Анализ электронейромиографического исследования у больных с диабетической полиневропатией. Исследования нервной проводимости

Поражение n. medianus на любом его участке, приводящее к болям и отечности кисти, расстройству чувствительности ее ладонной поверхности и первых 3,5 пальцев, нарушению сгибания этих пальцев и противопоставления большого пальца. Диагностика проводится неврологом по результатам неврологического осмотра и электронейромиографии; дополнительно при помощи рентгенографии, УЗИ и томографии исследуют костно-мышечные структуры. В лечение включают обезболивающие, противовоспалительные, нейрометаболические, сосудистые фармпрепараты, ЛФК, физиолечение, массаж. По показаниям проводятся хирургические вмешательства.

Общие сведения

Невропатия срединного нерва встречается достаточно часто. Основной контингент заболевших - лица молодого и среднего возраста. Наиболее распространенные места поражения срединного нерва соответствуют зонам его наибольшей уязвимости - анатомическим туннелям, в которых возможно сдавление (компрессия) ствола нерва с развитием т. н. туннельного синдрома. Самым часто встречающимся туннельным синдромом n. medianus является синдром запястного канала - сдавление нерва при его переходе на кисть. Средняя заболеваемость в популяции составляет 2-3%.

Вторым по распространенности местом поражения срединного нерва выступает его участок в верхней части предплечья, идущий между мышечными пучками круглого пронатора. Такая невропатия носит название «синдром круглого пронатора». В нижней трети плеча n. medianus может быть сдавлен аномальным отростком плечевой кости или связкой Струзера. Его поражение в этом месте носит название синдром ленты Струзера, или синдром супракондилярного отростка плеча. В литературе также можно встретить синонимичное название - синдром Кулона-Лорда-Бедосье, включающее имена соавторов, впервые описавших этот синдром в 1963 г.

Анатомия срединного нерва

N. medianus формируется при соединении пучков плечевого сплетения, которые, в свою очередь, начинаются от спинномозговых корешков С5–Th1. После прохождения подмышечной зоны идет рядом с плечевой артерией вдоль медиального края плечевой кости. В нижней трети плеча уходит глубже артерии и проходит под связкой Струзера, при выходе на предплечье идет в толще круглого пронатора. Затем проходит между мышцами-сгибателями пальцев. На плече срединный нерв не дает ветвей, к локтевому суставу от него отходят сенсорные ветви. На предплечье n. medianus иннервирует практически все мышцы передней группы.

С предплечья на кисть n. medianus переходит через карпальный (запястный канал). На кисти он иннервирует мышцы противопоставляющую и отводящую большой палец, частично мышцу, сгибающую большой палец, червеобразные мышцы. Сенсорные ветви n. medianus иннервируют лучезапястный сустав, кожу ладонной поверхности радиальной половины кисти и первых 3,5 пальцев.

Причины невропатии срединного нерва

Невропатия срединного нерва может развиться вследствие травмы нерва: его ушиба, частичного разрыва волокон при резанных, рваных, колотых, огнестрельных ранах или повреждении отломками костей при переломах плеча и предплечья, внутрисуставных переломах в локтевом или лучезапястном суставах. Причиной поражения n. medianus могут быть вывихи или воспалительные изменения (артроз , артрит , бурсит) указанных суставов. Компрессия срединного нерва в любом его отрезке возможна при развитии опухолей (липом , остеом , гигром , гемангиом) или формировании посттравматических гематом . Невропатия может развиваться вследствие эндокринной дисфункции (при сахарном диабете , акромегалии , гипотиреозе), при заболеваниях, влекущих за собой изменения в связках, сухожилиях и костных тканях (подагре , ревматизме).

Развитие туннельного синдрома обусловлено компрессией ствола срединного нерва в анатомическом туннеле и нарушением его кровоснабжения вследствие сопутствующего сдавления питающих нерв сосудов. В связи с этим туннельный синдром также носит название компрессионно-ишемического. Наиболее часто невропатия срединного нерва такого генеза развивается в связи с профессиональной деятельностью. Например, синдромом запястного канала страдают маляры, штукатуры, плотники, упаковщики; синдром круглого пронатора наблюдается у гитаристов, флейтистов, пианистов, у кормящих женщин, которые длительно держат спящего ребенка на руке в положении, когда его голова находится на предплечье матери. Причиной туннельного синдрома может выступать изменение анатомических структур, образующих туннель, что отмечается при подвывихах, повреждении сухожилий , деформирующем остеоартрозе , ревматическом заболевании околосуставных тканей . В редких случаях (менее 1% во всей популяции) компрессия обусловлена наличием аномального отростка плечевой кости.

Симптомы невропатии срединного нерва

Невропатия срединного нерва характеризуется выраженным болевым синдромом. Боль захватывает медиальную поверхность предплечья, кисть и 1-3-й пальцы. Часто она имеет жгучий каузалгический характер. Как правило, боли сопровождаются интенсивными вегетативно-трофическими нарушениями, что проявляется отечностью, жаром и покраснением или похолоданием и бледностью запястья, радиальной половины ладони и 1-3-го пальцев.

Наиболее заметными симптомами двигательных нарушений являются невозможность собрать пальцы в кулак, противопоставить большой палец, согнуть 1-й и 2-й пальцы кисти. Затруднено сгибание 3-го пальца. При сгибании кисти наблюдается ее отклонение в локтевую сторону. Патогномоничным симптомом выступает атрофия мышц тенора. Большой палец не противопоставляется, а становиться в один ряд с остальными и рука приобретает схожесть с обезьяньей лапой.

Сенсорные нарушения проявляются онемением и гипестезией в зоне иннервации срединного нерва, т. е. кожи лучевой половины ладони, ладонной поверхности и тыла концевых фаланг 3,5 пальцев. Если нерв поражен выше запястного канала, то чувствительность ладони обычно сохранена, т. к. ее иннервация осуществляется ветвью, отходящей от срединного нерва до его входа в канал.

Диагностика невропатии срединного нерва

В классическом варианте невропатия срединного нерва может быть диагностирована неврологом в ходе тщательного неврологического осмотра. Для выявления двигательной недостаточность пациента просят выполнить ряд тестов: сжать все пальцы в кулак (1-й и 2-й пальцы не сгибаются); поскрести по поверхности стола ногтем указательного пальца; растягивать лист бумаги, взяв его лишь первыми двумя пальцами каждой руки; вращать большими пальцами; соединить кончики большого пальца и мизинца.

При туннельных синдромах определяется симптом Тиннеля - болезненность по ходу нерва при постукивании в месте компрессии. С его помощью можно диагностировать место поражения n. medianus. При синдроме круглого пронатора симптом Тиннеля определяется при постукивании в районе табакерки пронатора (верхняя треть внутренней поверхности предплечья), при синдроме запястного канала - при постукивании по радиальному краю внутренней поверхности запястья. При синдроме супракондилярного отростка боль возникает, когда пациент одновременно со сгибанием пальцев разгибает и пронирует предплечье.

Уточнить топику поражения и отдифференцировать невропатию n. medianus от плечевого плексита , вертеброгенных синдромов (радикулита , грыжи диска, спондилоартроза , остеохондроза , шейного спондилеза), полиневропатии помогает электронейромиография . С целью оценки состояния костных структур и суставов проводится рентгенография костей , МРТ, УЗИ или КТ суставов. При синдроме супракондилярного отростка при рентгенографии плечевой кости выявляется «шпора», или костный отросток. В зависимости от этиологии невропатии в диагностике принимают участие

Клинические и электрофизиологические данные свидетельствуют о большей ранимости чувствительных волокон периферических нервов по сравнению с двигательными. Мы связываем это с рядом причин, главная из которых, с нашей точки зрения, состоит в том, что импульсы по эфферентным волокнам вначале распространяются по проксимальному участку нерва, в то время как возбуждение афферентных волокон вначале проводится по дистальному участку нерва. Клинические, электрофизиологические и гистологические данные, как уже указывалось, свидетельствуют о том, что дистальные участки нерва (и прежде всего их леммоциты и мне липовые оболочки) страдают раньше и значительно сильнее, чем проксимальные. Вот почему потенциал действия моторных импульсов будет вначале почти беспрепятственно "перепрыгивать" через межперехватные участки и его распространение замедлится в основном в дистальной части нерва. Однако, имея еще достаточную амплитуду, этот потенциал сможет распространяться и при значительной демиелинизации, но уже не сальтоторно, а непрерывно, вдоль всего демиелинизированного участка волокна.

В то же время преимущественно дистальная сегментарная демиелинизация будет существенно препятствовать как возникновению разрядов афферентных импульсов (в норме рецепторный потенциал образует эти импульсы в первом к рецептору перехвате Ранвье), так и проведению их по афферентным волокнам I типа. При этом следует иметь в виду, что для распространения возбуждения по мякотным волокнам амплитуда потенциала действия должна быть в 5-6 раз выше пороговой величины, необходимой для возбуждения соседнего перехвата. В связи с этим сниженная на демиелинизированном участке чувствительного нерва амплитуда потенциала действия уже не достигает указанной величины на более сохранном участке нерва, что может привести даже к угасанию импульса.

Вторая причина большей ранимости чувствительных волокон, по-видимому, обусловлена тем, что возникновение потенциала действия эфферентного волокна происходит в теле мотонейрона, т. е. в значительно более благоприятных условиях (с точки зрения сохранности обменных процессов, запаса энергетического материала), чем в рецепторе, расположенном, например, на тыле стопы, где диабетические обменно-сосудистые нарушения максимально выражены. Эти нарушения приводят к значительному дефициту макроэргических фосфорных соединений, которые необходимы для нормального функционирования рецептора. Так, дефицит этих соединений нарушает работу натрий-калиевого насоса, что ведет к снижению величины рецепторного потенциала, который при раздражении или не достигает необходимого критического уровня (и, следовательно, не вызывает разряда афферентных импульсов), или же, достигнув только нижней границы указанного уровня, генерирует лишь редкую частоту афферентных импульсов, что, в частности, сопровождается уменьшением силы ощущения. Понятно, что в наибольшей степени указанный дефицит энергии будет иметь место при выраженных сосудистых нарушениях нижних конечностей, а также при тяжелой декомпенсации диабета. При использовании специальных методик, вероятно, можно выявить преходящее снижение различных видов чувствительности при декомпенсации сахарного диабета .

Третья причина связана с тем, что двигательные волокна появились филогенетически раньше чувствительных и поэтому более устойчивы.

Наконец, говоря о большей сохранности при дистальной полинейропатии двигательной функции нерва по сравнению с чувствительной, помимо отмеченных выше причин, следует указать и на значительные компенсаторные возможности двигательной функции периферических нервов (о чем свидетельствуют клинико-электро-физиологические данные).

Для объяснения факта замедления скорости проведения возбуждения по нервным волокнам в период декомпенсации сахарного диабета следует учесть, что для распространения нервного импульса необходима работа натрий-калиевого насоса, которая, как уже указывалось, весьма страдает в этот период.

Генез ирритативно-болевого синдрома при дистальной полинейропатии, как показал анализ наших данных, достаточно сложен. Клиническая симптоматика (боли, парестезии и дизестезии в нижних конечностях, гипералгезия в их дистальных отделах, болезненность икроножных мышц и др.) свидетельствует о наличии при указанном синдроме раздражения периферического нервно-рецепторного аппарата. Есть основания полагать, что это прежде всего обусловлено преимущественным поражением (в основном в виде сегментарной демиелинизации) толстых миелиновых волокон, проводящих быструю локализованную боль, при относительной сохранности безмиелиновых волокон (тип III), проводящих медленную, диффузную боль. Сегментарная демиелинизация, кроме того, способствует (как это предполагается некоторыми авторами при других видах патологии) развитию ирритативно-болевого синдрома в результате нарушения изоляционной функции миелиновых оболочек, что приводит как к соприкосновению соседних аксонов участками, лишенными миелиновой оболочки, так и к вхождению токов, распространяющихся вокруг аксонов. Болевые импульсы в этих условиях, по-видимому, могут возникать в ответ даже на незначительные раздражения тактильных, температурных и других рецепторов.

Можно думать, что в механизме повышения чувствительности рецепторов существенную роль играет нарушение как прямого, так и обратного аксотока, возникающее в рамках дистальной полинейропатии. Лишь на поздних стадиях развития последней в связи с гибелью многих аксонов и рецепторов такая повышенная чувствительность сменяется пониженной (гипестезией) и боли исчезают.

В поддержании ирритативно-болевого синдрома определенное значение, как мы полагаем, имеет характерная для диабета тканевая гипоксия, которая является максимальной при резкой декомпенсации диабета, несколько меньшей при наличии микро- и макроангиопатий на фоне компенсированного диабета и наименьшей при компенсированном диабете и отсутствии сосудистых нарушений. Выраженная гипоксия приводит, как указывалось выше, к образованию алгогенных веществ (серотонин, гистамин, норадреналин, брадикинин и др.), которые повышают сосудистую проницаемость. В результате этого возникает отек тканей со сдавлением болевых рецепторов в мышцах, а кроме того, алгогенные вещества, проникая в периваскулярные и перицеллюлярные пространства, сами возбуждают болевые рецепторы. При компенсации диабета (и отсутствии сосудистых нарушений) количество таких алгогенных веществ невелико, однако в связи с наличием при дистальной полинейропатии повышенной чувствительности рецепторов этого количества, по-видимому, достаточно для поддержания болевых явлений. Вместе с тем понятно, почему ирритативно-болевой синдром более выражен при декомпенсации диабета и уменьшается при его компенсации.

Нередкое усиление болей в нижних конечностях при дистальной полинейропатии в покое, особенно после длительной ходьбы (что прежде всего относится к больным с артериопатией нижних конечностей), по-видимому, связано с: 1) накоплением в период ходьбы в мышцах промежуточных продуктов обмена и наличием значительной гипоксии, 2) ослаблением в покое кровоснабжения нижних конечностей, 3) уменьшением стимуляции тактильных рецепторов (а возможно, и проприорецепторов). Из нейрофизиологических исследований известно, что импульсы, поступающие от тактильных рецепторов, снижают чувство боли. Можно предположить, что это относится и к проприорецепторам. Вот почему, когда больной встает и начинает ходить, у него уменьшаются или исчезают боли в нижних конечностях в результате как улучшения при ходьбе кровоснабжения мышц нижних конечностей, так и значительной стимуляции проприорецепторов и тактильных рецепторов (подошвенной поверхности стопы).

Мы полагаем, что причинами нередкого отсутствия при детском типе дистальной полинейропатии ирритативно-болевого синдрома (особенно у заболевших диабетом в возрасте до 7 лет) являются: 1) значительно более длительная сохранность (чем при взрослом типе развития дистальной полинейропатии) афферентных волокон, проводящих болевые импульсы, и их рецепторов; 2) адаптация периферического нервно-рецепторного аппарата (который рос и развивался в условиях тяжелого течения диабета) к обменно-гипоксическим нарушениям; 3) возникновение структурных изменений в тех рецепторах, стимуляция которых обменно-гипоксическими нарушениями при взрослом типе дистальной полинейропатии вызывает боль.

Указанные причины делают попятным и отсутствие нейромиалгии и период декомпенсации при длительном ювенильном диабете. Что же касается начального периода ювенильного диабета, для которого также характерно отсутствие нейромиалгии, то мы полагаем, что в слабо развитой мускулатуре у детей до 12 лет (и особенно до 7 лет) недостаточно развита и афферентная иннервация, в частности соответствующие болевые рецепторы мышц не возбуждаются при выраженных диабетических обменно-гипоксических нарушениях.

Возникновение нейромиалгии у взрослых больных диабетом мы связываем с тем, то в период декомпенсации диабета имеются значительные биохимические нарушения, в частности в скелетных мышцах, в которых увеличиваются концентрации молочной кислоты и других промежуточных продуктов обмена, развивается тканевая гипоксия, что наряду со сдвигом рН крови в кислую сторону и т. д. приводит к образованию алгогенных веществ с указанным выше механизмом их болевого действия.

При дистальной полинейропатии нередко наблюдается чувство жжения в стопах. Мы провели детальное сопоставление клинических показателей у трех групп больных: у 30 больных с этим симптомом, у 56 без такового, у 7 больных, у которых ранее был этот симптом. Резюмируя полученные данные, отметим, что ощущение жжения наблюдается у больных в основном старше 40 лет при продолжительности диабета более 10 лет с умеренно выраженной артериопатией и выраженной дистальной полинейропатией (которая все же не достигает VI и VII стадий развития). По мере нарастания как тяжести артериопатии (приводящей к значительному похолоданию стоп), так и патологии чувствительной иннервации отмечается исчезновение чувства жжения.

Относительно патофизиологии последнего мы высказали следующее предположение. При наличии в рамках дистальной полинейропатии умеренного поражения афферентных волокон, при котором, как мы видели выше, преимущественно страдают волокна 16, присоединение макроангиопатического фактора (артериопатии) с его гипоксическим влиянием на нервы нижних конечностей, их рецепторы и ткани стоп усугубляет патологию афферентных волокон (преимущественно 16) и их рецепторов и вызывает образование тех алгогенных веществ, которые, активируя относительно сохранные волокна III типа, вызывают ощущение жжения.

Теперь следует рассмотреть вопрос о синдроме дистальной гипестезии. Данным термином мы обозначили симптомокомплекс, который наблюдается на поздних стадиях развития дистальной полинейропатии нижних конечностей и проявляется отсутствием болей при механических, химических и термических воздействиях на стопы, а также при наличии язвы, гангрены и флегмоны стопы. Болей в йогах нет ни в покое, ни при ходьбе (при ходьбе может возникать безболевая форма перемежающейся хромоты). У таких больных выявляются признаки резко выраженной дистальной полинейропатии с гипестезией (до анестезии) в форме "чулок" или "носков" и отсутствием болезненности мышц голени. Кроме того, у них не вызываются ахилловы и коленные рефлексы, отмечается выпадение вибрационной чувствительности на стопах и голени, а также обычно снижено и мышечно-суставное чувство. Данный синдром выявлялся у 32 (2,4%) из 1300 больных, что составило 14% среди 229 больных с резко выраженной дистальной полинейропатией. Он отмечался у больных со взрослым типом развития дистальной полинейропатии при продолжительности диабета более 12 лет, а у больных с детским типом более 25 лет.

С указанным синдромом мы связываем отмеченное рядом исследователей отсутствие у больных с диабетической гангреной стоп болей и перемежающейся хромоты. Все же эти симптомы наблюдаются, по данным различных авторов, от 0,5 до 13,2% случаев диабетической гангрены стоп. Одной из причин столь значительного (в 25 раз) расхождения, с нашей точки зрения, является неоднозначное решение вопроса о том, какие некротические процессы на стопах следует относить к диабетическим гангренам.

Проведенное нами обследование 61 больного с диабетической гангреной стоп позволило различать, исходя из ведущего этиологического фактора, следующие четыре формы этой гангрены: ишемическую, невропатическую, сочетанную (ишемико-невропатическую) и метаболическую. Ишемическая форма наблюдалась у 16 больных, в основном пожилого возраста с недлительным диабетом. У них отмечались признаки III стадии облитерирующего атеросклероза нижних конечностей (по классификации А. Л. Мясиикова), а также имелись симптомы умеренно выраженной дистальной полинейропатии смешанного генеза (атеросклеротического, сенильного и диабетического). У этих больных отмечались и перемежающаяся хромота, и боли в пораненной стопе.

При невропатической форме (которая была диагностирована у 15 больных в возрасте до 45 лет с продолжительностью диабета в среднем более 20 лет) пульсация артерий стоп была или сохранной, или несколько ослабленной, стопы теплые, а полинейропатия проявлялась синдромом дистальной гипестезии. В этих случаях отсутствовали как перемежающаяся хромота, так и боли в пораженной стопе.

Сочетанная (ишемико-невропатическая) форма была у 27 больных зрелого и пожилого возраста со значительной длительностью диабета. У них по было перемежающейся хромоты и болей в пораженной стопе, а объективная симптоматика включала сосудистую патологию, как и у больных с ишемической формой, и неврологическую, как при невропатической форме гангрены стоп.

Наконец, метаболическая форма была у 3 больных (у 1 с коротким диабетом и у 2 с диагностированным до возникновения гангрены диабетом), у которых некротический процесс на стопах развился па фоне некомпенсированных обменных нарушений, что, по-видимому, и послужило причиной снижения резистентности тканей стопы к инфицированию. У них отсутствовала перемежающаяся хромота, но были интенсивные боли в пораженной стопе.

Таким образом, перемежающаяся хромота характерна только для ишемической формы гангрены стоп, а боли в пораженной стопе возникают при метаболической и ишемической формах.

Давно было отмечено, что у больных с диабетической гангреной стоп при ходьбе вместо болей возникает повышенная утомляемость ног. Действительно, у наших больных с невропатической и ишемико-невропатической формами гангрены стоп (а также с резко выраженной артериопатией нижних конечностей при отсутствии гангрены, но с симптомами дистальной гипестезии) слабость и резкая утомляемость ног наблюдалась даже при кратковременной ходьбе (по словам этих больных, "ноги совсем не ходят"), т. е. эта утомляемость была эквивалентом боли при перемежающейся хромоте. Другими словами, у указанных групп больных возникала по нашей терминологии "безболевая форма перемежающейся хромоты".

Наконец, следует отметить, что резкое поражение чувствительных волокон в рамках синдрома дистальной гипестезии (приближающееся к деафферентации дистальных отделов нижних конечностей) имеет непосредственное отношение не только к симптоматике, но и к возникновению диабетической гангрены стоп. Из многочисленных работ по неврогенным дистрофиям известно, что в деафферентированных тканях развиваются тяжелые дистрофические и аутоаллергические процессы. К этому следует прибавить повышенную травматизацию анестезированной стопы механическими и термическими факторами, а также то, что такие больные обычно поздно обращаются за медицинской помощью. Вот почему есть все основания полагать, что указанные чувствительные расстройства являются одним из ведущих факторов в возникновении значительно более частой гангрены стоп при наличии диабета, чем при его отсутствии.

Вопрос о механизме одного из наиболее частых симптомов дистальной полинейропатии - снижении и выпадении сухожильных и периостальных рефлексов, является весьма дискутабельным. Наши более ранние клинико-электромиографические исследования, включая и результаты определения скорости распространения возбуждения по моторным волокнам периферических нервов, подтвердили точку зрения тех авторов, которые связывают указанные рефлекторные нарушения с поражением афферентной части рефлекторной дуги. Дальнейшее изучение этого вопроса с учетом данных по Н-рефлексу и скорости распространения возбуждения по афферентным волокнам большеберцового нерва, а также возможности в некоторых случаях восстановления выпавших проприоцептивных рефлексов привело нас к представлению о том, что указанные рефлекторные нарушения связаны с патологией первичных афферентных волокон мышечных веретен, которая прежде всего заключается в дистальном типе демиелинизации этих волокон.

Снижение и выпадение в рамках дистальной полинейропатии подошвенного рефлекса мы также связываем с поражением афферентных волокон рефлекторной дуги. Поскольку афферентные волокна ахиллова и подошвенного рефлексов проходят в составе большеберцового нерва и дистальные отделы этих волокон почти одинаково удалены от клеточных тел их нейронов, то казалось бы и страдать от диабетических обменно-сосудистых нарушений они должны почти одинаково. Однако, как мы видели выше, подошвенные рефлексы в рамках дистальной полиневропатии выпадают значительно позже, чем ахилловы. Мы объясняем это действием двух основных факторов. Во-первых, судя по нейрофизиологическим исследованиям, от гипоксии в первую очередь страдают наиболее толстые миелиновые волокна, а так как в развитии диабетической полинейропатии гипоксия является одним из патогенных факторов, то ясно, что афферентные волокна 1а (относящиеся к рефлекторной дуге ахиллова рефлекса) будут поражаться раньше, чем менее толстые миелиновые волокна и тем более безмиелиновые.

Во-вторых, мы полагаем, что количество афферентных волокон в рефлекторной дуге подошвенного рефлекса значительно больше, чем ахиллова рефлекса. Косвенным подтверждением такого предположения служат результаты нашего исследования чувствительности подошвенной поверхности стопы, являющейся рецептивным полем подошвенного рефлекса. Как мы видели выше, гипестезия на подошве возникает спустя несколько лет после ее появления на сходной по топографическому положению (а значит, и по ранимости афферентных волокон) тыльной поверхности стоп. Такая ситуация может возникнуть лишь в том случае, если количество кожных рецепторов и соответствующих афферентных волокон на 1 см2 поверхности подошвы стопы будет больше, чем на тыле стопы, что связано, по-видимому, со значительно большей биологической ролью чувствительности на подошве.

В литературе имеются единичные сообщения о восстановлении после мозгового инсульта на стороне гемипареза выпавших коленных рефлексов у больных диабетом. Анализ наших наблюдений, детально изложенный ранее, подтвердив этот факт, вместе с тем показал, что, во-первых, он касается не только коленных, но и ахилловых рефлексов, которые восстанавливаются реже и в меньшем объеме, чем коленные, во-вторых, восстановление коленных и ахилловых рефлексов наблюдается не у всех больных с мозговым инсультом (оно отсутствовало у больных с резко выраженной гипестезией в форме "чулок"), и, в-третьих, указанное восстановление возникает не только после инсульта, но и (хотя и в меньшей степени) после длительных гипогликемических ком, а также после менингоэнцефалита.

При обсуждении механизма восстановления у больных с дистальной полинейропатией коленных и ахилловых рефлексов под влиянием мозгового инсульта, энцефалита и гипогликемических ком мы исходили из известного в нейрофизиологии факта, что поражения пирамидных и экстрапирамидных путей, вызывая нарушение нисходящих цереброспинальных тоногенных влияний, повышают возбудимость сегментарных мотонейронов (об этом же свидетельствуют и наши данные). При этом активация мотонейронов приводит к усилению афферентной импульсации от мышечных веретен. Такое усиление во многих случаях оказывается достаточным, чтобы компенсировать нарушение проводимости нервных импульсов (возникшее в основном в результате демиелинизации) афферентами этих веретен, приводя к увеличению притока проприоцептивных импульсов к альфа-мотонейронам и восстановлению выпавших ахилловых рефлексов. Эти представления позволяют понять, что возможность указанного восстановления зависит от двух факторов: от степени поражения рефлекторной дуги проприоцептивного рефлекса и от степени активации игрек-петли. Последняя будет более значительной при массивном мозговом инсульте, чем после гипогликемических ком. В тех случаях, когда выпадение ахилловых рефлексов произошло сравнительно недавно и связано только с демиелинизацией афферентов веретен, восстановление этих рефлексов происходит сравнительно легко. Напротив, при грубом повреждении осевых цилиндров афферентов веретен (а тем более, если при этом уже имеется повреждение и эфферентных волокон рефлекторной дуги), даже максимальная стимуляция игрек-волокон, которые, по-видимому, также страдают при резко выраженной дистальной полинейропатии, не может привести к восстановлению выпавших рефлексов.

Более значительное восстановление коленных рефлексов, чем ахилловых, связано с тем, что рефлекторная дуга первого короче и более проксимально расположена. В еще большей степени, чем к коленному, сказанное выше относится к нижнечелюстному рефлексу, дуга у которого еще короче и расположена значительно более орально, чем у коленного рефлекса. Вот отчасти почему при наличии перечисленных выше факторов у больных нередко отмечается сохранный или повышенный нижнечелюстной рефлекс при выпадении коленных и ахилловых рефлексов.

Женский журнал www.

Р. К. Григгс, У. Г. Брэдли, Б. Т. Шахани ( R . С. Griggs , W . С. Bradley , и. Т. Shahani )

Стимулирование достаточно больших моторных и чувствительных нервов позволяет регистрировать их потенциалы действия и получать объективные количественные данные относительно латентного периода и скорости проведения импульса по нерву. Методика основана на стимулировании нерва поверхностными электродами, помещаемыми на кожу над исследуемым нервом. В результате электроды регистрируют составной потенциал действия в нерве, расположенном проксимально (при исследовании больших сенсорных волокон) или над мышцей, расположенной дистально (в случае исследования моторных волокон в смешанном двигательно-чувствительном нерве). Время проведения импульса от наиболее дистально расположенного стимулируемого электрода, измеренное в миллисекундах, с момента стимуляционного воздействия до начала ответной реакции, получило название дистального, или периферического латентного, времени. Если второй стимул наносится на смешанный нерв более проксимально (или если регистрирующие электроды расположены более проксимально в случае исследования чувствительных волокон), то можно измерить новое и более продолжительное время проведения. Если расстояние (в миллиметрах) между двумя участками стимуляции двигательных волокон или регистрации с чувствительных волокон разделить на разницу показателей времени проведения (в миллисекундах), можно получить максимальную скорость проведения (в метрах в секунду). Она показывает скорость распространения потенциалов действия в наиболее крупных и наиболее быстро проводящих импульс нервных волокнах. Показатели этих скоростей у здоровых лиц колеблются довольно значительно - от 40-45 м/с (в зависимости от исследуемого нерва) до 75-80 м/с. У новорожденный эти значения несколько ниже (они составляют примерно 1/2 от показателей взрослых), но достигают данного уровня к 3-4 годам жизни. Получены показатели нормы периферических латентных периодов для наиболее дистальных участков различных смешанных нервов, иннервирующих соответствующие мышцы. Например, когда стимулируют срединный нерв у запястья, латентный период для проведения импульса через канал запястья к короткой отводящей мышце большого пальца у здоровых лиц составляет менее 4,5 м/с. Составлены специальные таблицы с подобными нормативами для скорости проведения и дистальных латентных периодов, показатели которых колеблются в зависимости от расстояния. Во время исследования нервной проводимости очень важно поддерживать нормальную температуру тела человека, так как при субнормальной температуре скорость проведения по нерву замедляется. Скорость проведения по нерву зависит от диаметра нервного волокна и степени его демиелинизации. Немиелинизированные нервные волокна малого диаметра характеризуются меньшей скоростью проведения, чем миелинизированные волокна большого диаметра. У волокон с сегментарной демиелинизацией скорость проведения, как правило, уменьшена. При стимулировании моторных волокон периферического нерва при условии, что каждое нервное волокно находится в функциональном единении с иннервируемыми им многочисленными мышечными волокнами, с кожного электрода над исследуемой мышцей можно зарегистрировать составной мышечный потенциал действия, являющийся результатом импульсных разрядов многих мышечных волокон. Сенсорные потенциалы действия, регистрируемые непосредственно с самих нервных волокон, не обладают качеством «амплификации», создаваемым мышечными волокнами; дело в том, что для этого требуется большая электронная амплификация. В случае патологии нервов сенсорные потенциалы могут быть небольшими или их может не быть вообще, и, таким образом, зарегистрировать сенсорную проводимость становится невозможно. Напротив, достаточно надежно измерить скорость моторной проводимости возможно, даже если сохранным осталось лишь одно мышечное волокно. Измерения скорости нервной проводимости отражают состояние наиболее хорошо сохранившихся нервных волокон, и, если непораженным осталось лишь небольшое число нервных волокон, показатели нервной проводимости могут быть нормальными, несмотря на довольно распространенную нервную дегенерацию. После неполного пересечения нерва острым предметом в небольшом числе оставшихся нервных волокон максимальная скорость моторного проведения может сохраниться, хотя мышца, вовлеченная в патологический процесс, почти полностью парализована. Аксон является первичным очагом поражения при алкогольной, алиментарной, уремической и диабетической невропатиях. По оставшимся неповрежденными аксонам проведение импульсов сохранено, так что, когда поражены более массивные нервные волокна, оставшиеся интактными нервные волокна меньшего диаметра, способные нормально проводить импульс, обеспечивают слегка замедленную скорость максимального моторного проведения. При многих невропатиях скорость нервной проводимости остается нормальной или лишь незначительно снижена. Обычные исследования нервной проводимости осуществляют для того, чтобы подтвердить наличие невропатии.

При этом сравнивают результаты, полученные у испытуемых, с данными нервной проводимости в контрольной группе лиц, подобранной адекватно по возрасту и полу. Хотя многие заболевания периферических нервов не влияют на скорость нервного проведения, тем не менее такие заболевания, как острая идиопатическая полиневропатия (синдром Гийена-Барре), дифтерия, метахроматическая лейкодистрофия и гипертрофические невропатии, вызывают замедление скорости проведения, так как при этом первично поражаются шванновские клетки и наблюдается сегментарная демиелинизация. Очаговые сдавления нерва, как это бывает при синдроме ущемления нерва в костном канале, вызывают локализованное замедление проводимости вследствие сжатия аксонов и демиелинизации в участке ущемления нерва. При обнаружении такого очагового замедления нервной проводимости диагноз ущемления нерва подтверждается. Диагноз сдавления срединного нерва в канале запястья основан на сравнении периферической (терминальной) латентности (латентное время) одного срединного нерва с другим срединным нервом или с локтевым нервом. Однако даже если показатели проводимости при этом нормальны, исключить синдром ущемления нерва нельзя.

Другие методы оценки нервной проводимости. Для изучения нервной проводимости в более проксимальных сегментах осуществляют измерение латентностей для F -реакций, Н-рефлексов и мигательных рефлексов. Эти методы позволяют определить скорость проведения с периферии (конечности, лицо) к центральной нервной системе (спинной мозг или ствол мозга) и обратно. Так, F -реакция определяет время, необходимое для прохождения раздражения, нанесенного на аксон альфа-моторного нейрона, антидромно (т. е. в противоположном направлении) по направлению к переднему рогу спинного мозга и затем возвращение импульса ортодромно, обратно к тому же аксону. Н-рефлекс определяет время, необходимое для ортодромного (в прямом направлении) проведения возбуждения вверх по нерву через чувствительные волокна группы IA через спинномозговую синаптическую связь с альфа-моторным нейроном и затем ортодромно вниз к моторному аксону. Таким образом может быть измерена скорость проведения импульса по проксимальным сенсорным и моторным нервам и корешкам спинномозгового нерва. Использование указанных методик для определения скорости проведения в проксимальных нервах позволило выявить нарушение этого показателя у 80- 90% больных с периферической невропатией. Мигательные рефлексы отражают скорость проведения импульсов по ветвям тройничного и лицевого нервов. Мигательный рефлекс, вызванный электрической стимуляцией супраорбитальных ветвей тройничного нерва, позволяет определить локализацию поражений в системах лицевого и тройничного нервов.

Исследования нервной проводимости, описанные выше, достаточно условны, так же как и исследования запоздалых реакций. Они информативны лишь по отношению к быстро проводящим аксонам большого диаметра, но несут мало информации о характере проведения в промежуточных нервных волокнах и волокнах небольшого диаметра. При использовании физиологических принципов сталкивания нервных импульсов, вызванных стимуляцией в двух разных областях (проксимально и дистально) одного и того же нерва, можно измерить нервную проводимость в моторных аксонах малого диаметра. Патологические скорости нервного проведения в нервных волокнах промежуточного размера наблюдали у некоторых больных с метаболическими и алиментарными невропатиями даже тогда, когда результаты обычных методов исследования нервной проводимости и F -реакции были нормальными.

Тесты с повторной стимуляцией. При патологии нервно-мышечного соединения показатели начального составного мышечного потенциала действия, вызываемого супрамаксимальным электрическим раздражением исследуемого нерва, остаются нормальными, однако после нескольких стимуляций, проводимых со скоростью 2-3 Гц, амплитуда составного мышечного потенциала действия начинает уменьшаться, но после 4-5 раздражений вновь возрастает. Такой характер снижения потенциала, достигающего максимума при 4-5-м раздражении с последующим возрастанием при продолжающихся раздражениях, характерен для миастении. Этот дефект напоминает частичную блокаду, вызываемую кураре, и отражает постсинаптическое нарушение синаптической функции. Дефект этот обратим при применении антихолинэстеразных препаратов, например при внутривенном введении эдрофониума гидрохлорида ( Edrophonium hydrochloride ) в дозе 5-10 мг. Прогрессирующее снижение составного мышечного потенциала действия при повторной стимуляции нерва наблюдают при полиомиелите, амиотрофическом боковом склерозе, миотонии и при другой патологии моторной единицы. Однако при этих заболеваниях не регистрируют типичную кривую уменьшения - увеличения величины потенциала, столь характерную для миастении.

При синдроме Ламберта-Итона (миастенический синдром) повторные стимуляции облегчают трансмиссию импульса. Быстрая стимуляция нерва (20-30 Гц) вызывает прогрессирующее увеличение мышечных потенциалов действия, которые очень невелики или вовсе отсутствуют поначалу, при первой стимуляции, но затем амплитуда их увеличивается до нормальных значений. Это облегчение ответной реакции не подвергается воздействию антихолинэстеразных препаратов, но может быть заторможено гуанидин-гидрохлоридом ( Guanidine hydrochloride ), назначаемым по 10-30 мг/кг в день дробно. Нервно-мышечный трансмиссионный дефект этого «реверсированного» миастенического синдрома является результатом патологического высвобождения ацетилхолина. Такой же дефект возникает при воздействии ботулинического токсина или при параличе, вызываемом аминогликозидными антибиотиками.

Электромиограмма при патологии центральной нервной системы

Использование ЭМГ и исследований проводимости по нервам для оценки функционального состояния ЦНС получило название центральной ЭМГ. Поскольку моторная единица является конечным общим путем для всех нервных импульсов, контролирующих скелетную мускулатуру, нарушения двигательного контроля в результате поражений центральной нервной системы вызывают образование патологических импульсов в моторных невронах, которые могут быть зарегистрированы с помощью электрофизиологической техники. Так, например, поверхностная ЭМГ, регистрирующая импульсы от соответствующих пар антагонистических мышц, регистрирует по сути «мобилизацию» отдельных моторных единиц, а микронейрографические исследования оказываются целесообразными при оценке различных типов тремора, включая тремор покоя при болезни Паркинсона, эссенциальный семейный тремор и физиологический тремор. С помощью этих методов церебеллярную атаксию можно отдифференцировать от других видов тремора и от сенсорной атаксии. Астериксис, таким образом, можно отличить от тремора, а также выявить различные типы миоклонуса. Изучение проприоцептивных и экстероцептивных рефлексов способствует дифференциальной диагностике расстройств движения, позволяя отличить спастичность от других видов ригидности. Исследование Н-рефлексов и F -реакций дает информацию относительно возбудимости моторного нейронного пула. Влияние вибрации на Н-рефлекс было использовано для оценки пресинаптического торможения при различных неврологических заболеваниях. Исследования так называемого периода затишья помогли оценить функции проприоцептивных «подводов» к мышечным «осям». Несоответствие информации от мышечных «осей» и от суставных рецепторов может привести к явной «церебеллярной» атаксии у больных с острой воспалительной полиневропатией (синдром Фишера) в результате повреждений в периферической нервной системе. Записи ЭМГ и мигательных рефлексов целесообразны, при документировании клинически скрытых поражений ствола мозга, при множественном склерозе, а также при локализованных компрессионных поражениях на самых ранних стадиях в области тройничного и лицевого нервов вследствие небольших опухолей в задней черепной ямке.

Гистопатология мышцы и нерва

Биопсия мышцы позволяет: 1) отдифференцировать нейрогенный патологический процесс от миопатического; 2) идентифицировать такие специфические мышечные поражения, как мышечная дистрофия или врожденные миопатии; 3) идентифицировать специфические обменные поражения мышц (с применением гистохимических и биохимических методов); 4) диагностировать заболевания соединительной ткани и кровеносных сосудов (например, узелковый периартериит) и инфекционные болезни (например, трихинеллез или токсоплазмоз).

Осуществляют биопсию под местной анестезией. У детей и у взрослых, отягощенных какими-нибудь хроническими заболеваниями, достаточное количество материала для биопсии мышцы может быть получено при пункционной биопсии. При диагностике локализованных, местных патологических процессов (например, миозит или васкулит) может оказаться необходимой открытая биопсия. Во всех случаях мышца, выбранная для биопсии, должна адекватно отражать наличие патологического процесса в ней, а исследовать биоптат необходимо в соответствующей лаборатории. Нецелесообразно проводить биопсию мышцы, только что травмированной электромиографической иглой или перенесшей какое-либо иное болезненное состояние (например, сдавление спинномозгового корешка), поскольку может быть получена недостоверная информация, затрудняющая диагностику.

Гистология нормальной мышцы. На поперечном срезе нормальной мышцы видно большое количество мышечных волокон, сгруппированных в пучки соединительнотканными перегородками (перимизиум), по которым проходят нервные пучки и кровеносные сосуды. Отдельные мышечные волокна заключены в тонкий коллагеновый футляр (эндомизиум), на котором расположена сеть капилляров. Диаметр мышечных волокон в мышцах конечностей взрослого человека составляет 40-80 мкм. Каждое мышечное волокно состоит из миофибрилл, которые погружены в цитоплазму, с расположенными в ней митохондриями и саркоплазматической сетью и содержащую гликоген. Мышечное волокно окружено плазмолеммой (сарколемма) и базальной пластинкой. Мышечные волокна многоядерные (каждое из них по сути представляет собой синцитий), но почти все они оттеснены в субсарколеммиую область. Между базальной пластинкой и плазмолеммой мышечного волокна расположено несколько стволовых клеток или клеток-сателлитов; они являются основным источником миобластов, необходимых для регенерации поврежденных мышечных волокон. Гистохимическое деление мышечных волокон на I и II типы описано выше.

Следует отметить, что число патологических реакций мышцы на повреждение довольно ограниченное.

Денервация, реиннервация . Денервированное мышечное волокно атрофируется, причем в начальных стадиях миофибриллы исчезают в большей степени, чем саркоплазма, содержащая митохондрии, так что гистологически мышечные волокна выглядят «очень темными» и окрашиваются на окислительные ферменты. Денервированные волокна, сжимаемые окружающими нормальными волокнами, становятся изломанными и атрофичными. В начальных стадиях денервации благодаря феномену наложения многих моторных единиц в одной и той же области атрофированные волокна расположены беспорядочно по всей мышце. Сохранившиеся моторные аксоны начинают давать отростки для реиннервации атрофированных мышечных волокон, в конечном итоге образуя группировки волокон по их типам. После отмирания этих увеличенных моторных единиц развивается атрофия волокон по группам (I и II типа). В хронически денервированной и реиннервируемой мышце распределение мышечных волокон в зависимости от диаметра происходит следующим образом: атрофичные денервированные волокна составляют одну популяцию, а иннервированные, нормальные волокна (или гипертрофированные) - другую. В случае феномена мышечной денервации-реиннервации, как правило, бывает трудно установить специфический (нозологический) диагноз или определить специфическую этиологию поражения только на основании данных мышечной биопсии.

Некроз мышечных волокон и их регенерация. Повреждение сарколеммы мышечного волокна способствует проникновению кальция в высокой, экстрацеллюлярной концентрации в среду саркоплазмы с низким содержанием этого иона. Поступление кальция вызывает активизацию нейтральной протеазы, что и начинает процесс протеолиза. Кальций подавляет митохондриальные функции и вызывает гибель митохондрий, приводя тем самым к смерти клетки. Проникающие в этот участок макрофаги фагоцитируют мышечные волокна. Клетки-сателлиты, которые обеспечивают основу для регенерации мышечных волокон, также участвуют практически во всех процессах, сопровождающихся повреждением мышцы. Так, они пролиферируют и «растворяются» для того, чтобы образовать многоклеточные мышечные трубочки, что способствует регенерации мышечных волокон. Регенерирующие мышечные волокна небольшого размера, базофильные благодаря повышенной концентрации РНК, в них заключены крупные везикулярные внутренние ядра. Распределение диаметра мышечных волокон при типичной хронической миопатии характеризуется однотипностью и широтой, что существенно отличается от бимодального распределения этих диаметров в случае денервации-реиннервации мышцы.

Некроз мышечных волокон и их регенерация - это обычная ответная реакция мышцы на повреждение, включая травму, дистрофию Дюшенна, полимиозит и дерматомиозит. В конечном итоге, если некроз протекает хронически, регенерация может «ослабеть», что приведет к прогрессирующей потере мышечных волокон и замене их жировой и соединительной тканью. Различия в распространенности скорости протекания указанных процессов позволяют гистологически дифференцировать мышечные дистрофии, воспалительные миопатии и острый рабдомиолиз.

Структурные изменения в мышечных волокнах. Дегенерация мышечных волокон без выраженного некроза вызывает структурные изменения в отдельных мышечных волокнах. Возникает дезорганизация миофибрилл, а саркоплазма образует «мишеневидные» волокна, появляются кольцевидные перетяжки (как будто часть одного мышечного волокна обнаруживается вокруг другого), центральные «стволики» из некротизированной ткани, тельца в виде клеток и немалиновые тельца. Иногда мышечные волокна напоминают «мышечные трубочки» (центронуклеарная миопатия). Изменения в митохондриях свидетельствуют о нарушениях биохимических процессов в них, а наличие вакуолей позволяет предположить возможность нарушения обмена гликогена или липидов. Очень четко очерченные вакуоли (скопление дегенерирующих фосфолипидов между миофибриллами) наиболее характерны для окулофарингеальной мышечной дистрофии и миозита с вирусными включениями.

Воспалительные изменения. Для полиомиозита и дерматомиозита типична периваскулярная и интерстициальная воспалительная клеточная инфильтрация из лимфоцитов. Происходят также некроз и регенерация мышечных волокон. Иногда на периферии мышечного пучка можно обнаружить атрофию мышечных волокон (перифасцикулярная атрофия), которая бывает достаточно резко выражена и служит индикатором воспалительной миопатии даже в том случае, когда в биоптате мышцы не найдено фокуса воспаления. У больных с коллагенозами в мышечном биоптате выявляют васкулит, а при саркоидозе - гранулемы.

Изменения мышечных волокон, специфичные для определенного типа волокон. Патологическим изменениям могут подвергаться лишь волокна какого-либо одного гистологического типа. Так, чаще всего встречается атрофия мышечных волокон II типа, которая характерна для многих заболеваний, ограничивающих подвижность больного. Она возникает при длительном бездействии определенных мышц, при мышечной и суставной болях и при верхней моторной нейрональной дисфункции. Атрофия мышечных волокон I типа встречается гораздо реже - при миотонической дистрофии, ревматоидном артрите и при некоторых врожденных миопатиях.

Биопсия нерва. Биопсия нерва - достаточно трудно осуществимая процедура - более травматична для больного. Она показана относительно редко и лишь при особых обстоятельствах. Для биопсии обычно выбирают икроножный нерв или поверхностный лучевой нерв в области запястья. Оба эти нерва являются чувствительными, так что при чисто моторных нейропатиях в них может быть не обнаружено никаких патологических изменений. Процедуру биопсии нерва выполняют под местной анестезией, беря кусочки нервной ткани для световой, электронной микроскопии и для разволокнения отдельных нервных волокон. Биопсию нерва осуществляют при: 1) дифференциации между сегментальной демиелинизацией и аксональной дегенерацией; 2) при идентификации воспалительных невропатий и 3) при установлении таких специфических диагнозов, как амилоидоз, саркоидоз, лепра и некоторые метаболические невропатии. Полноценное исследование биоптата может быть проведено лишь в специально оборудованной лаборатории, специализирующейся по заболеваниям периферических нервов. При биопсии нерва чаще сталкиваются с двумя основными патологическими процессами.

Световая микроскопия обычно малоинформативна, так как позволяет выявить лишь самую грубую патологию: васкулит, воспаление, гранулематозную инфильтрацию или скопление амилоида, потерю аксонов, их дегенерацию. Гораздо более информативны электронная микроскопия и исследование отдельных, разволокненных нервных волокон. При некоторых заболеваниях поражаются особые типы нервных волокон; большие миелинизированные волокна поражаются при атаксии Фридрейха, а немиелинизированные волокна - при семейном амилоидозе. Дополнительную информацию может предоставить количественная морфометрия (определение количества волокон и распределения их диаметра).

Сегментарная демиелинизация. При различных патологических состояниях может поражаться либо миелин, либо шванновские клетки, при этом происходит дегенерация миелиновой оболочки, а аксон остается неповрежденным. Процесс восстановления при сегментарной демиелинизации проходит стадию образования необычайно истонченной миелиновой оболочки, которая, однако, в конечном итоге достигает нормальной толщины. И все же даже после восстановления при исследовании отдельных разволокненных нервных волокон можно выявить укороченные или различной длины участки нервного волокна между соседними перехватами Ранвье. Если этот процесс прогрессирует, возникают образования, напоминающие «луковицы», с нервными волокнами, покрытыми тонким слоем миелина и располагающимися в центре концентрической пластинки избыточной цитоплазмы шванновской клетки.

Дегенерация аксона . Смерть тела нервной клетки или части (секции) аксона на любом уровне приводит к дегенерации дистальных частей аксона с вторичной дегенерацией миелиновой оболочки. Если же нервная клетка остается интактной, то проксимально начинается регенерация аксона с образованием своеобразных выростов. Эти нервные «отростки» («пучки») типичны для аксональной дегенеративной и регенеративной невропатий. Чаще всего дегенерация аксонов возникает при токсикозах, наследственных, травматических и ишемических заболеваниях. Для аутоиммунных воспалительных болезней и наследственной патологии характерна сегментарная демиелинизация; при аутоиммунных воспалительных болезнях встречается воспалительная клеточная инфильтрация. При сахарном диабете обнаруживают смешанное поражение - аксональную дегенерацию, сегментарную демиелинизацию наряду с васкулопатией (микроангиопатии). Некоторые специфические гистологические изменения могут указывать на предположительную этиологию невропатии. При иммунофлюоресцентном анализе обнаруживают отложения IgM на связанный с миелином гликопротеид миелина, характерные для IgM -гаммапатий. При амилоидной невропатии в нерве обнаруживают фибриллы (волокна) амилоида. При метахроматической лейкодистрофии и при адреномиелолейкодистрофии в шванновских клетках находят специфические включения.

Биохимические исследования

Некоторые ферменты, в значительных концентрциях содержащиеся в мышечной саркоплазме, при повреждении мышцы могут просачиваться («утекать») в кровь и, таким образом, служить индикаторами мышечного повреждения. Креатинкиназа (КК) - наиболее чувствительный и специфичный в этом отношении тест. В то время как при периферических невропатиях и поражениях нервно-мышечного соединения активность КК в сыворотке крови остается нормальной, при спинальной мышечной атрофии, амиотрофическом боковом склерозе и других заболеваниях моторного нейрона она несколько повышается. В сыворотке крови больных с активной мышечной деструкцией может быть повышена активность аспартатаминотрансферазы ( AST , SGOT ), аланинаминотрансферазы ( ALT , SGPT ), лактатдегидрогеназы (ЛДГ) и альдолазы. Поскольку активность некоторых из названных ферментов определяют в крови при рутинном скрининговом исследовании, то не так уж редко больного с мышечным поражением впервые идентифицируют по неожиданной для врача высокой активности в крови одного из этих ферментов. Почему при мышечных поражениях так диспропорционально повышается активность именно КК, не совсем ясно. Но тем не менее для оценки состояния больного с нервно-мышечным заболеванием достаточно определить в крови активность именно этого фермента КК. Известны изоэнзимы КК: MM , MB и ВВ, причем ММ преобладает в скелетной мускулатуре, MB в сердечной мышце и ВВ - в мозге. Повышение в крови активности КК-МВ свидетельствует о повреждении сердечной мышцы. Повышенная активность КК при мышечном повреждении обычно обусловлена повышенной активностью ее изоэнзима ММ. Однако у больных с продолжительной мышечной патологией, у атлетов и у других лиц с хронически повышенным уровнем КК в крови пропорция изоэнзима MB в скелетной мускулатуре повышается, вследствие чего повышается и пропорция КК-МВ. Увеличение в крови активности КК, превышающее норму более чем в 10 раз, указывает на деструкцию мышц. Не столь значительное повышение в крови активности КК отличают при многих нервно-мышечных заболеваниях, небольших травмах мышц (например, после электромиографии) у лиц, страдающих психозом или алкоголизмом, при гипотиреозе и гипопаратиреозе, при гипертрофии мышц и в случае носительства некоторых генетических миопатий. У здоровых лиц активность сывороточной КК может повыситься после резкого мышечного напряжения или после травмы мышцы. Обычно уже спустя 6 ч после мышечного перенапряжения в крови повышается активность КК.

Состав мышцы и ее масса. При КТ и ЯМР в мышце четко видны мышечные волокна, жировая и соединительная ткань. Эти методы позволяют дифференцировать мышечную дистрофию от других форм мышечных заболеваний. Однако высокая стоимость названных методов обследования, довольно ограниченные возможности с точки зрения «частоты поперечных срезов» исследуемой конечности, а также малая специфичность получаемых результатов дают основание полагать, что применение КТ и ЯМР при диагностике нервно-мышечных заболеваний должно быть весьма ограниченным. Оценка же общей мышечной массы весьма важна при некоторых метаболических исследованиях. Простое уменьшение мышечной массы без появления мышечной слабости свидетельствует не в пользу нервно-мышечных заболеваний, а скорее указывает на процессы старения, наличие злокачественного новообразования, нарушение питания, патологию печени или почек. Для оценки общей мышечной массы чаще всего прибегают к определению суточной экскреции креатинина с мочой; следует помнить, что экскреция креатинина уменьшается у больных, у которых по тем или иным причинам снижается масса тела. У больных, теряющих массу тела на фоне нервно-мышечных заболеваний, содержание креатинина в сыворотке крови довольно низкое - около 2-5 мг/л. При уменьшении мышечной массы, несмотря на нарушение почечной функции, происходит диспропорционально резкое снижение уровня креатинина в крови больного; у больных же с активной мышечной деструкцией содержание креатинина в крови соответственно резко повышается.

Метаболические и эндокринные исследования. Резкую, обычно остро развивающуюся мышечную слабость могут вызвать гипо- и гиперкалиемия, гипернатриемия, гипо- и гиперкальциемия, гипофосфатемия и гипермагниемия, концентрация калия в сыворотке крови непостоянна, что обусловлено развивающимися ацидозом или алкалозом. Внутриклеточная концентрация калия обычно высокая, так что гемолиз, возможный при взятии крови, часто имитирует завышенное содержание калия в крови. А при остром мышечном повреждении, вызывающем рабдомиолиз, развивается истинная гиперкалиемия. Хотя повышение содержания калия в крови не превышает 0,1 мэкв/л, если, конечно, в сыворотку не попал гемоглобин, как это бывает в случае гемолиза, или если в мочу не попадает миоглобин, как это случается при рабдомиолизе. Мышечная слабость может быть следствием хронической эндокринной патологии - гипо- или гиперфункции щитовидной железы, надпочечников или паращитовидных желез. Нарушения функции щитовидной и паращитовидной желез может вызвать мышечную слабость, даже если нет других клинических проявлений эндокринопатии. Мышечной слабостью также могут проявиться или осложниться такие заболевания, как ревматоидный артрит, системная красная волчанка (СКВ), склеродермия, синдром ревматической полимиалгии. Так что при поиске причин необъяснимой мышечной слабости необходимо провести соответствующие диагностические исследования, направленные на выявление перечисленных выше заболеваний. В подобных случаях мышечная слабость часто бывает вызвана атрофией мышц от бездействия и болями в суставах; воспаление и деструкции мышцы довольно редко служат причиной мышечной слабости.

Тестирование мышцы физической нагрузкой . У больных с мышечной слабостью, обусловленной нарушением потребления энергетического субстрата мышечного сокращения, как правило, снижена толерантность к мышечным усилиям и при последующих нагрузках в мышцах возникают слабость и боль. Большинство нарушений в ферментных системах гликолиза приводит к нарушению в мышце синтеза АТФ из гликогена, следствием чего является уменьшение продукции (или даже отсутствие таковой) молочной кислоты. Больных с такими нарушениями выявляют с помощью определенных упражнений для мышц предплечья с последующим исследованием содержания молочной кислоты в венозной крови. У больных с нарушением метаболизма жирных кислот (дефицит карнитинпальмитинтрансферазы) жирные кислоты с длинной цепью не поступают в митохондрии для последующего бета-окисления, однако продукция в мышцах молочной кислоты происходит нормально, у больных с недостаточностью миоаденилатдеаминазы образование лактата находится в пределах нормы или даже несколько увеличено, но синтез аммиака при мышечной нагрузке нарушен. Определить причину функциональных нарушений в мышце может помочь исследование других мышечных метаболитов и специфических ферментов.

Миоглобинурия. Острая мышечная деструкция, рабдомиолиз, возникает при острых интоксикациях, метаболических нарушениях, при инфекционных заболеваниях, в результате травматического повреждения мышц и сопровождается миоглобинурией. Молекулярная масса миоглобина меньше такового гемоглобина, так что при рабдомиолизе изменяется цвет мочи, а не сыворотка крови. При незначительной миоглобинурии реакция на кровь в моче будет положительной, даже если там нет эритроцитов. Для подтверждения диагноза необходимо специфическим иммунологическим методом исследовать мочу на миоглобин.

Общетерапевтические соображения .

Болезни сердца. Большинство заболеваний скелетной мускулатуры, как правило, сопровождается изменениями и в сердечной мышце. При этом клинически сердечная дисфункция проявляется довольно редко, что можно объяснить малой физической нагрузкой больных, страдающих мышечной слабостью, т. е. требования к сердечной мышце при этом существенно уменьшаются. Довольно специфические электрокардиографические изменения возникают при дистрофии Дюшенна и при дефиците кислой мальтазы у младенцев. У больных с миотонической дистрофией могут возникнуть нарушения сердечной проводимости, включая полную поперечную блокаду сердца. Во всяком случае ЭКГ необходимо сделать всем больным с нервно-мышечной патологией, особенно бальным с миопатиями.

Патология системы органов дыхания . Ослабление функции легких у больных с острыми и хроническими нервно-мышечными заболеваниями может прогрессировать до дыхательной недостаточности. Ранними проявлениями ослабления дыхательной мускулатуры являются снижение максимального экспираторного и инспираторного давлений. Особенно значительно у больных с нервно-мышечными заболеваниями выражена слабость диафрагмы. Поэтому необходимо проверить функцию диафрагмы, проведя исследование функции легких у больных как в положении лежа, так и в положении сидя. У больных со слабостью диафрагмы функциональные легочные нарушения более отчетливо проявляются в положении больного лежа, у них отмечаются также парадоксальные движения брюшной стенки. Больные с хронической дыхательной недостаточностью даже в домашних условиях нуждаются в поддержании дыхания.

Лечебная физкультура . У больных с мышечной слабостью особое значение приобретает лечебная физкультура, так как появившиеся контрактура и вынужденное обездвиживание больного вследствие повреждения тех или иных мышц приводят к резкому снижению физической активности. Упражнения помогут увеличить силу в мышцах, ослабленных болезнью, однако данных в пользу того, что физические упражнения могут способствовать улучшению функциональных способностей больного, мало. С другой стороны, терапевтическая установка больного на преодоление мышечной дисфункции имеет большое психологическое значение, особенно у больных с минимально сохранившейся функцией нижних конечностей и туловища. Упражнения помогут сохранить нормальную костную минерализацию и жизненно необходимые кардиоваскулярные рефлексы.

Диета. Больным с мышечной слабостью показаны определенные диетические ограничения, поскольку их энергетические затраты в калориях существенно уменьшены вследствие малой подвижности и потери мышечной массы. Избыточная же масса тела может еще более ограничить подвижность больного, ухудшить функцию легких и, в частности, их вентиляцию. Если нет признаков явной мальабсорбции витаминов B 12 или Е, назначать их, как и прочие витамины, нецелесообразно, так как они, увы, не играют какой-либо значимой роли при лечении нервно-мышечных заболеваний. Некоторые же витамины в повышенных дозах даже опасны. Это относится, в частности, к витаминам В6, А и D .

Иммобилизация . Больным с дистальной мышечной слабостью в нижних конечностях, особенно при нарушении дорсального сгибания стопы, можно рекомендовать пользоваться ортопедическим аппаратом в области голеностопного сустава, что иногда помогает восстановить почти нормальную походку. При слабости же более проксимальных мышц иммобилизация нижней конечности уменьшает общую подвижность и оправдана только у тех больных, которые совсем не могут стоять и передвигаться самостоятельно. У большинства взрослых больных иммобилизация даже в этих условиях не имеет практического значения, поскольку без посторонней помощи они не могут находиться даже в положении стоя.

Сколиоз . Деформация позвоночника может осложнить течение нервно-мышечного заболевания еще до пубертатного возраста. Это особенно часто случается при дистрофии Дюшенна, спинальной мышечной атрофии и при врожденных миопатиях. Когда же рост длинных костей прекращается, многим подобным больным можно рекомендовать хирургическую коррекцию сколиоза. Противопоказанием для такого лечения является резкое нарушение функционального состояния легких, и больные с ограниченными жизненными перспективами, по-видимому, должны воздержаться от хирургического вмешательства, учитывая его болезненность и риск.

Генетическая оценка ситуации и консультирование . При ведении больного с наследственным мышечным заболеванием необходимо ознакомиться с его родословной, собрать семейный анамнез и разработать соответствующие генетические рекомендации. К сожалению, в анамнезе многих пациентов может не быть никаких указаний на семейный характер заболевания. Это касается, в частности, заболеваний, наследуемых по аутосомно-доминантному типу. К ним относятся болезнь Шарко-Мари-Тута, миотоническая дистрофия и плече-лопаточно-лицевая миопатия, экспрессивность указанных заболеваний очень вариабельна. Доступность хромосомных маркеров для проведения анализа «сцепления» позволила выявлять носителей соответствующих генов, осуществлять антенатальную диагностику и диагностику на ранних стадиях заболевания при целом ряде наследственных нервно-мышечных нарушений, например при дистрофиях Дюшенна и миотонической. Поскольку при своевременной диагностике таких заболеваний, как периодический паралич, миотония и некоторые метаболические миопатии, пациенту можно помочь, а при злокачественной гипертермии, например, существуют превентивные меры, как можно более раннее установление диагноза приобретает первостепенное значение. Нередко по истории болезни нельзя оценить наследственный анамнез. Непосредственный осмотр родственников больного или ознакомление с ними по фотографиям иногда помогает диагностировать лицевые или иные проявления заболевания, а также выявить лиц с «мягкими» формами указанной наследственной патологии.

T.P. Harrison. Principles of internal medicine. Перевод д.м.н. А. В. Сучкова, к.м.н. Н. Н. Заваденко, к.м.н. Д. Г. Катковского

Cтраница 2


Это приводит к многочисленным вариантам периферических невропатий, основу которых составляют набухание аксонов и дегенеративные изменения миели-новых оболочек, вплоть до полного разрушения их. Аксональная дегенерация характеризуется большей выраженностью в дисталь-ных отделах, с преимущественным повреждением чувствительных волокон крупного калибра.  

Имеются основания считать, что анализаторно-координа-ционный механизм представлен не только в стволовой части головного мозга, но и в спинном мозгу. Здесь в качестве аналога данного механизма можно рассматривать слой переключательных нейронов, сконцентрированных в желатинозном веществе спинного мозга (рис. 17), которое располагается у места входа в спинной мозг чувствительных волокон задних корешков. Желатинозное вещество спинного мозга непосредственно продолжается в желатинозное вещество продолговатого мозга, собранное по ходу корешков чувствительных ядер некоторых черепномозговых нервов.  

Распад миелина ведет к снижению скорости проведения импульса по нерву. Поражение двигательных и чувствительных волокон вначале проявляется непостоянными ощущениями покалывания и онемения, а по мере прогрессирования заболевания - снижением и извращением чувствительности, слабостью и атрофией мышц.  

Нервное волокно, или аксон, - очень длинная тонкая трубка, которая вырастает из тела клетки головного или спинного мозга и достигает какой-либо отдаленной точки, например, в мышце или коже. Диаметр волокон варьирует от 83 стотысячных до 83 сотых миллиметра. Диаметр большей части двигательных и чувствительных волокон у человека составляет около 25 тысячных миллиметра. В конечностях некоторых крупных животных волокна могут иметь свыше метра в длину. Электротехника эти цифры, конечно, не удивят. Известно, что длина электрических проводов нередко во много миллионов раз превышает их толщину. Но вдумайтесь, что это означает для крошечной клетки, которая должна не только вырастить этот длиннейший отросток, но и постоянно о нем заботиться, постоянно его опекать.  

Полезным приспособительным результатом этой системы является поддержание кровяного давления на таком уровне, который обеспечивает нормальную жизнедеятельность органов и тканей. Любые смещения оптимального уровня кровяного давления (при мышечной нагрузке, эмоциях) приводят к раздражению специальных барорецепторов, которые в большом количестве расположены внутри сосудистой стенки. Нервная сигнализация, возникающая при повышении кровяного давления в этих специализированных рецепторах, по чувствительным волокнам депрессорных нервов достигает сосудодвигательного центра продолговатого мозга. Повышение кровяного давления резко увеличивает афферентную сигнализацию, поступающую к этому центру.  

Волокна периферических двигательных нервов начинаются в двигательных нейронах, расположенных в передней части спинного мозга. Двигательные аксоны идут на периферию, к иннервируемым ими мышцам. Тела чувствительных клеток находятся в ганглиях задних корешков или задних отделах спинного мозга. Импульсы с периферии воспринимаются дистальными рецепторами и идут к центру, к телам нейронов, откуда по проводящим путям спинного мозга информация передается в ствол мозга и большие полушария. Некоторые чувствительные волокна непосредственно связаны с двигательными волокнами на уровне спинного мозга, обеспечивая рефлекторную деятельность и быструю двигательную реакцию на вредоносные воздействия. Эти сенсомоторные связи существуют на всех уровнях, черепно-мозговые нервы - эквиваленты периферических, но начинающихся не в спинном мозге, а в стволе. Чувствительные и двигательные волокна объединяются в пучках, называемых периферическими нервами.  

Подтвердить нарушение функций периферических нервов, определить тип и тяжесть невропатии помогает электрофизиологическое исследование. Снижение скоростей проведения по двигательным и чувствительным волокнам, как правило, является следствием демиелинизации. Нормальные скорости проведения при наличии мышечных атрофии свидетельствуют в пользу аксональной невропатии. Исключением являются некоторые случаи аксональной невропатии с прогрессирующим распадом двигательных и чувствительных волокон: максимальные скорости проведения могут снижаться за счет выпадения волокон большого диаметра, проведение по которым особенно быстрое. При аксонопатиях на ранних стадиях восстановления появляются регенерирующие волокна, проведение по которым замедлено, особенно в дистальных участках волокна. При электрофизиологическом исследовании больных с токсическими невропатиями обязательно измерение скоростей проведения по двигательным и чувствительным нервам верхних и нижних конечностей. Сравнительное исследование проведения по дистальным и проксимальным участкам нерва помогает в диагностике ди-стальной токсической аксонопатии, а также в определении места блокирования проведения при демиелинизации.  

При поедании с кормом дозы 25 мг / кг ежедневно в течение 26 недель животные (крысы) становились возбужденными с момента появления синего окрашивания. При дозе 9 мг / кг в день обнаруживается только синее окрашивание. Патогистологиче-ски: липопигментные гранулы в клетках и нейронах, накапливающиеся со временем пропорционально дозе. Развивается симметричная демиелинизация аксонов и нервных волокон в центральной и периферической нервной системах, особенно по кортиковисцеральному тракту, но также в стволе мозга, в чувствительных волокнах и ганглиях позвоночника. При дозе 25 мг / кг, демиелинизация начинается на 14 неделе. Со временем - образуется, однако, тонкий слой миелина, что, возможно, объясняет относительно медленное развитие и стабильную картину поздней стадии поражения.  


Скорость проведения возбуждения по нервным волокнам может быть определена у человека сравнительно несложным путем. Для определения скорости проведения по двигательным волокнам используется электрическая стимуляция нерва через кожу в тех местах, где он расположен неглубоко. Используя электромиографическую методику, записывают электрический ответ мышцы на это раздражение. Латентный период ответа в основном зависит от скорости проведения по нерву. Измерив его, а также расстояние между стимулирующими и отводящими электродами, можно рассчитать скорость проведения. Более точно ее можно определить по разности латентного ответа при раздражении нерва в двух точках. Для определения скорости проведения по чувствительным волокнам наносят кожное электрическое раздражение, а ответ отводится от нерва.  

Для измерения скорости, с которой возбуждение распространяется по двигательному нерву, записывают электрические ответы мышцы на раздражение нескольких точек по ходу нерва (рис. 361.4). Скорость проведения между этими точками рассчитывают по разности латентных периодов потенциала действия мышцы. Для оценки проведения в дистальном участке нерва и нервно-мышечном синапсе измеряют латентный период и амплитуду потенциала действия мышцы, который возникает при раздражении двигательного нерва в дистальной точке. Для измерения скорости проведения в чувствительном нерве раздражение наносят в одной его точке, а ответ регистрируют в другой; скорость распространения возбуждения между раздражающим и регистрирующим электродом рассчитывают исходя из латентного периода потенциала действия.

У здоровых взрослых чувствительные нервы рук проводят возбуждение со скоростью 50-70 м/с, ног — со скоростью 40-60 м/с.

Исследование скорости распространения возбуждения по нервам дополняет ЭМГ, так как дает возможность выявить и оценить тяжесть поражения периферического нерва. При нарушениях чувствительности такое исследование позволяет определить, на каком уровне поражен чувствительный нерв — проксимальнее или дистальнее спинномозгового ганглия (в первом случае скорость проведения нормальна). Оно незаменимо в диагностике мононейропатий, поскольку выявляет очаг поражения, позволяет обнаружить бессимптомное поражение других периферических нервов, а также оценить тяжесть заболевания и его прогноз. Исследование скорости распространения возбуждения по нервам позволяет различить полинейропатию и множественную мононейропатию — в тех случаях, когда это невозможно сделать по клиническим проявлениям. Оно дает возможность следить за течением нервно-мышечного заболевания, оценить эффективность лечения, понять особенности патологического процесса.

Для миелинопатий (таких, как хроническая воспалительная демиелинизирующая полинейропатия, метахроматическая лейкодистрофия, наследственные демиелинизирующие нейропатии) характерно: значительное замедление скорости распространения возбуждения по нервам; увеличение латентного периода ответа мышцы на раздражение двигательного нерва в дистальной точке; вариабельность длительности потенциалов действия как чувствительных нервов, так и двигательных единиц. Приобретенные миелинопатий часто сопровождаются блокадами проведения.

При аксонопатиях — например, вызванных интоксикацией или метаболическим расстройством, — скорость проведения возбуждения по нервам нормальна или немного замедлена; потенциал действия чувствительного нерва уменьшен по амплитуде или отсутствует; на ЭМГ заметны признаки денервации.

Логику электрофизиологического исследования лучше всего рассмотреть на конкретном примере. Онемение мизинца и парестезия мизинца в сочетании с атрофией собственных мышц кисти может иметь разные причины: поражение спинного мозга, шейно-грудная радикулопатия, плечевая плексопатия (затрагивающая средний или нижний ствол плечевого сплетения), поражение локтевого нерва. Нормальный потенциал действия чувствительного нерва, вызванный раздражением пораженной мышцы, свидетельствует о проксимальном уровне поражения — радикулопатии или поражении спинальных нейронов. Отсутствие потенциала действия чувствительного нерва означает, что пострадал дистальный участок нерва. По характеру ЭМГ разных мышц можно различить радикулопатию, нейропатию локтевого нерва или плечевую плексопатию. Исследование скорости проведения по двигательным волокнам позволяет не только разграничить радикулопатию и нейропатию локтевого нерва (в первом случае скорость нормальна, во втором — замедлена), но и локализовать поражение: по изменению потенциалов действия мышцы, вызванных раздражением нескольких точек по ходу нерва.

Таким образом, электрофизиологическое исследование может существенно уточнить диагноз.

Источник: humbio.ru

Это приводит к многочисленным вариантам периферических невропатий, основу которых составляют набухание аксонов и дегенеративные изменения миели-новых оболочек, вплоть до полного разрушения их. Аксональная дегенерация характеризуется большей выраженностью в дисталь-ных отделах, с преимущественным повреждением чувствительных волокон крупного калибра.

Имеются основания считать, что анализаторно-координа-ционный механизм представлен не только в стволовой части головного мозга, но и в спинном мозгу. Здесь в качестве аналога данного механизма можно рассматривать слой переключательных нейронов, сконцентрированных в желатинозном веществе спинного мозга (рис. 17), которое располагается у места входа в спинной мозг чувствительных волокон задних корешков. Желатинозное вещество спинного мозга непосредственно продолжается в желатинозное вещество продолговатого мозга, собранное по ходу корешков чувствительных ядер некоторых черепномозговых нервов.

Распад миелина ведет к снижению скорости проведения импульса по нерву. Поражение двигательных и чувствительных волокон вначале проявляется непостоянными ощущениями покалывания и онемения, а по мере прогрессирования заболевания — снижением и извращением чувствительности, слабостью и атрофией мышц.

Нервное волокно, или аксон, — очень длинная тонкая трубка, которая вырастает из тела клетки головного или спинного мозга и достигает какой-либо отдаленной точки, например, в мышце или коже. Диаметр волокон варьирует от 83 стотысячных до 83 сотых миллиметра. Диаметр большей части двигательных и чувствительных волокон у человека составляет около 25 тысячных миллиметра. В конечностях некоторых крупных животных волокна могут иметь свыше метра в длину. Электротехника эти цифры, конечно, не удивят. Известно, что длина электрических проводов нередко во много миллионов раз превышает их толщину. Но вдумайтесь, что это означает для крошечной клетки, которая должна не только вырастить этот длиннейший отросток, но и постоянно о нем заботиться, постоянно его опекать.

Полезным приспособительным результатом этой системы является поддержание кровяного давления на таком уровне, который обеспечивает нормальную жизнедеятельность органов и тканей. Любые смещения оптимального уровня кровяного давления (при мышечной нагрузке, эмоциях) приводят к раздражению специальных барорецепторов, которые в большом количестве расположены внутри сосудистой стенки. Нервная сигнализация, возникающая при повышении кровяного давления в этих специализированных рецепторах, по чувствительным волокнам депрессорных нервов достигает сосудодвигательного центра продолговатого мозга. Повышение кровяного давления резко увеличивает афферентную сигнализацию, поступающую к этому центру.

Волокна периферических двигательных нервов начинаются в двигательных нейронах, расположенных в передней части спинного мозга. Двигательные аксоны идут на периферию, к иннервируемым ими мышцам. Тела чувствительных клеток находятся в ганглиях задних корешков или задних отделах спинного мозга. Импульсы с периферии воспринимаются дистальными рецепторами и идут к центру, к телам нейронов, откуда по проводящим путям спинного мозга информация передается в ствол мозга и большие полушария. Некоторые чувствительные волокна непосредственно связаны с двигательными волокнами на уровне спинного мозга, обеспечивая рефлекторную деятельность и быструю двигательную реакцию на вредоносные воздействия. Эти сенсомоторные связи существуют на всех уровнях, черепно-мозговые нервы — эквиваленты периферических, но начинающихся не в спинном мозге, а в стволе. Чувствительные и двигательные волокна объединяются в пучках, называемых периферическими нервами.

Подтвердить нарушение функций периферических нервов, определить тип и тяжесть невропатии помогает электрофизиологическое исследование. Снижение скоростей проведения по двигательным и чувствительным волокнам, как правило, является следствием демиелинизации. Нормальные скорости проведения при наличии мышечных атрофии свидетельствуют в пользу аксональной невропатии. Исключением являются некоторые случаи аксональной невропатии с прогрессирующим распадом двигательных и чувствительных волокон: максимальные скорости проведения могут снижаться за счет выпадения волокон большого диаметра, проведение по которым особенно быстрое. При аксонопатиях на ранних стадиях восстановления появляются регенерирующие волокна, проведение по которым замедлено, особенно в дистальных участках волокна. При электрофизиологическом исследовании больных с токсическими невропатиями обязательно измерение скоростей проведения по двигательным и чувствительным нервам верхних и нижних конечностей. Сравнительное исследование проведения по дистальным и проксимальным участкам нерва помогает в диагностике ди-стальной токсической аксонопатии, а также в определении места блокирования проведения при демиелинизации.

При поедании с кормом дозы 25 мг / кг ежедневно в течение 26 недель животные (крысы) становились возбужденными с момента появления синего окрашивания. При дозе 9 мг / кг в день обнаруживается только синее окрашивание. Патогистологиче-ски: липопигментные гранулы в клетках и нейронах, накапливающиеся со временем пропорционально дозе. Развивается симметричная демиелинизация аксонов и нервных волокон в центральной и периферической нервной системах, особенно по кортиковисцеральному тракту, но также в стволе мозга, в чувствительных волокнах и ганглиях позвоночника. При дозе 25 мг / кг, демиелинизация начинается на 14 неделе. Со временем — образуется, однако, тонкий слой миелина, что, возможно, объясняет относительно медленное развитие и стабильную картину поздней стадии поражения.

Скорость проведения возбуждения по нервным волокнам может быть определена у человека сравнительно несложным путем. Для определения скорости проведения по двигательным волокнам используется электрическая стимуляция нерва через кожу в тех местах, где он расположен неглубоко. Используя электромиографическую методику, записывают электрический ответ мышцы на это раздражение. Латентный период ответа в основном зависит от скорости проведения по нерву. Измерив его, а также расстояние между стимулирующими и отводящими электродами, можно рассчитать скорость проведения. Более точно ее можно определить по разности латентного ответа при раздражении нерва в двух точках. Для определения скорости проведения по чувствительным волокнам наносят кожное электрическое раздражение, а ответ отводится от нерва.

Источник: www.ngpedia.ru

Патофизиология дистальной полинейропатии у больных сахарным диабетом

Клинические и электрофизиологические данные свидетельствуют о большей ранимости чувствительных волокон периферических нервов по сравнению с двигательными. Мы связываем это с рядом причин, главная из которых, с нашей точки зрения, состоит в том, что импульсы по эфферентным волокнам вначале распространяются по проксимальному участку нерва, в то время как возбуждение афферентных волокон вначале проводится по дистальному участку нерва. Клинические, электрофизиологические и гистологические данные, как уже указывалось, свидетельствуют о том, что дистальные участки нерва (и прежде всего их леммоциты и мне липовые оболочки) страдают раньше и значительно сильнее, чем проксимальные. Вот почему потенциал действия моторных импульсов будет вначале почти беспрепятственно «перепрыгивать» через межперехватные участки и его распространение замедлится в основном в дистальной части нерва. Однако, имея еще достаточную амплитуду, этот потенциал сможет распространяться и при значительной демиелинизации, но уже не сальтоторно, а непрерывно, вдоль всего демиелинизированного участка волокна.

В то же время преимущественно дистальная сегментарная демиелинизация будет существенно препятствовать как возникновению разрядов афферентных импульсов (в норме рецепторный потенциал образует эти импульсы в первом к рецептору перехвате Ранвье), так и проведению их по афферентным волокнам I типа. При этом следует иметь в виду, что для распространения возбуждения по мякотным волокнам амплитуда потенциала действия должна быть в 5-6 раз выше пороговой величины, необходимой для возбуждения соседнего перехвата. В связи с этим сниженная на демиелинизированном участке чувствительного нерва амплитуда потенциала действия уже не достигает указанной величины на более сохранном участке нерва, что может привести даже к угасанию импульса.

Вторая причина большей ранимости чувствительных волокон, по-видимому, обусловлена тем, что возникновение потенциала действия эфферентного волокна происходит в теле мотонейрона, т. е. в значительно более благоприятных условиях (с точки зрения сохранности обменных процессов, запаса энергетического материала), чем в рецепторе, расположенном, например, на тыле стопы, где диабетические обменно-сосудистые нарушения максимально выражены. Эти нарушения приводят к значительному дефициту макроэргических фосфорных соединений, которые необходимы для нормального функционирования рецептора. Так, дефицит этих соединений нарушает работу натрий-калиевого насоса, что ведет к снижению величины рецепторного потенциала, который при раздражении или не достигает необходимого критического уровня (и, следовательно, не вызывает разряда афферентных импульсов), или же, достигнув только нижней границы указанного уровня, генерирует лишь редкую частоту афферентных импульсов, что, в частности, сопровождается уменьшением силы ощущения. Понятно, что в наибольшей степени указанный дефицит энергии будет иметь место при выраженных сосудистых нарушениях нижних конечностей, а также при тяжелой декомпенсации диабета. При использовании специальных методик, вероятно, можно выявить преходящее снижение различных видов чувствительности при декомпенсации сахарного диабета.

Третья причина связана с тем, что двигательные волокна появились филогенетически раньше чувствительных и поэтому более устойчивы.

Наконец, говоря о большей сохранности при дистальной полинейропатии двигательной функции нерва по сравнению с чувствительной, помимо отмеченных выше причин, следует указать и на значительные компенсаторные возможности двигательной функции периферических нервов (о чем свидетельствуют клинико-электро-физиологические данные).

Для объяснения факта замедления скорости проведения возбуждения по нервным волокнам в период декомпенсации сахарного диабета следует учесть, что для распространения нервного импульса необходима работа натрий-калиевого насоса, которая, как уже указывалось, весьма страдает в этот период.

Генез ирритативно-болевого синдрома при дистальной полинейропатии, как показал анализ наших данных, достаточно сложен. Клиническая симптоматика (боли, парестезии и дизестезии в нижних конечностях, гипералгезия в их дистальных отделах, болезненность икроножных мышц и др.) свидетельствует о наличии при указанном синдроме раздражения периферического нервно-рецепторного аппарата. Есть основания полагать, что это прежде всего обусловлено преимущественным поражением (в основном в виде сегментарной демиелинизации) толстых миелиновых волокон, проводящих быструю локализованную боль, при относительной сохранности безмиелиновых волокон (тип III), проводящих медленную, диффузную боль. Сегментарная демиелинизация, кроме того, способствует (как это предполагается некоторыми авторами при других видах патологии) развитию ирритативно-болевого синдрома в результате нарушения изоляционной функции миелиновых оболочек, что приводит как к соприкосновению соседних аксонов участками, лишенными миелиновой оболочки, так и к вхождению токов, распространяющихся вокруг аксонов. Болевые импульсы в этих условиях, по-видимому, могут возникать в ответ даже на незначительные раздражения тактильных, температурных и других рецепторов.

Можно думать, что в механизме повышения чувствительности рецепторов существенную роль играет нарушение как прямого, так и обратного аксотока, возникающее в рамках дистальной полинейропатии. Лишь на поздних стадиях развития последней в связи с гибелью многих аксонов и рецепторов такая повышенная чувствительность сменяется пониженной (гипестезией) и боли исчезают.

В поддержании ирритативно-болевого синдрома определенное значение, как мы полагаем, имеет характерная для диабета тканевая гипоксия, которая является максимальной при резкой декомпенсации диабета, несколько меньшей при наличии микро- и макроангиопатий на фоне компенсированного диабета и наименьшей при компенсированном диабете и отсутствии сосудистых нарушений. Выраженная гипоксия приводит, как указывалось выше, к образованию алгогенных веществ (серотонин, гистамин, норадреналин, брадикинин и др.), которые повышают сосудистую проницаемость. В результате этого возникает отек тканей со сдавлением болевых рецепторов в мышцах, а кроме того, алгогенные вещества, проникая в периваскулярные и перицеллюлярные пространства, сами возбуждают болевые рецепторы. При компенсации диабета (и отсутствии сосудистых нарушений) количество таких алгогенных веществ невелико, однако в связи с наличием при дистальной полинейропатии повышенной чувствительности рецепторов этого количества, по-видимому, достаточно для поддержания болевых явлений. Вместе с тем понятно, почему ирритативно-болевой синдром более выражен при декомпенсации диабета и уменьшается при его компенсации.

Нередкое усиление болей в нижних конечностях при дистальной полинейропатии в покое, особенно после длительной ходьбы (что прежде всего относится к больным с артериопатией нижних конечностей), по-видимому, связано с: 1) накоплением в период ходьбы в мышцах промежуточных продуктов обмена и наличием значительной гипоксии, 2) ослаблением в покое кровоснабжения нижних конечностей, 3) уменьшением стимуляции тактильных рецепторов (а возможно, и проприорецепторов). Из нейрофизиологических исследований известно, что импульсы, поступающие от тактильных рецепторов, снижают чувство боли. Можно предположить, что это относится и к проприорецепторам. Вот почему, когда больной встает и начинает ходить, у него уменьшаются или исчезают боли в нижних конечностях в результате как улучшения при ходьбе кровоснабжения мышц нижних конечностей, так и значительной стимуляции проприорецепторов и тактильных рецепторов (подошвенной поверхности стопы).

Мы полагаем, что причинами нередкого отсутствия при детском типе дистальной полинейропатии ирритативно-болевого синдрома (особенно у заболевших диабетом в возрасте до 7 лет) являются: 1) значительно более длительная сохранность (чем при взрослом типе развития дистальной полинейропатии) афферентных волокон, проводящих болевые импульсы, и их рецепторов; 2) адаптация периферического нервно-рецепторного аппарата (который рос и развивался в условиях тяжелого течения диабета) к обменно-гипоксическим нарушениям; 3) возникновение структурных изменений в тех рецепторах, стимуляция которых обменно-гипоксическими нарушениями при взрослом типе дистальной полинейропатии вызывает боль.

Указанные причины делают попятным и отсутствие нейромиалгии и период декомпенсации при длительном ювенильном диабете. Что же касается начального периода ювенильного диабета, для которого также характерно отсутствие нейромиалгии, то мы полагаем, что в слабо развитой мускулатуре у детей до 12 лет (и особенно до 7 лет) недостаточно развита и афферентная иннервация, в частности соответствующие болевые рецепторы мышц не возбуждаются при выраженных диабетических обменно-гипоксических нарушениях.

Возникновение нейромиалгии у взрослых больных диабетом мы связываем с тем, то в период декомпенсации диабета имеются значительные биохимические нарушения, в частности в скелетных мышцах, в которых увеличиваются концентрации молочной кислоты и других промежуточных продуктов обмена, развивается тканевая гипоксия, что наряду со сдвигом рН крови в кислую сторону и т. д. приводит к образованию алгогенных веществ с указанным выше механизмом их болевого действия.

При дистальной полинейропатии нередко наблюдается чувство жжения в стопах. Мы провели детальное сопоставление клинических показателей у трех групп больных: у 30 больных с этим симптомом, у 56 без такового, у 7 больных, у которых ранее был этот симптом. Резюмируя полученные данные, отметим, что ощущение жжения наблюдается у больных в основном старше 40 лет при продолжительности диабета более 10 лет с умеренно выраженной артериопатией и выраженной дистальной полинейропатией (которая все же не достигает VI и VII стадий развития). По мере нарастания как тяжести артериопатии (приводящей к значительному похолоданию стоп), так и патологии чувствительной иннервации отмечается исчезновение чувства жжения.

Относительно патофизиологии последнего мы высказали следующее предположение. При наличии в рамках дистальной полинейропатии умеренного поражения афферентных волокон, при котором, как мы видели выше, преимущественно страдают волокна 16, присоединение макроангиопатического фактора (артериопатии) с его гипоксическим влиянием на нервы нижних конечностей, их рецепторы и ткани стоп усугубляет патологию афферентных волокон (преимущественно 16) и их рецепторов и вызывает образование тех алгогенных веществ, которые, активируя относительно сохранные волокна III типа, вызывают ощущение жжения.

Теперь следует рассмотреть вопрос о синдроме дистальной гипестезии. Данным термином мы обозначили симптомокомплекс, который наблюдается на поздних стадиях развития дистальной полинейропатии нижних конечностей и проявляется отсутствием болей при механических, химических и термических воздействиях на стопы, а также при наличии язвы, гангрены и флегмоны стопы. Болей в йогах нет ни в покое, ни при ходьбе (при ходьбе может возникать безболевая форма перемежающейся хромоты). У таких больных выявляются признаки резко выраженной дистальной полинейропатии с гипестезией (до анестезии) в форме «чулок» или «носков» и отсутствием болезненности мышц голени. Кроме того, у них не вызываются ахилловы и коленные рефлексы, отмечается выпадение вибрационной чувствительности на стопах и голени, а также обычно снижено и мышечно-суставное чувство. Данный синдром выявлялся у 32 (2,4%) из 1300 больных, что составило 14% среди 229 больных с резко выраженной дистальной полинейропатией. Он отмечался у больных со взрослым типом развития дистальной полинейропатии при продолжительности диабета более 12 лет, а у больных с детским типом более 25 лет.

С указанным синдромом мы связываем отмеченное рядом исследователей отсутствие у больных с диабетической гангреной стоп болей и перемежающейся хромоты. Все же эти симптомы наблюдаются, по данным различных авторов, от 0,5 до 13,2% случаев диабетической гангрены стоп. Одной из причин столь значительного (в 25 раз) расхождения, с нашей точки зрения, является неоднозначное решение вопроса о том, какие некротические процессы на стопах следует относить к диабетическим гангренам.

Проведенное нами обследование 61 больного с диабетической гангреной стоп позволило различать, исходя из ведущего этиологического фактора, следующие четыре формы этой гангрены: ишемическую, невропатическую, сочетанную (ишемико-невропатическую) и метаболическую. Ишемическая форма наблюдалась у 16 больных, в основном пожилого возраста с недлительным диабетом. У них отмечались признаки III стадии облитерирующего атеросклероза нижних конечностей (по классификации А. Л. Мясиикова), а также имелись симптомы умеренно выраженной дистальной полинейропатии смешанного генеза (атеросклеротического, сенильного и диабетического). У этих больных отмечались и перемежающаяся хромота, и боли в пораненной стопе.

При невропатической форме (которая была диагностирована у 15 больных в возрасте до 45 лет с продолжительностью диабета в среднем более 20 лет) пульсация артерий стоп была или сохранной, или несколько ослабленной, стопы теплые, а полинейропатия проявлялась синдромом дистальной гипестезии. В этих случаях отсутствовали как перемежающаяся хромота, так и боли в пораженной стопе.

Сочетанная (ишемико-невропатическая) форма была у 27 больных зрелого и пожилого возраста со значительной длительностью диабета. У них по было перемежающейся хромоты и болей в пораженной стопе, а объективная симптоматика включала сосудистую патологию, как и у больных с ишемической формой, и неврологическую, как при невропатической форме гангрены стоп.

Наконец, метаболическая форма была у 3 больных (у 1 с коротким диабетом и у 2 с диагностированным до возникновения гангрены диабетом), у которых некротический процесс на стопах развился па фоне некомпенсированных обменных нарушений, что, по-видимому, и послужило причиной снижения резистентности тканей стопы к инфицированию. У них отсутствовала перемежающаяся хромота, но были интенсивные боли в пораженной стопе.

Таким образом, перемежающаяся хромота характерна только для ишемической формы гангрены стоп, а боли в пораженной стопе возникают при метаболической и ишемической формах.

Давно было отмечено, что у больных с диабетической гангреной стоп при ходьбе вместо болей возникает повышенная утомляемость ног. Действительно, у наших больных с невропатической и ишемико-невропатической формами гангрены стоп (а также с резко выраженной артериопатией нижних конечностей при отсутствии гангрены, но с симптомами дистальной гипестезии) слабость и резкая утомляемость ног наблюдалась даже при кратковременной ходьбе (по словам этих больных, «ноги совсем не ходят»), т. е. эта утомляемость была эквивалентом боли при перемежающейся хромоте. Другими словами, у указанных групп больных возникала по нашей терминологии «безболевая форма перемежающейся хромоты».

Наконец, следует отметить, что резкое поражение чувствительных волокон в рамках синдрома дистальной гипестезии (приближающееся к деафферентации дистальных отделов нижних конечностей) имеет непосредственное отношение не только к симптоматике, но и к возникновению диабетической гангрены стоп. Из многочисленных работ по неврогенным дистрофиям известно, что в деафферентированных тканях развиваются тяжелые дистрофические и аутоаллергические процессы. К этому следует прибавить повышенную травматизацию анестезированной стопы механическими и термическими факторами, а также то, что такие больные обычно поздно обращаются за медицинской помощью. Вот почему есть все основания полагать, что указанные чувствительные расстройства являются одним из ведущих факторов в возникновении значительно более частой гангрены стоп при наличии диабета, чем при его отсутствии.

Вопрос о механизме одного из наиболее частых симптомов дистальной полинейропатии — снижении и выпадении сухожильных и периостальных рефлексов, является весьма дискутабельным. Наши более ранние клинико-электромиографические исследования, включая и результаты определения скорости распространения возбуждения по моторным волокнам периферических нервов, подтвердили точку зрения тех авторов, которые связывают указанные рефлекторные нарушения с поражением афферентной части рефлекторной дуги. Дальнейшее изучение этого вопроса с учетом данных по Н-рефлексу и скорости распространения возбуждения по афферентным волокнам большеберцового нерва, а также возможности в некоторых случаях восстановления выпавших проприоцептивных рефлексов привело нас к представлению о том, что указанные рефлекторные нарушения связаны с патологией первичных афферентных волокон мышечных веретен, которая прежде всего заключается в дистальном типе демиелинизации этих волокон.

Снижение и выпадение в рамках дистальной полинейропатии подошвенного рефлекса мы также связываем с поражением афферентных волокон рефлекторной дуги. Поскольку афферентные волокна ахиллова и подошвенного рефлексов проходят в составе большеберцового нерва и дистальные отделы этих волокон почти одинаково удалены от клеточных тел их нейронов, то казалось бы и страдать от диабетических обменно-сосудистых нарушений они должны почти одинаково. Однако, как мы видели выше, подошвенные рефлексы в рамках дистальной полиневропатии выпадают значительно позже, чем ахилловы. Мы объясняем это действием двух основных факторов. Во-первых, судя по нейрофизиологическим исследованиям, от гипоксии в первую очередь страдают наиболее толстые миелиновые волокна, а так как в развитии диабетической полинейропатии гипоксия является одним из патогенных факторов, то ясно, что афферентные волокна 1а (относящиеся к рефлекторной дуге ахиллова рефлекса) будут поражаться раньше, чем менее толстые миелиновые волокна и тем более безмиелиновые.

Во-вторых, мы полагаем, что количество афферентных волокон в рефлекторной дуге подошвенного рефлекса значительно больше, чем ахиллова рефлекса. Косвенным подтверждением такого предположения служат результаты нашего исследования чувствительности подошвенной поверхности стопы, являющейся рецептивным полем подошвенного рефлекса. Как мы видели выше, гипестезия на подошве возникает спустя несколько лет после ее появления на сходной по топографическому положению (а значит, и по ранимости афферентных волокон) тыльной поверхности стоп. Такая ситуация может возникнуть лишь в том случае, если количество кожных рецепторов и соответствующих афферентных волокон на 1 см2 поверхности подошвы стопы будет больше, чем на тыле стопы, что связано, по-видимому, со значительно большей биологической ролью чувствительности на подошве.

В литературе имеются единичные сообщения о восстановлении после мозгового инсульта на стороне гемипареза выпавших коленных рефлексов у больных диабетом. Анализ наших наблюдений, детально изложенный ранее, подтвердив этот факт, вместе с тем показал, что, во-первых, он касается не только коленных, но и ахилловых рефлексов, которые восстанавливаются реже и в меньшем объеме, чем коленные, во-вторых, восстановление коленных и ахилловых рефлексов наблюдается не у всех больных с мозговым инсультом (оно отсутствовало у больных с резко выраженной гипестезией в форме «чулок»), и, в-третьих, указанное восстановление возникает не только после инсульта, но и (хотя и в меньшей степени) после длительных гипогликемических ком, а также после менингоэнцефалита.

При обсуждении механизма восстановления у больных с дистальной полинейропатией коленных и ахилловых рефлексов под влиянием мозгового инсульта, энцефалита и гипогликемических ком мы исходили из известного в нейрофизиологии факта, что поражения пирамидных и экстрапирамидных путей, вызывая нарушение нисходящих цереброспинальных тоногенных влияний, повышают возбудимость сегментарных мотонейронов (об этом же свидетельствуют и наши данные). При этом активация мотонейронов приводит к усилению афферентной импульсации от мышечных веретен. Такое усиление во многих случаях оказывается достаточным, чтобы компенсировать нарушение проводимости нервных импульсов (возникшее в основном в результате демиелинизации) афферентами этих веретен, приводя к увеличению притока проприоцептивных импульсов к альфа-мотонейронам и восстановлению выпавших ахилловых рефлексов. Эти представления позволяют понять, что возможность указанного восстановления зависит от двух факторов: от степени поражения рефлекторной дуги проприоцептивного рефлекса и от степени активации игрек-петли. Последняя будет более значительной при массивном мозговом инсульте, чем после гипогликемических ком. В тех случаях, когда выпадение ахилловых рефлексов произошло сравнительно недавно и связано только с демиелинизацией афферентов веретен, восстановление этих рефлексов происходит сравнительно легко. Напротив, при грубом повреждении осевых цилиндров афферентов веретен (а тем более, если при этом уже имеется повреждение и эфферентных волокон рефлекторной дуги), даже максимальная стимуляция игрек-волокон, которые, по-видимому, также страдают при резко выраженной дистальной полинейропатии, не может привести к восстановлению выпавших рефлексов.

Более значительное восстановление коленных рефлексов, чем ахилловых, связано с тем, что рефлекторная дуга первого короче и более проксимально расположена. В еще большей степени, чем к коленному, сказанное выше относится к нижнечелюстному рефлексу, дуга у которого еще короче и расположена значительно более орально, чем у коленного рефлекса. Вот отчасти почему при наличии перечисленных выше факторов у больных нередко отмечается сохранный или повышенный нижнечелюстной рефлекс при выпадении коленных и ахилловых рефлексов.



Понравилась статья? Поделитесь ей
Наверх