Проводящие пути спинного мозга собственные. Как узнать о болевом пороге и различии температуры? В чём заключается проводящая функция спинного мозга


Белое вещество спинного мозга окружает серое вещество и образует столбы спинного мозга. Различают передние, задние и боковые столбы. Столбы - это тракты спинного мозга, образованные длинными аксонами нейронов, идущими вверх по направлению к головному мозгу (восходящие пути) либо вниз - от головного мозга к ниже расположенным сегментам спинного мозга (нисходящие пути).
По восходящим путям спинного мозга передается информация от рецепторов мышц, сухожилий, связок, суставов и кожи к головному мозгу. Восходящие пути являются также проводниками температурной и болевой чувствительности. Все восходящие пути перекрещиваются на уровне спинного (или головного) мозга. Таким образом, левая половина головного мозга (кора полушарий и мозжечок) получают информацию от рецепторов правой половины тела и наоборот.

Основные восходящие пути: от механорецепторов кожи и рецепторов опорно-двигательного аппарата - это мышцы, сухожилия, связки, суставы - пучки Гол- ля и Бурдаха или соответственно они же - нежный и клиновидный пучки представлены задними столбами спинного мозга (рис. 17 А).
От этих же рецепторов информация поступает в мозжечок по двум путям, представленным боковыми столбами, которые называются передним и задним спинномозжечковыми трактами. Кроме того, в боковых столбах проходят еще два пути - это боковой и передний спинно-таламические пути, передающие информацию от рецепторов температурной и болевой чувствительности.
Задние столбы обеспечивают более быстрое проведение информации о локализации раздражений, чем боковой и передний спинно-таламические пути.
Нисходящие пути, проходя в составе передних и боковых столбов спинного мозга, являются двигательными, так как они влияют на функциональное состояние скелетных мышц тела. Пирамидный путь начинается в основном в двигательной коре полушарий и проходит по продолговатому мозгу, где большая часть волокон перекрещивается и переходит на противоположную сторону. После этого пирамидный путь разделяется на боковой и передний пучки: соответственно передний и боковой пирамидные пути. Большинство волокон пирамидных путей оканчивается на вставочных нейронах, а около 20% образуют синапсы на мотонейронах. Пирамидное влияние является возбуждающим.
Ретикуло-спинальный путь, руброспинальный путь и вестибулоспинальный путь (экстрапирамидная система) начинаются соответственно от ядер ретикулярной формации, ствола мозга, красных ядер среднего мозга и вестибулярных ядер продолговатого мозга. Эти пути проходят в боковых столбах спинного мозга, участвуют в координации движений и обеспечении мышечного тонуса. Экстрапирамидные пути, так же как и пирамидные, являются перекрещенными (рис. 17 Б).
Таким образом, спинной мозг осуществляет две важнейшие функции: рефлекторную и проводниковую. Рефлекторная функция осуществляется за счет двигательных центров спинного мозга: мотонейроны перед-

Днатимия ивранаЯ системы
1

А

Рис. 17 А-Б

А - Восходящие пути спиниого мозга:

  1. - пучок Голля;
  2. - пучок Бурдаха;
  3. - дорсальный спинно-мозжечковый тракт;
  4. - вентральный спинно-мозжечковый тракт;
  5. - передний спинно-таламический путь;
  6. - латеральный спинно-таламический путь.
Б - Главные нисходящие спинно-мозговые пути:
пирамидной (латеральный и передний кортикоспинальные пути) и экстрапирамидной (руброспинальные, ретикулоспи- нальные и вестибулоспинальные пути) систем.


А к мышцам-сгибателям к мышцам-сгибателям
и разгибателям и разгибателям

А - дуги сгибательного и перекрестного разгибательного рефлексов; Б - элементарная схема безусловного рефлекса. Нервные импульсы, возникающие при раздражении рецептора (Р), по афферентным волокнам (афф. нерв, показано одно такое волокно) идут к спинному мозгу (1), где через вставочный нейрон передаются на эфферентные волокна (эфф. нерв), по которым доходят до эффектора. Пунктирные линии - распространение возбуждения от низших отделов центральной нервной системы на ее вышерасположенные отделы (2, 3, 4) до коры мозга (5) включительно. Наступающее вследствие этого изменение состояния высших отделов мозга, в свою очередь, воздействует (см. стрелки) на эфферентный нейрон, влияя на конечный результат рефлекторного ответа.

Диетам» npml системы

Рис. 19. Схема проводящих путей спинного мозга:
Нисходящие пути:
А - пирамидный или кортикоспинальный;
Б - экстрапирамидная система
Руброспинальный и ретикулоспинальный пути, входящие в состав мультинейронного экстрапирамидного пути, идущего от коры больших полушарий к спинному мозгу;
Восходящие пути: В - передний спинно-таламический тракт
По этому пути в соматосенсорную кору поступает информация от рецепторов давления и прикосновения, а также от болевых и температурных;
Г - латеральный спинно-таламический тракт По этому пути информация от болевых и температурных рецепторов поступает к обширным областям коры головного мозга.

5

  1. - двигательная кора;
  2. - средний мозг;
  3. - пирамидный путь;
  4. - продолговатый мозг;
  5. - боковой кортикоспинальный путь;
  6. - передний кортикоспинальный путь;
  7. - диффузные проекции на кору;
  8. - межпластиночные ядра таламуса;
  9. - латеральный спинно-таламический путь;
  10. - соматосенсорная кора;
  11. - вентробазальный комплекс таламуса;
  12. - медиальная петля;
  13. - красное ядро;
  14. - мост;
  15. - ретикулярная формация;
  16. - руброспинальный путь;
  17. - ретикулоспинальный путь;
  18. - спинной мозг.
Днатвмия itpginH системы
них рогов обеспечивают работу скелетных мышц туловища. При этом поддерживается сохранение мышечного тонуса, координация работы мышц сгибателей- разгибателей, лежащих в основе движений, и сохранение постоянства позы тела и его частей (см. рис. 18, стр. 39). Мотонейроны, расположенные в боковых рогах грудных сегментов спинного мозга, обеспечивают дыхательными движениями (вдох-выдох), регулируя работу межреберных мышц. Мотонейроны боковых рогов поясничного и крестцового сегментов представляют двигательные центры гладких мышц, входящих в состав внутренних органов. Это центры мочеиспускания, дефекации, работы половых органов.
Проводниковую функцию выполняют спинномозговые тракты (см. рис. 19, стр. 40 - 41).

Проводящие пути в ЦНС делят на восходящие и нисходящие. Восходящие пути образуются аксонами клеток, тела которых расположены в сером веществе спинного мозга. Эти аксоны в составе белого вещества направляются к верхним отделам спинного мозга, стволу и коре больших полушарий. Нисходящие пути образуются аксонами клеток, тела которых расположены в различных ядрах головного мозга. Эти аксоны по белому веществу спускаются к различным спинальным сегментам, заходят в серое вещество и оставляют свои окончания на его клетках.

Восходящие пути. Основные восходящие системы проходят через дорсальные канатики спинного мозга и представляют собой аксоны афферентных нейронов спинномозговых ганглиев. Они проходят по всему спинному мозгу и заканчиваются в области продолговатого мозга в ядрах дорсального канатика - ядрах Голля и Бур- даха. Эти пути называют трактом Голля и трактом Бурдаха. Волокна, расположенные в канатике медиальнее, несут к ядру Голля афферентные сигналы от нижней части тела, в основном от нижних конечностей. Волокна, расположенные латеральнее, идут к ядру Бурдаха и передают афферентные сигналы от рецепторов верхней части туловища и верхних (у животных - передних) конечностей. Аксоны клеток ядер Голля и Бурдаха в стволе головного мозга перекрещиваются и в виде плотного пучка поднимаются до промежуточного мозга. Этот пучок волокон, образованный клетками ядер Голля и Бурдаха, называется медиальной петлей. Клетки ядер промежуточного мозга образуют третье звено нейронов, аксоны которых направляются в кору больших полушарий.

Все остальные восходящие пути начинаются не от нейронов спинномозговых ганглиев, а от нейронов, расположенных в сером веществе спинного мозга. Их волокна являются волокнами второго порядка. Первым звеном в этих путях служат нейроны спинномозговых ганглиев, но в сером веществе спинного мозга они оставляют свои окончания на клетках второго звена, и уже эти клетки посылают свои аксоны к ядрам ствола и коре больших полушарий. Основная масса волокон этих путей проходит в латеральном канатике.

Спинно-таламический путь начинается в основании дорсального рога спинного мозга. Аксоны нейронов, образующих этот тракт, переходят на противоположную сторону, входят в белое вещество противоположного латерального или вентрального канатика и в нем поднимаются вверх через весь спинной мозг и ствол головного мозга до ядер промежуточного мозга. Далее уже нейроны третьего порядка (нейроны промежуточного мозга) переносят импульсацию в кору больших полушарий. Тракты Голля и Бурдаха и спинно-таламический тракт связывают рецептивные области каждой стороны тела с нейронами коры противоположного полушария.

В латеральных канатиках проходят еще два пути, которые связывают спинной мозг с корой мозжечка и образуют спинно-мозжечковые тракты. Путь Флексига расположен дорсаль- нее и содержит волокна, не переходящие на противоположную сторону мозга. Путь Говерса находится вентральнее (вентральный спинно-мозжечковый путь), содержит волокна, которые поднимаются вверх по латеральному канатику противоположной стороны тела, но в стволе мозга эти волокна снова перекрещиваются и входят в кору мозжечка с той стороны, на которой этот путь начинался.

Таким образом, если кора больших полушарий мозга всегда связана с афферентными волокнами противоположной стороны тела, то кора мозжечка получает волокна преимущественно от нейронных структур одноименной стороны.

Помимо путей, ведущих к различным структурам головного мозга, в белом веществе спинного мозга есть пути, которые не выходят за его пределы. Эти пути расположены в самой глубокой части латерального и вентрального канатиков, они связывают между собой различные нервные центры. Такие пути называют проприоспинапъными.

Функции восходящих систем. Восходящие системы обеспечивают различные виды чувствительности, проводя в высшие отделы ЦНС импульсы от рецепторов наружной поверхности тела, двигательного аппарата и внутренних органов.

Кожно-механическая чувствительность обеспечивается главным образом путями дорсального канатика (пучки Голля и Бур- даха). По этим трактам проходят афферентные волокна, передающие импульсы от механорецепторов, реагирующих на движение волосков, на легкое или сильное прикосновение к коже. Эти тракты являются наиболее быстропроводящими. Значительная часть импульсов от кожных рецепторов поднимается вверх по латеральным канатикам к коре мозжечка (спинно-мозжечковые пути), через ствол мозга в промежуточный мозг и кору больших полушарий (спинно-таламический путь).

Еще одна группа волокон кожной чувствительности направляется в верхнее шейное ядро (спинно-цервикальный путь), а от него в составе медиальной петли поднимается в передний мозг. Эти системы имеют свои функциональные особенности. Тракты Голля и Бурдаха организованы таким образом, что каждая группа клеток, активируемая окончаниями их аксонов, возбуждается только импульсами из определенного участка кожной поверхности.

В спинно-таламической системе пространственное разделение сигналов от различных кожных рецепторов выражено плохо, клеточные реакции здесь носят генерализованный характер. Каждый нейрон в этой системе может получать импульсацию от больших рецептивных полей. Таким образом, спинно-таламическая система не может передавать сведений о локальных раздражениях и служит для передачи общей информации о механических воздействиях на кожу. Система спинно-цервикальных путей и медиальная петля являются более точными. Клетки верхнего шейного ядра воспринимают импульсацию только от ограниченных рецептивных полей.

Восходящие пути температурной чувствительности проходят по латеральным канатикам, импульсы от температурных рецепторов поднимаются по волокнам, идущим в составе спинно-таламического тракта. По этим же путям идут импульсы от болевых рецепторов. Передача импульсации от рецепторов двигательного аппарата (проприорецепторов) осуществляется по тем же путям, по которым в высшие отделы ЦНС идут импульсы от кожных рецепторов, воспринимающих механические раздражения. В передний мозг импульсы от проприорецепторов направляются по путям дорсальных канатиков, а в мозжечок - по спинно-мозжечковым путям. Ин- тероцептивная импульсация после синаптических переключений на нейронах спинного мозга идет к высшим отделам ЦНС по восходящим путям латеральных канатиков. Специализированные афферентные пути от рецепторов внутренних органов в ствол мозга проходят также в составе блуждающего нерва.

Нисходящие пути. Волокна, идущие в нисходящем направлении, подразделяют на несколько путей. В основе названий этих путей лежит название отделов ЦНС, которые они связывают.

Кортико-спинальный путь образован аксонами пирамидных клеток коры больших полушарий (другое название - пирамидный тракт). Его волокна, не прерываясь, проходят от двигательной области и смежных с ней областей коры через стволовые структуры до продолговатого мозга. В области продолговатого мозга большая часть волокон переходит на противоположную сторону и в составе белого вещества латеральных канатиков спускается до каудальных сегментов спинного мозга. Та часть пирамидных волокон, которая не перешла на противоположную сторону на уровне продолговатого мозга, осуществляет этот переход на уровне тех спинальных сегментов, к которым они направлены.

Таким образом, двигательная область коры больших полушарий всегда оказывается связанной с нейронами противоположной стороны спинного мозга.

Основной нисходящий путь среднего мозга начинается в красном ядре и называется рубро-спиналъным трактом. Аксоны нейронов красного ядра перекрещиваются сразу под ним и в составе белого вещества латерального канатика противоположной стороны спускаются к сегментам спинного мозга, заканчиваясь на клетках промежуточной области его серого вещества. Рубро-спинальная система, наряду с пирамидной, является основной системой контроля деятельности спинного мозга.

От продолговатого мозга берут начало два пути: вестибу- ло-спиналъный, начинающийся от вестибулярных ядер, и рети- куло-спинальный, начинающийся от скопления клеток ретикулярной формации. Волокна каждого из этих путей заканчиваются на нейронах медиальной части вентрального рога. Предполагается, что волокна ретикуло-спинального тракта могут оказывать влияние на функцию спинного мозга путем предварительной активации его клеток.

Кроме длинных нисходящих путей в спинном мозге присутствуют короткие межсегментарные проприоспинальные волокна. Эти волокна включены в передачу сигналов, поступающих в спинной мозг по длинным путям.

Функции нисходящих систем. Пирамидная (кортико-спинальная) нисходящая система неоднородна по своей организации. Она содержит быстропроводящие волокна (скорость проведения около 60 м/с) и медленнопроводящие волокна. Одна ее часть обеспечивает быстрые (фазные) двигательные реакции и представлена толстыми проводящими волокнами, берущими начало от больших пирамидных клеток коры. Другая часть пирамидной системы регулирует тонические реакции скелетной мускулатуры. Это влияние осуществляется, в основном, по тонким волокнам. При поражении пирамидной системы (перерезка волокон) происходит нарушение двигательной деятельности, в основном, тонких произвольных движений и нарушение регуляции мышечного тонуса. Объем этих нарушений и их длительность невелики, поскольку они быстро компенсируются активностью нисходящих путей, дублирующих функции пирамидной системы. Прежде всего эго кортико-рубро-спинальная система. Скорость проведения возбуждения в этой системе 80 м/с, рубро-спинальные волокна имеют большой диаметр.

Пирамидная и рубро-спинальная система в ЦНС выполняют сходные функции, их объединяют в одну группу - латеральные нисходящие системы. Они проходят в боковых канатиках и связаны со вставочными нейронами латеральной части серого вещества, которые посылают свои аксоны в основном в латеральные двигательные ядра, иннервирующие дистальную мускулатуру конечностей.

Вестибуло-спинальные волокна относят к очень быстропрово- димым (120 м/с). Их активация вызывает моносинаптические возбуждения преимущественно разгибагельных мотонейронов, иннервирующих мышцы туловища и проксимальную мускулатуру конечностей. В нейронах-сгибателях при этом возникают реципрокные тормозящие процессы. Таким образом, вестибуло-спинальная система поддерживает тоническое напряжение разгибательной мускулатуры.

Ретикуло-спинальные волокна, берущие начало от медиальных ядер ретикулярной формации и проходящие в медиальной части переднего канатика, имеют высокую скорость проведения возбуждения - 130 м/с. Их раздражение иннервирует преимущественно сгибательные мотонейроны, иннервирующие мышцы туловища и конечностей. Вестибуло- и ретикуло-спинальный тракты имеют много общего. Их волокна проходят рядом в вентральных канатиках и устанавливают прямые связи с мотонейронами. Наиболее выраженные эффекты при их активации наблюдаются в мотонейронах медиальных ядер, иннервирующих осевую мускулатуру тела. Эти два пути объединены в одну группу - медиальные нисходящие системы, связанные в основном с реализацией позиционных рефлексов. В отличие от латеральных систем, они находятся между собой не в синергических, а в антагонистических отношениях, т. к. активируют мотонейроны противоположного функционального назначения.

Пирамидный тракт - это путь произвольных движений. Остальные пути - экстрапирамидные, их функция - осуществление рефлекторных движений.

Основные проводящие пути спинного мозга

Не ставя перед собой задачи перечислить все проводящие пути ЦНС, рассмотрим основные принципы организации этих путей на примере наиболее важных из них (рис. 30). Проводящие пути в ЦНС делятся на:

восходящие - образуются аксонами клеток, тела которых расположены в сером веществе спинного мозга. Эти аксоны в составе белого вещества направляются к верхним отделам спинного мозга, стволу головного мозга и коре больших полушарий.

нисходящие – образуются аксонами клеток, тела которых расположены в различных ядрах головного мозга. Эти аксоны по белому веществу спускаются к различным спинальным сегментам, заходят в серое вещество и оставляют свои окончания на тех или иных его клетках.

Отдельную группу образуют проприоспинальные проводящие пути. Они могут быль как восходящими, так и нисходящими, но они не выходят за пределы спинного мозга. Пройдя несколько сегментов, они вновь возвращаются в серое вещество спинного мозга. Эти пути расположены в самой глубокой части латерального и вентрального канатиков, они связывают между собой различные нервные центры спинного мозга. Например, центры нижних и верхних конечностей.

Восходящие проводящие пути.

Тракты Голля (тонкий пучок) и Бурдаха (клиновидный пучок). Основные восходящие пути проходят через дорсальные канатики спинного мозга и представляют собой аксоны афферентных нейронов спинномозговых ганглиев . Они проходят по всему спинному мозгу и заканчиваются в области продолговатого мозга в ядрах дорсального канатика, которые называют ядрами Голля и Бурдаха. Поэтому они и именуются тракт Голля и тракт Бурдаха .

1. Первое звено нейронов:

a. Волокна, расположенные в канатике медиальнее несут к ядру Голля афферентные сигналы от нижней части тела, в основном от нижних конечностей.

b. Волокна, расположенные латеральнее, идут к ядру Бурдаха и передают афферентные сигналы от рецепторов верхней части туловища и передних конечностей.

2. Второе звено нейронов:

В свою очередь аксоны клеток ядер Голля и Бурдаха в стволе головного мозга перекрещиваются и в виде плотного пучка поднимаются до промежуточного мозга. Этот пучок волокон, образованный уже аксонами клеток ядер Голля и Бурдаха получил название медиальной петли .

3. Третье звено нейронов :

Клетки ядер промежуточного мозга дают аксоны, направляющиеся в кору больших полушарий.

Все остальные восходящие пути начинаются не от нейронов спинномозговых ганглиев, а от нейронов, расположенных в сером веществе спинного мозга . Следовательно, их волокна являются волокнами не первого, а второго порядка.

1. Первым звеном в этих путях также служат нейроны спинномозговых ганглиев, но в сером веществе они оставляют свои окончания на клетках как бы «второго звена».

Клетки этого «второго звена» посылают свои аксоны к ядрам ствола головного мозга и коре больших полушарий. Основная масса волокон этих путей проходит в латеральном канатике.

Спинно-таламические пути (вентральный и латеральный) .

2. Второе звено нейронов:

Начинается в основании дорсального рога спинного мозга. Аксоны нейронов, образующих этот путь переходят на контралатеральную (противоположную) сторону, входят в белое вещество противоположного латерального или вентрального канатика и в нем поднимаются через весь спинной мозг и ствол головного мозга вплоть до ядер промежуточного мозга.

2. Третье звено нейронов :

Нейроны ядер промежуточного мозга переносят импульсацию в кору больших полушарий.

Все вышеописанные пути (Голля, Бурдаха и спинно-таламический) связывают рецептивные области каждой стороны тела с нейронами коры противоположного полушария.

Спинно-мозжечковые тракты. Еще два пути, проходящие в латеральных канатиках связывают спинной мозг с корой мозжечка .

Путь Флексинга – расположен дорсальнее и содержит волокна, непереходящие на противоположную сторону мозга. Это путь в спинном мозге начинается от нейронов ядра Кларка, аксоны которых достигают продолговатого мозга и поступают в мозжечок через нижнюю ножку мозжечка.

Путь Говерса – расположен вентральнее, содержит волокна, которые поднимаются вверх по латеральному канатику противоположной стороны тела, но в стволе мозга эти волокна снова перекрещиваются и входят в кору мозжечка с той стороны, на которой этот путь начинался. В спинном мозге начинается от ядер промежуточной зоны, аксоны вступают в мозжечок через верхнюю ножку мозжечка.

Если кора больших полушарий мозга всегда связана с афферентными волокнами противоположной стороны тела, то кора мозжечка получает волокна преимущественно от нейронных структур одноименной стороны.

Нисходящие проводящие пути. Волокна, идущие в нисходящем направлении, также подразделяются на несколько путей. В основе названия этих путей лежат названия тех отделов мозга, в которых они берут свое начало.

Кортико-спинальные (латеральный и вентральный) пути образованы аксонами пирамидных клеток нижних слоев моторной зоны коры больших полушарий. Часто эти пути называют пирамидными . Волокна проходят через белое вещество больших полушарий , основание ножек среднего мозга , по вентральным отделам Варолиева моста и продолговатого мозга в спинной мозг.

o Латеральный путь перекрещивается в нижней части пирамид продолговатого мозга и заканчивается на нейронах основания заднего рога.

o Вентральный путь пересекает пирамиды продолговатого мозга не перекрещиваясь. Перед вступлением в передний рог серого вещества соответствующего сегмента спинного мозга волокна этого пути переходят на противоположную сторону и заканчиваются на мотонейронах передних рогов контралатеральной стороны.

Таким образом, так или иначе, но двигательная область коры больших полушарий всегда оказывается связанной с нейронами противоположной стороны спинного мозга.

Рубро-спинальный путь – основной нисходящий путь среднего мозга , начинается в красном ядре . Аксоны нейронов красного ядра перекрещиваются сразу под ним и в составе белого вещества латерального канатика спускаются к сегментам спинного мозга, заканчиваясь на клетках промежуточной области серого вещества. Это связано с тем, что руброспинальная система наряду с пирамидной является основной системой контроля деятельности спинного мозга.

Текто-спинальный путь – Берет начало от нейронов четверохолмия среднего мозга и достигает мотонейронов передних рогов.

Проводящие пути, начинающиеся в продолговатом мозге:

Вестибуло-спинальный – начинается от вестибулярных ядер, главным образом от клеток ядра Дейтерса.

Ретикуло-спинальный – начинается от обширного скопления нервных клеток ретикулярной формации, занимающей центральную часть ствола мозга. Волокна каждого из этих путей заканчиваются на нейронах медиальной части переднего рога серого вещества спинного мозга. Основная часть окончаний располагаются на вставочных клетках.

Оливо-спинальный - образован аксонами клеток олив продолговатого мозга, заканчивается на мотонейронах передних рогов спинного мозга.

Раздел 4

ГОЛОВНОЙ МОЗГ

) пути головного мозга берут начало в коре полушарий большого мозга и в ядрах ствола мозга. Заканчиваются эти пути либо в ядрах ствола мозга, либо на клетках передних столбов серого вещества спинного мозга.

От клеток двигательной области коры головного мозга двигательные, проекционные волокна идут в составе лучистого венца, corona radiata , и через внутреннюю капсулу выходят за пределы полушарий.

К нисходящим (двигательным, эфферентным) путям относят следующие:

1. Корково-таламические волокна, fibrae corticothalamicae , соединяют кору большого мозга с таламусом.

2. Корково-красноядерные волокна, fibrae corticorubrales , идут от коры лобных долей полушарий большого мозга (область покрышечной части) к красному ядру.

3. Лучистость полосатого тела представляет собой систему волокон, соединяющих клетки коры (экстрапирамидные области лобной и теменной долей большого мозга) с ядрами полосатого тела, и волокон, соединяющих хвостатое и чечевицеобразное ядра с таламусом, которые образуют чечевицеобразные петлю и пучок, ansa et fasciculus lenticulares (см. рис. , ).

4. Корково-мостовые волокна, fibrae corticopontinae (см. рис. ), начинаются в различных отделах коры полушарий большого мозга и заканчиваются в ядрах моста, где берут начало мостомозжечковые волокна, направляющиеся в противоположное полушарие мозжечка. Корково-мостовые волокна подразделяются на лобно-мостовые и теменно-височно-мостовые волокна:

  • лобно-мостовые волокна, fibrae frontopontinae , берут начало в коре лобной доли, проходят в передней ножке внутренней капсулы, в вентральной части ножки мозга и заканчиваются в ядрах моста;
  • теменно-височно-мостовые волокна, fibrae parietotemporopontinae , начинаются в коре теменной и височной долей, проходят в задней ножке внутренней капсулы, в вентральной части ножки мозга и заканчиваются в ядрах моста.

5. Пирамидные пучки, fasciculi pyramidales (некоторые авторы называют их пирамидными путями) (см. рис. , , , ), начинаются от крупных пирамидных клеток двигательной зоны коры полушарий большого мозга (предцентральная извилина), идут в составе лучистого венца, через заднюю ножку внутренней капсулы выходят из полушарий и вступают в ножку мозга. Спускаясь ниже, пирамидные пучки проходят основание ножек мозга, образуя по пути пирамидные возвышения на передней части моста и пирамиды продолговатого мозга.

В составе пирамидных пучков различают корково-ядерные, корково-ретикулярные волокна и корково-спинномозговые пути:

  • корково-ядерные волокна, fibrae corticonucleares , проходят в колене внутренней капсулы, следуют по базальным отделам ножки мозга, моста и продолговатого мозга и заканчиваются в двигательных ядрах черепных нервов противоположной стороны;
  • корково-ретикулярные волокна, fibrae corticoreticulares , следуют от коры к ядрам ретикулярной формации;
  • корково-спинномозговые пути, tractus corticospinales , направляясь в спинной мозг, на границе между продолговатым и спинным мозгом в области перекреста пирамид образуют частичный перекрест: одна часть волокон переходит на противоположную сторону, образуя латеральный корково-спинномозговой [пирамидный] путь, tractus corticospinalis lateralis . Волокна этого пути следуют в боковые канатики белого вещества спинного мозга; другая часть волокон, не перекрещиваясь, направляется в передние канатики белого вещества спинного мозга, образуя передний корково -спинномозговой [пирамидный] путь, tractus corticospinalis ventralis . Перекрест волокон происходит на уровне того сегмента, где они оканчиваются на клетках передних столбов.

Латеральный корково-спинномозговой путь в боковом канатике спинного мозга на всем его протяжении располагается кнутри от заднего спинно-мозжечкового пути и вступает в контакт с клетками передних столбов серого вещества спинного мозга.

Передний корково-спинномозговой путь спускается по переднему канатику белого вещества спинного мозга, занимая его медиальную часть. Часть волокон этого пути переходит посегментно в составе белой спайки спинного мозга на противоположную сторону, где вступает в контакт с клетками передних столбов серого вещества спинного мозга. Меньшая часть волокон может вступать в контакт с клетками передних столбов серого вещества спинного мозга своей стороны.

Волокна, составляющие корково-спинномозговой путь, являются отростками первых нейронов двигательного пути произвольных движений, второй нейрон этого пути – клетки передних рогов серого вещества спинного мозга, отростки которого входят в состав передних корешков спинномозговых нервов.

6. Красноядерно-спинномозговой путь, tractus rubrospinalis (см. рис. , , , ), начинается в красном ядре и направляется в спинной мозг. Нисходящие волокна, отходящие от клеток красного ядра, образуют в среднем мозге перекрест с одноименными волокнами противоположной стороны и, направляясь вниз, проходят ножки мозга, мост и продолговатый мозг.

В спинном мозге волокна красноядерно-спинномозгового пути (см. рис. ) проходят в боковых канатиках белого вещества, кпереди от латерального корково-спинномозгового пути, и вступают в контакт с клетками передних столбов серого вещества спинного мозга.

Красноядерно–спинномозговой путь осуществляет связи экстрапирамидной системы и мозжечка со спинным мозгом.

7. Покрышечно-спинномозговой путь, tractus tectospinalis (см. рис. , , , ), состоит из нисходящих волокон клеток ядер холмиков крыши среднего мозга. Эти волокна в среднем мозге образуют перекрест с волокнами противоположной стороны и, направляясь вниз, проходят в спинном мозге в составе передних канатиков его белого вещества, вступая в контакт с клетками передних столбов серого вещества.

Часть перекрещенных волокон, следующих в составе покрышечно-спинномозгового пути, заканчивается на клетках ядер моста и двигательных ядер черепных нервов. Эти волокна образуют покрышечно-бульбарный путь, tractus tectobulbaris .

8. Преддверно-спинномозговой путь, tractus vestibulospinalis (см. рис. , ), образован нисходящими волокнами латерального вестибулярного ядра. Часть волокон этого пути идет в боковых канатиках белого вещества спинного мозга, образуя боковой преддверно-спинномозговой путь, который располагается вентральнее красноядерно-спинномозгового пути. Другая часть волокон направляется в передний канатик белого вещества спинного мозга и образует передний преддверно-спинномозговой путь.

Наиболее медиально расположенные волокна этого пути обозначают как пучок краевой борозды, fasciculus sulcomarginalis (см. рис. ). Волокна обоих путей вступают в контакт с клетками передних рогов.

9. Луковично-ретикулярно-спинномозговой путь, tractus bulboreticulospinalis (см. рис. ), состоит из аксонов крупных клеток ретикулярной формации продолговатого мозга. Волокна этого пути перекрещиваются, проходят в боковом канатике спинного мозга и контактируют со вставочными и двигательными нейронами передних столбов серого вещества.

10. Мосторетикулярно-спинномозговой путь, tractus pontoreticulospinalis (см. рис. ), образован аксонами клеток ретикулярной формации моста. Волокна этого пути не перекрещиваются. Они спускаются в составе переднего канатика, располагаясь в его медиальной части, и контактируют со вставочными нейронами передних серых столбов. Волокна данного пути в составе передних канатиков спинного мозга обозначают также как ретикулярно-спинномозговой путь, tractus reticulospinalis .

11. Центральный покрышечный путь, tractus tegmentalis centralis (см. рис. , , ), проходит в покрышке среднего мозга латеральнее медиального продольного пучка. Его волокна начинаются главным образом от клеток серого вещества вокруг водопровода мозга, базальных ганглиев, таламуса и красного ядра; направляясь вниз, они связывают указанные структуры с ретикулярной формацией ствола мозга и ядрами нижней оливы.

12. Оливоулитковый путь, tractus olivocochlearis , образован эфферентными волокнами улиткового нерва, иннервирующими спиральный орган. Эти волокна берут начало от верхнее-оливного ядра и направляются к спиральному органу как своей, так и противоположной стороны.

13. Оливоспинномозговой путь, tractus olivospinalis (см. рис. , ), соединяет ядра оливы с двигательными клетками передних столбов верхних шейных сегментов спинного мозга.



Для контроля над работой внутренних органов, двигательных функций, своевременного получения и передачи симпатических и рефлекторных импульсов, используются проводящие пути спинного мозга. Нарушения в передачи импульсов приводит к серьезным сбоям в работе всего организма.

В чём заключается проводящая функция спинного мозга

Под термином «проводящие пути», подразумевается совокупность нервных волокон, обеспечивающих передачу сигналов в различные центры серого вещества. Восходящие и нисходящие пути спинного мозга выполняют основную функцию – передачу импульсов. Принято различать три группы нервных волокон:
  1. Ассоциативные проводящие пути.
  2. Комиссуральные связи.
  3. Проекционные нервные волокна.
Помимо такого разделения, в зависимости от основной функции, принято различать:

Чувствительные и двигательные пути обеспечивают прочную взаимосвязь между спинным и головным мозгом, внутренними органами, мышечной системой и опорно-двигательным аппаратом. Благодаря быстрой передаче импульсов, все движения тела осуществляются согласованным образом, без ощутимых усилий со стороны человека.

Чем образованы проводящие спинномозговые пути

Основные проводящие пути образованы связками клеток - нейронов. Такое строение обеспечивает необходимую скорость передачи импульсов.

Классификация проводящих путей зависит от функциональных особенностей нервных волокон:

  • Восходящие проводящие пути спинного мозга – считывают и передают сигналы: с кожи и слизистых человека, органов жизнеобеспечения. Обеспечивают выполнение функций опорно-двигательного аппарата.
  • Нисходящие проводящие пути спинного мозга – передают импульсы непосредственно рабочим органам тела человека – мышечным тканям, железам и т.д. Соединены непосредственно с корковой частью серого вещества. Передача импульсов происходит через спинномозговую нейронную связь, к внутренним органам.

Спинной мозг имеет двойное направление проводящих путей, что обеспечивает быструю импульсную передачу информации от контролируемых органов. Проводниковая функция спинного мозга осуществляется благодаря наличию эффективной передачи импульсов по нервной ткани.

В медицинской и анатомической практике принято использовать следующие термины:

Где располагаются проводящие пути мозга спины

Все нервные ткани располагаются в сером и белом веществе, соединяют спинномозговые рога и кору полушарий.

Морфофункциональная характеристика нисходящих проводящих путей спинного мозга ограничивает направление импульсов только в одном направлении. Раздражение синапсов осуществляется от пресинаптической к постсинаптической мембране.

Проводниковой функции спинного и головного мозга соответствуют следующие возможности и расположение основных восходящих и снисходящих путей:

  • Ассоциативные проводящие пути – являются «мостиками», соединяющими участки между корой и ядрами серого вещества. Состоят из коротких и длинных волокон. Первые, находятся в пределах одной половины или доли мозговых полушарий.
    Длинные волокна способны передавать сигналы через 2-3 сегмента серого вещества. В спинномозговом веществе нейроны образуют межсегментарные пучки.
  • Комиссуральные волокна – образуют мозолистое тело, соединяющее новообразованные отделы спинного и головного мозга. Расходятся лучистым способом. Расположены в белом веществе мозговой ткани.
  • Проекционные волокна – место расположения проводящих путей в спинном мозге позволяет импульсам максимально быстро достигать коры полушарий. По характеру и функциональным особенностям, проекционные волокна делятся на восходящие (афферентные пути) и нисходящие.
    Первые разделяют на экстерорецептивные (зрение, слух), проприорецептивные (двигательные функции), интерорецептивные (связь с внутренними органами). Рецепторы располагаются между позвоночным столбом и гипоталамусом.
К нисходящим проводящим путям спинного мозга относятся:

Анатомия проводящих путей достаточно сложна для человека, не имеющего медицинского образования. Но нейронная передача импульсов и является тем, что делает организм человека единым целым.

Последствия повреждений проводящих путей

Чтобы понять нейрофизиологию сенсорных и двигательных путей, следует немного познакомиться с анатомией позвоночника. Спинной мозг имеет структуру, во многом напоминающую цилиндр, окруженный мышечной тканью.

Внутри серого вещества проходят проводящие пути, контролирующие работу внутренних органов, а также двигательные функции. Ассоциативные проводящие пути отвечают за болевые и тактильные ощущения. Двигательные – за рефлекторные функции организма.

В результате травмы, пороков развития или заболеваний спинного мозга, проводимость может снизиться или полностью прекратиться. Происходит это по причине отмирания нервных волокон. Для полного нарушения проводимости импульсов спинного мозга характерна парализация, отсутствие чувствительности конечностей. Начинаются сбои в работе внутренних органов, за которые отвечает поврежденная нейронная связь. Так, при поражении нижней части спинного мозга, наблюдается недержание мочи и самопроизвольная дефекация.

Рефлекторная и проводниковая деятельность спинного мозга нарушается сразу после возникновения дегенеративных патологических изменений. Происходит отмирание нервных волокон, тяжело поддающихся восстановлению. Болезнь быстро прогрессирует и наступает грубое нарушение проводимости. По этой причине приступать к медикаментозному лечению необходимо как можно раньше.

Как восстановить проходимость в спинном мозге

Лечение непроводимости в первую очередь связано с необходимостью прекращения отмирания нервных волокон, а также устранению причин, ставших катализатором патологических изменений.

Медикаментозное лечение

Заключается в назначении препаратов, препятствующих отмиранию клеток мозга, а также достаточному кровоснабжения поврежденного участка спинного мозга. При этом учитываются возрастные особенности проводящей функции спинного мозга, а также серьезность травмы или заболевания.

Для дополнительной стимуляции нервных клеток проводится лечение электрическими импульсами, помогающее поддерживать мышечный тонус.

Хирургическое лечение

Операция по восстановлению проводимости спинного мозга затрагивает два основных направления:
  • Устранение катализаторов, ставших причиной парализации работы нейронных связей.
  • Стимуляция спинного мозга с целью восстановления потерянных функций.
Перед назначением операции проводится общее обследование организма и определение локализации дегенеративных процессов. Так как перечень проводящих путей достаточно большой, нейрохирург стремится сузить поиски с помощью дифференциальной диагностики. При тяжелых травмах крайне важно быстро устранить причины компрессии позвоночника.

Народная медицина при нарушении проводимости

Народные средства при нарушении проводимости спинного мозга, если и используются, должны применяться с особой осторожностью, чтобы не привести к ухудшению состояния пациента.

Особой популярностью пользуются:

Полностью восстановить нейронные связи после травмы достаточно сложно. Многое зависит от быстрого обращения в медицинский центр и квалифицированной помощи нейрохирурга. Чем больше времени пройдет от начала дегенеративных изменений, тем меньше шансов на восстановление функциональных возможностей спинного мозга.



Понравилась статья? Поделитесь ей
Наверх