и рецептора приводит к усилению синтеза белка клеткой.

Эффект гормона зависит от множества факторов, в частности, от его концентрации, от количества рецепторов, плотности их расположения, аффинности (сродства) гормона и рецептора, а также наличия антагонистического или потенцирующего воздействия на эти же клетки или ткани других биологически активных веществ.

Чувствительность рецепторов имеет не только академическое, но и большое клиническое значение, поскольку, например, рецепторная резистентность к инсулину лежит в основе развития сахарного диабета второго типа, а блокирование рецепторов при гормончувствительных опухолях (в частности, молочной железы) значительно увеличивает эффективность лечения.

Инактивация

Гормоны могут подвергаться метаболизму в самих эндокринных железах, если в них нет необходимости, в крови, а также в органах-мишенях после того, как они выполнили свою функцию.

Метаболизм гормонов может осуществляться несколькими путями:

1. Расщепление молекулы (гидролиз).

2. Изменение структуры активного центра за счет присоединения дополнительных радикалов, например, метилирование или ацетилирование.

3. Окисление или восстановление.

4. Связывание молекулы с остатком глюкуроновой или серной кислоты с образованием соответствующей соли.

Разрушение гормонов является не только средством их утилизации после того, как они справились со своей функцией, но и важным механизмом регуляции уровня гормонов в крови и их биологического эффекта. Стоит отметить, что усиление катаболизма повышает пул свободных гормонов, делая их, таким образом, более доступным для органов и тканей. Если достаточно долгое время сохраняется повышенным катаболизм гормонов, то происходит снижение уровня транспортных белков, что также повышает биодоступность.

Выведение из организма

Гормоны могут выводиться всеми без исключения путями, в частности, почками с мочой, печенью через желчь, желудочно-кишечным трактом с пищеварительными соками, дыхательными путями с выдыхаемыми парами, кожей с потом. Пептидные гормоны гидролизируются до аминокислот, которые попадают в общий пул и могут быть снова использованы организмом. Преимущественный способ выведения того или иного гормона определяется его растворимостью в воде, структурой, особенностями метаболизма и так далее.

По количеству гормонов или их метаболитов в моче зачастую удается отследить общую величину секреции гормона за сутки. Поэтому моча является одной из основных сред для функционального изучения эндокринной системы, не меньшее значение для лабораторной диагностики имеет и исследование плазмы крови.

Подводя итог, стоит отметить, что эндокринная система – это сложная и многокомпонентная система, все процессы в которой тесно связаны между собой, а нарушение функционирования может быть связано с патологией на каждом из вышеуказанных этапов: от образования гормона до его выведения.



Понравилась статья? Поделитесь ей
Наверх