Двигательные проводящие пути головного и спинного мозга. Действие проводящих путей. Где находятся проводящие пути

В нервной системе импульсы, возникающие при воздействии на рецепторы, передаются по отросткам с нейрона на нейрон. Это осуществляется благодаря синапсам, которые выполняют функцию смыкателя или размыкателя нейронов. Импульсы передаются только в одном направлении – от рецептора через вставочный нейрон к эфференту, что обусловлено морфофункциональными особенностями синапсов, которые проводят возбуждение только от пресинаптической мембраны к постсинаптической.

Проводящие пути – это совокупность нервных волокон, проходящих в определенных зонах белого вещества головного и спинного мозга, объединенных общностью морфологического строения и функции.

В спинном и головном мозге выделяют по строению и функции три группы проводящих путей.

Ассоциативные пути соединяют участки серого вещества, различные функциональные центры (кора мозга, ядра) в пределах одной половины мозга. Выделяют короткие и длинные ассоциативные волокна. Короткие волокна соединяют близлежащие участки серого вещества и располагаются в пределах одной доли мозга – внутридолевые пучки волокон.

Длинные ассоциативные волокна связывают участки серого вещества, расположенные на значительном расстоянии друг от друга, обычно в различных зонах. К ним относятся верхний продолговатый пучок, соединяющий кору лобной доли с теменной и затылочной, нижний продолговатый пучок, связывающий серое вещество височной доли с затылочной долей. В спинном мозге ассоциативные волокна связывают между собой нейроны, расположенные в различных сегментах. Они образуют собственные пучки спинного мозга (межсегментарные пучки), которые располагаются вблизи серого вещества. Короткие пучки перекидываются через 2-3 сегмента, а длинные пучки соединяют далеко расположенные сегменты спинного мозга.

Коммисуральные (спаечные (нервные волокна связывают нервные центры (серое вещество) правого и левого полушария большого мозга, образуют мозолистое тело (коммисуру), спайку свода и переднюю спайку, т.е. коммисуральные волокна проходят из одного полушария в другое. В мозолистом теле располагаются волокна, соединяющие новые, более молодые отделы мозга. В белом веществе полушарий волокна мозолистого тела расходятся веерообразно, образуя лучистость мозолистого тела.

Проекционные волокна соединяют нижележащие отделы с базальными ядрами и корой, и, наоборот, кору головного мозга, базальные ядра с ядрами мозгового ствола и со спинным мозгом. При помощи проекционных нервных волокон, достигающих кору большого мозга, картины внешнего мира как бы проецируются на кору, как на экран, где происходит высший анализ поступивших импульсов и сознательная их оценка.

Выделяют проекционные восходящие и нисходящие пути. Восходящие (афферентные, чувствительные) несут импульсы, идущие от органов чувств, опорно-двигательного аппарата, внутренних органов и сосудов в головной мозг, к его подкорковым и высшим центрам. По характеру проводимых импульсов восходящие проекционные пути делят на 3 группы:

1) экстерорецептивные пути – импульсы поступают от органов чувств (зрения, слуха, вкуса, обоняния), кожных покровов (болевые, температурные, осязания, давления);

2) проприорецептивные пути – импульсы поступают от органов движения, несут информацию о положении частей тела, о размахе движений;

3) интерорецептивные пути – импульсы поступают от внутренних органов, сосудов (хемо-, баро-, механорецепторы).

Экстерорецептивные проводящие пути. Проводящие пути болевой и температурной чувствительности образуют латеральный (боковой) спинно-таламический путь.

Все восходящие пути состоят из 3 нейронов:

I нейроны располагаются в органах чувств и заканчиваются в спинном мозге или в стволовой части мозга.

II нейроны располагаются в ядрах спинного или головного мозга и заканчиваются в ядрах таламуса, гипоталамуса. Эти нейроны образуют центростремительные восходящие пути.

III нейроны лежат в ядрах промежуточного мозга, для кожной и мышечно-суставной чувствительности – в ядрах таламуса, для зрительных импульсов – в коленчатом теле, для обонятельных импульсов – в сосцевидных телах. Отростки нейронов заканчиваются на клетках соответствующих корковых центров (зрительной, слуховой, обонятельной и общей чувствительности).

Рецепторы первого (чувствительного) нейрона, воспринимающего раздражения, располагаются в коже и на слизистой оболочке, а его тело лежит в спинномозговых узлах; центральный же отросток идет в составе заднего корешка в задний рог спинного мозга. Аксон второго нейрона, тело которого лежит в заднем роге, направляется на противоположную сторону спинного мозга. Через его переднюю серую спайку аксон входит в боковой канатик, где включается в состав латерального спинно-таламического пути, который поднимается до продолговатого мозга. Пучок располагается позади оливы, проходит в покрышку моста и покрышку среднего мозга. Аксоны заканчиваются, образуя синапсы на клетках, расположенных в таламусе (III нейрон). Аксоны III нейрона достигают коры полушария, его постцентральной извилины (IV слой коры), где находится корковый конец общей чувствительности. Импульсы от кожных рецепторов (рецепторы, воспринимающие чувство давления и осязания) поступают к клеткам коры в постцентральную извилину – место общей чувствительности.

Проприорецептивные проводящие пути.

Рецепторы I нейрона располагаются в мышцах, сухожилиях, связках, суставных капсулах. Тело I нейрона – в спинномозговом узле, их аксоны в составе заднего корешка, не входя в задний рог, направляются в задний канатик, а затем уходят в продолговатый мозг к тонкому и клиновидному ядрам, где заканчиваются синапсами на телах II нейронов. Аксоны II нейронов, выходящие из этих ядер, переходят на противоположную сторону, образуя медиальную петлю, проходят через покрышку моста и покрышку среднего мозга и заканчиваются в таламусе на телах третьих нейронов. Аксоны III нейронов направляются в кору постцентральной извилины, где заканчиваются в IVслое коры.

Другая часть волокон III нейронов на выходе из тонкого и клиновидного ядер направляется в нижнюю мозжечковую ножку и заканчивается в коре червя. Третья часть волокон переходит на противоположную сторону, направляется через нижнюю мозжечковую ножку к коре червя противоположной стороны.

Интерорецептивные проводящие пути.

В кору большого мозга поступают импульсы по прямым восходящим путям и из подкорковых центров. Кора (при участии сознания) управляет двигательными функциями организма непосредственно через пирамидные пути (произвольные движения). Пирамидным путь называется потому, что свое начало он берет от больших пирамидных клеток коры. Нисходящий пирамидный путь является эфферентным.

Пирамидные пути имеют двухнейронное строение. Первые нейроны – это большие пирамидные клетки, расположенные в двигательной зоне коры. Вторые нейроны входят в состав двигательных ядер черепных нервов в стволе головного мозга и двигательных ядер передних рогов спинного мозга. Они называются периферическими мотонейронами.

К пирамидным путям относятся главный двигательный (пирамидный), корково-ядерный, латеральный и передний корково-спинно-мозговой экстропирамидные пути.

Главный двигательный путь начинается от клеток V слоя коры предцентральной извилины, где расположено тело первого нейрона. Центральные отростки этих нейронов идут к двигательным ядрам черепных нервов и передним рогам спинного мозга, а от них к скелетным мышцам. В зависимости от направления и расположения волокон пирамидный путь делится на 3 части: корково-ядерный путь, идущий к ядрам черепных нервов, латеральный и передний корково-спинно-мозговой, идущие к ядрам передних рогов спинного мозга.

Корково-ядерный путь начинается от клеток, залегающих в нижней трети предцентральной извилины. Волокна этого пути переходят на противоположную сторону, к двигательным ядрам черепных нервов: III и IV пар – в среднем мозге, V, VI, VII – в мосту, IХ, Х, ХI, ХII – в продолговатом мозге, где заканчиваются синапсами на их нейронах. Аксоны двигательных нейронов указанных ядер выходят из мозга в составе соответствующих черепных нервов и направляются к скелетным мышцам человека.

Экстропирамидные проводящие пути осуществляют связь со стволом мозга и с корой больших полушарий. Кора контролирует и управляет экстропирамидной системой и является началом экстропирамидных путей, а заканчиваются они в двигательных ядрах мозгового ствола и передних рогах спинного мозга. Кора оказывает свое влияние через мозжечок, красные ядра, ретикулярную формацию, вестибулярные ядра.

В состав кортико-мосто-мозжечкового пути входят 2 нейрона. Тело клетки первого нейрона лежит в коре лобной, височной, теменной и затылочной долей. Их отростки образует корково-мостовые волокна. Они направляются к внутренней капсуле и проходят через нее. Аксоны вторых нейронов заканчиваются синапсами на клетках соответствующих ядер моста своей стороны. Эти же волокна образуют пучки поперечных волокон моста, переходящие на противоположную сторону, и через среднюю мозжечковую ножку направляются в полушарие мозжечка противоположной стороны. Мозжечок связан с красным ядром и вестибулярным аппаратом.

Таким образом, проводящие пути головного и спинного мозга объединяют организм в одно целое, обеспечивают согласованность его действий.

Совокупность аксонов нервных клеток в спинном и головном мозге, которые являются проводниками однородных импульсов, носит название проводящего пути. Все проводящие пути спинного и головного мозга подразделяются на афферентные (восходящие), или центростремительные, эфферентные (нисходящие), или центробежные, и сочетательные, или ассоциативные.

Ассоциативные нервные пути осуществляют связи между нейронами в пределах спинного мозга или той или иной части головного мозга, не выходя за пределы производных каждого мозгового пузыря.

Афферентные, или центростремительные, нервные пути (рис. ) проводят импульсы от экстеро-, проприо- и интерорецепторов к мозжечку, таламусу, оливам и крыше среднего мозга. Каждый из этих путей проводит импульсы от определенного вида рецепторов. В спинном мозге восходящие пути образованы аксонами клеток, залегающих в спинномозговых узлах, или аксонами клеток, образующих ядра задних рогов спинного мозга. Указанные аксоны в составе одних путей проходят в той половине спинного мозга, с которой связаны рецепторы этих путей, в составе других – переходят в другую половину спинного мозга, т. е. происходит перекрест. В головном мозге восходящие пути состоят из аксонов клеток чувствительных ядер черепных нервов. Эти аксоны по выходе из ядра обычно совершают перекрест – переходят на противоположную сторону.

На пути к мозжечку или ядрам области таламуса центробежные импульсы проходят два нейрона: афферентный, лежащий в периферическом ганглии, и вставочный – в спинном мозге или стволе мозга (продолговатый мозг, мост).

Достигнув области таламуса, восходящие пути заканчиваются на нервных клетках его ядер. В последних локализуются тела третьих нейронов восходящих путей, по которым центростремительные импульсы достигают коры головного мозга.

Участки коры головного мозга, к которым подходят восходящие пути (от органов зрения, вкуса, слуха, обоняния, кожи, внутренних органов), носят название корковых отделов анализаторов: зрительного, вкусового, слухового, обонятельного, кожного, внутреннего (интерорецептивного) и мышечного (двигательного).

Таким образом, в состав анализатора входят афферентные нейроны, нейроны спинного мозга и ствола мозга, а также все клетки коры, участвующие в реакции на импульсы, вызванные раздражением рецепторов.

Эфферентные, или центробежные, пути (рис. , ) представляют собой следующее:

  1. совокупность аксонов определенного вида клеток коры полушарий большого мозга, которые передают нервные импульсы клеткам двигательных ядер черепных нервов или клеткам ядер передних рогов (столбов) спинного мозга;
  2. совокупность аксонов клеток базальных ядер полушарий большого мозга и ряда ядер ствола, передающих нервные импульсы к эфферентным нейронам спинного мозга и ствола головного мозга.

Первая группа волокон образует пирамидную систему, а вторая – экстрапирамидную систему путей.

Имеются также эфферентные пути вегетативной (автономной) нервной системы, которые из области гипоталамуса передают импульсы на эфферентные нейроны вегетативной (автономной) нервной системы.

Как пути экстрапирамидной системы, так и пути вегетативной (автономной) нервной системы находятся под влиянием коры полушарий большого мозга, которое обеспечивается наличием пучков нервных волокон, соединяющих кору полушарий с базальными ядрами, гипоталамусом и другими ядрами этих систем.

Рис. 950. Ядра анализаторов в коре большого мозга.

Корковый отдел каждого анализатора состоит из ядра, занимающего определенный участок в коре головного мозга (рис. ), и рассеянной части – нервных клеток, которые находятся за пределами этих участков.

Ядра двигательного анализатора локализуются в предцентральной извилине, задних отделах средней и нижней лобных извилин. В верхнем отделе предцентральной извилины и в парацентральной дольке находятся корковые отделы двигательных анализаторов мышц нижней конечности, ниже – мышц таза, брюшной стенки, туловища, верхних конечностей, шеи и, наконец, в самом нижнем отделе – головы. В заднем отделе средней лобной извилины расположен корковый отдел двигательного анализатора сочетанного поворота головы и глаз . Здесь находится и двигательный анализатор письменной речи , имеющий отношение к произвольным движениям, связанным с написанием букв, цифр и других знаков. Задний отдел нижней лобной извилины является местом расположения ядра двигательного анализатора устной речи .

Корковый отдел обонятельного анализатора (и вкуса) находится в крючке височной доли, зрительного – занимает кору края шпорной борозды (затылочная доля), слухового – в коре средней части верхней височной извилины. В задней части верхней височной извилины расположен слуховой анализатор речевых сигналов (контроль своей и восприятие чужой речи). Зрительный анализатор письменных знаков локализуется в коре угловой извилины.

Корковый отдел анализатора общей чувствительности : температурной, болевой, осязательной, мышечно-суставной – располагается в постцентральной извилине; проекция отдельных частей тела здесь такая же, как и в двигательном анализаторе. В верхней теменной дольке имеется область коры, обеспечивающая функцию узнавания предметов на ощупь (стереогноз) , а в нижней теменной дольке – двигательный анализатор, ответственный за воспроизведение усвоенных в течение жизни координированных движений (праксия, у правшей – слева).

Корковые концы анализаторов связаны с их периферическими отделами (с рецепторами) системой проводящих путей головного и спинного мозга и отходящих от них нервов.

Системы нервных волокон, проводящих импульсы от кожи и слизистых оболочек, внутренних органов и органов движения к различным отделам спинного и головного мозга, в частности к коре полушарий большого мозга, называются восходящими, или чувствительными, афферентными, проводящими путями.

Системы нервных волокон, передающих импульсы от коры или нижележащих ядер головного мозга через спинной мозг к рабочему органу (мышце, железе и др.), называются двигательными, или нисходящими, эфферентными, проводящими путями.

Проводящие пути образованы цепями нейронов, причем чувствительные пути обычно состоят из трех нейронов, а двигательные - из двух. Первый нейрон всех чувствительных путей располагается всегда вне мозга, находясь в спинномозговых узлах или чувствительных узлах черепных нервов. Последний нейрон двигательных путей всегда представлен клетками передних рогов серого вещества спинного мозга или клетками двигательных ядер черепных нервов.

Чувствительные пути . Спинной мозг проводит четыре вида чувствительности: тактильную (чувство прикосновения и давления), температурную, болевую и проприоцептивную (от рецепторов мышц и сухожилий, так называемое суставно-мышечное чувство, чувство положения и движения тела и конечностей).

Основная масса восходящих путей проводит проприоцептивную чувствительность. Это говорит о важности контроля движений, так называемой обратной связи, для двигательной функции организма.

Путь болевой и температурной чувствительности - латеральный спиноталамический путь. Первым нейроном этого пути являются клетки спинномозговых узлов. Периферические отростки их входят в состав спинномозговых нервов. Центральные отростки образуют задние корешки и идут в спинной мозг, оканчиваясь на клетках задних рогов (2-й нейрон). Отростки вторых нейронов через комиссуру спинного мозга переходят на противоположную сторону (образуют перекрест) и поднимаются в составе бокового канатика спинного мозга в продолговатый мозг. Там они примыкают к чувствительной медиальной петле и идут через продолговатый мозг, мост и ножки мозга к латеральному ядру таламуса, где переключаются на 3-й нейрон. Отростки клеток ядер таламуса образуют таламокортикальный пучок, проходящий через заднюю ножку внутренней капсулы к коре постцентральной извилины (область чувствительного анализатора). В результате того, что волокна по пути перекрещиваются, импульсы от левой половины туловища и конечностей передаются в правое полушарие, а от правой половины - в левое.

Передний спиноталамический путь состоит из волокон, проводящих тактильную чувствительность, он проходит в переднем канатике спинного мозга.


Пути мышечно-суставной (проприоцептивной) чувствительности направляются к коре полушарий большого мозга и в мозжечок, который участвует в координации движений.

К мозжечку идут два спиномозжечковых пути - передний и задний. Задний спиномозжечковый путь (Флексига) начинается от клетки спинномозгового узла (1-й нейрон). Периферический отросток входит в состав спинномозгового нерва и заканчивается рецептором в мышце, капсуле суставов или связках. Центральный отросток в составе заднего корешка входит в спинной мозг и заканчивается в клетках ядра, расположенного у основания заднего рога (2-й нейрон). Отростки вторых нейронов поднимаются в дорсальной части бокового канатика этой же стороны и через нижние ножки мозжечка идут к клеткам коры червя мозжечка. Волокна переднего спиномозжечкового пути (Говерса) образуют перекрест дважды; в спинном мозге и в области верхнего паруса, а затем через верхние ножки мозжечка достигают клеток коры червя мозжечка.

Проприоцептивный путь к коре больших полушарий представлен двумя пучками: нежным (тонким) и клиновидным. Нежный пучок (Голля) проводит импульсы от проприорецепторов нижних конечностей и нижней половины тела и лежит медиально в заднем канатике. Клиновидный пучок (Бурдаха) примыкает к нему снаружи и несет импульсы от верхней половины туловища и от верхних конечностей. Второй нейрон этого пути лежит в одноименных ядрах продолговатого мозга. Их отростки образуют перекрест в продолговатом мозге и соединяются в пучок, называемый чувствительной медиальной петлей. Она доходит до латерального ядра таламуса (3-й нейрон). Отростки третьих нейронов, через внутреннюю капсулу, направляются в чувствительную и, частично, двигательную зоны коры.

Двигательные пути представлены двумя группами .

1. Пирамидные (кортикоспинальный и кортикоядерный, или кортикобульбарный) пути, проводящие импульсы от коры к двигательным клеткам спинного и продолговатого мозга, являющиеся путями произвольных движений.

2. Экстрапирамидные, рефлекторные двигательные пути, входящие в состав экстрапирамидной системы.

Пирамидный, или кортикоспинальный путь начинается от больших пирамидных клеток (Беца) коры верхних 2/3 предцентральной извилины и околоцентральной дольки, проходит через внутреннюю капсулу основание ножек мозга, основание моста, пирамиды продолговатого мозга. На границе со спинным мозгом он разделяется на боковой пучок и передний пирамидный пучки. Боковой (большой) образует перекрест и спускается в боковом канатике спинного мозга, заканчиваясь на клетках переднего рога. Передний не перекрещивается и идет в переднем канатике. Отростки клеток переднею рога образуют передний корешок, двигательную порцию спинномозгового нерва и заканчиваются в мышце двигательным окончанием.

Кортико - ядерный путь начинается в нижней трети прецентральной извилины, идет через колено (изгиб) внутренней капсулы и заканчивается на клетках двигательных ядер черепных нервов противоположной стороны. Отростки клеток двигательных ядер образуют двигательную порцию соответствующего нерва.

К рефлекторным двигательным путям (экстрапирамидным) относятся красноядерно-спинномозговой (руброспинальный) путь - от клеток красного ядра среднего мозга, тектоспинальный путь - от ядер холмиков пластинки крыши среднего мозга (четверохолмия), связанный со слуховыми и зрительными восприятиями, и вестибулоспинальный - от вестибулярных ядер из ромбовидной ямки, связанный с поддержанием равновесия тела.

Конечный мозг (полушария большого мозга, достигшие своего наивысшего развития у человека), справедливо считается самым сложным и самым удивительным созданием природы.

Функции этого отдела центральной нервной системы настолько отличаются от функций ствола и спинного мозга, что они выделяются в особую главу физиологии, называемую высшей нервной деятельностью. Этот термин введен И. П. Павловым. Деятельность нервной системы, направленную на объединение и регуляцию всех органов и систем организма, И. П. Павлов назвал низшей нервной деятельностью .

Под высшей нервной деятельностью он понимал поведение, деятельность, направленную на приспособление организма к изменяющимся условиям внешней среды, на уравновешивание с окружающей средой. В поведении животного, в его взаимоотношениях с окружающей средой ведущую роль играет конечный мозг, орган сознания, памяти, а у человека - орган умственной деятельности, мышления.

Большие достижения И. П. Павлова в области изучения функций головного мозга объясняются тем, что он доказал рефлекторную природу деятельности коры и открыл присущий только ей новый, качественно высший тип рефлексов, а именно условные рефлексы. Открыв основной механизм деятельности коры полушарий большого мозга, он тем самым создал плодотворный, прогрессивный метод изучения ее функций - метод условных рефлексов. Как выяснилось в дальнейшем, условные рефлексы есть те элементарные акты, те "кирпичики", из которых строится психическая деятельность, или поведение, человека.

Значение полушарий у различных животных до И. П. Павлова изучали путем хирургического удаления их. Результаты удаления полушарий головного птиц и собак показали, что вегетативные функции - кровообращение, дыхание, пищеварение и др., существенно не нарушаются. При тщательном уходе животное живет долго. Нарушается его связь с внешней средой. На непосредственно действующие раздражители - укол булавкой, раздражение слизистой оболочки рта пищей - возникает вполне адекватная реакция: лапа отдергивается, пища проглатывается, т. е. у животного сохраняются врожденные безусловные рефлексы. Безвозвратно утрачиваются все приобретенные реакции поведения, все выработанные в процессе индивидуальной жизни условные рефлексы.

Для изучения локализации (места нахождения) функций в коре полушарий большого мозга, или, иными словами, значения отдельных зон коры, применяют различные методы: частичное удаление коры, электрическое и химическое раздражение, запись биотоков мозга и метод условных рефлексов.

Метод раздражения позволил установить в коре следующие зоны: двигательные (моторные), чувствительные (сенсорные) и немые, которые теперь называют ассоциативными зонами.

Двигательные проводящие пути спинного и головного мозга.

Чувствительные проводящие пути спинного и головного мозга.

48. Конечный мозг. Полушария головного мозга. Доли, бороздил, извилины.
Образован 2 полушариями, разделёнными между собой продольной щелью.
Извилина большого мозга
Доля большого мозга
Продольная щель большого мозга
Поперечная щель большого мозга
Латеральная ямка большого мозга
Верхний (верхнемедиальный) край
Нижний (нижнелатеральный) край
Медиальный (нижнемедиальный) край
Пограничная щель
Предцентральная борозда
Верхняя и нижняя височные борозды
Постцентральная борозда
Поперечная затылочная борозда
Внутритеменная борозда

49.Локализация функций в коре полушарий большого мозга.

50. Двигательные черепные нервы, области их иннервации.
Черепны́е не́рвы (черепномозговые нервы, nervi craniales) - двенадцать пар нервов, отходящих от ствола мозга. Их обозначают римскими цифрами по порядку их расположения, каждый из них имеет собственное название.
§ I пара - обонятельный нерв (лат nervus olfactorius)
§ II пара - зрительный нерв (лат nervus opticus)
§ III пара - глазодвигательный нерв (лат nervus oculomotorius)
§ IV пара - блоковый нерв (лат nervus trochlearis)
§ V пара - тройничный нерв (лат nervus trigeminus)
§ VI пара - отводящий нерв (лат nervus abducens)
§ VII пара - лицевой нерв (лат nervus facialis)
§ VIII пара - преддверно-улитковый нерв (лат nervus vestibulocochlearis)
§ IX пара - языкоглоточный нерв (лат nervus glossopharyngeus)
§ Х пара - блуждающий нерв (лат nervus vagus)
§ XI пара - добавочный нерв (лат nervus accessorius)
§ XII пара - подъязычный нерв (лат nervus hypoglossus)
Обонятельные и зрительные нервы развиваются из выпячиваний переднего мозгового пузыря и состоят из аксонов нейронов, которые располагаются в слизистой оболочке полости носа(орган обоняния) или в сетчатке
глаза. Остальные чувствительные нервы образуются путем выселения из формирующегося головного мозга молодых нервных клеток, отростки которых образуют чувствительные нервы или чувствительные (афферентные) волокна смешанных нервов. Двигательные черепные нервы сформировались из двигательных (эфферентных) нервных волокон, являющихся отростками клеток двигательных ядер, залегающих в стволе головного мозга. Формирование черепных нервов в филогенезе связано с развитием висцеральных дуг и их производных, органов чувств и редукцией сомитов в области головы.



51.Смешанные черепные нервы, области их иннервации.
Смешанными черепными нервами являются тройничные, лицевые, языкоглоточные и блуждающие нервы. Тройничные нервы (V пара) имеют по два корешка, выходящих из моста – чувствительный и двигательный. Чувствительный корешок образован центральными отростками клеток, находящихся в узле тройничного нерва, расположенного у вершины пирамиды височной кости. Узел тройничного нерва является аналогом чувствительных спинномозговых ганглиев, в нём также расположены чувствительные псевдоуниполярные нейроны. В составе двигательного корешка, идут отростки клеток двигательного ядра тройничного нерва. Каждый тройничный нерв образует три крупные ветви: первую, вторую и третью. Первая и вторая ветви – чувствительные, они содержат периферические отростки псевдоуниполярных клеток узла тройничного нерва. Третья ветвь состоит из чувствительных и двигательных волокон. Первая ветвь – глазной нерв через верхнюю глазничную щель проходит в глазницу, где делится на три ветви – слёзный, лобный и носоресничный нервы. Ветви этих нервов иннервируют глазное яблоко, верхнее веко, слизистую оболочку передней части полости носа и придаточных пазух (лобной, клиновидной и ячеек решётчатой кости), а также кожу лба. Вторая ветвь – верхнечелюстной нерв, проходит через круглое отверстие в крыловидно-нёбную ямку, где он отдает подглазничные скуловые нервы и узловые ветви. Верхнечелюстной нерв своими скуловыми ветвями иннервирует слизистую оболочку полости носа, твёрдого и мягкого нёба, придаточных пазух носа (верхнечелюстной и ячеек решётчатой кости), кожу скуловой области и нижнего века, носа и верхней губы, зубы верхней челюсти, твёрдую оболочку головного мозга в области средней черепной ямки. Узловые ветви верхнечелюстного нерва идут к парасимпатическому крылонёбному узлу, расположенному в одноимённой ямке костей черепа. Отростки клеток этого узла в составе ветвей верхнечелюстного нерва идут к железам слизистой оболочки полости носа и полости рта, а также к слёзной железе.

52. Ствол мозга, его отделы и функции.
В ствол всегда включают продолговатый мозг, варолиев мост, а также средний мозг. Часто в него включают мозжечок, иногда - промежуточный мозг.
В стволе мозга сохраняется тот же принцип локализации афферентов и эфферентов, что и в спинном мозге. Роль чувствительных и моторных корешков берут на себя черепномозговые нервы. В стволе появляются кроме исходных четырёх компонентов также т.наз. «специальные» афференты и эфференты, обслуживающие производные жаберных дуг. Специальные афференты (SSA) представлены VIII парой - n. vestibulocochlearis, обслуживающей специфические рецепторы внутреннего уха. Специальные висцеральные афференты (SVA) в стволе мозга представлены волокнами от вкусовых рецепторов (VII, IX и X нервы, и общее для них ядро одиночного пути). Специальные висцеральные эфференты (SVE) представлены нервами, иннервирующими мускулатуру, филогенетически происходящую из мускулатуры жаберных дуг первичноводных. Для человека это: жевательные мышцы (иннервация V нервом), мимические мышцы (VII), мышцы гортани и глотки (IX, X), а также грудинно-ключично-сосцевидная и трапециевидная мышцы шеи (XI нерв). В нижнем отделе ствола (продолговатый мозг) остается дорсо-вентральная ориентация компонентов, как в спинном мозге (GSA, GVA, GVE, GSE), выше по стволу ориентация меняется на латерально-медиальную и перестает быть линейной. GSA вытесняется SSA вентральнее, и также вентральнее вытесняется компонент SVE.

53. Ствол мозга. Строение продолговатого и заднего мозга.
Продолговатый мозг (Myelencephalon, Medulla oblongata) - отдел головного мозга. Встречается также традиционное название bulbus (луковица, из-за формы этого отдела). Продолговатый мозг входит в ствол головного мозга. От спинного мозга он ограничен перекрестом пирамид (Decussatio pyramidum) на вентральной стороне, на дорсальной стороне анатомической границы нет (за границу принимается место выхода первых спиномозговых корешков). От моста продолговатый мозг ограничен поперечной бороздой, медуллярными полосками (мозговые полоски, часть слуховых путей) в ромбовидной ямке. Снаружи на вентральной стороне расположены пирамиды (в них пролегает кортикоспинальный тракт - путь от коры к двигательным нейронам спинного мозга) и оливы (внутри них находятся ядра нижней оливы, связанные с поддержанием равновесия). На дорсальной стороне: тонкий и клиновидный пучки, оканчивающиеся бугорками тонкого и клиновидного ядер (переключают информацию глубокой чувствительности нижней и верхней половин тела соответственно), нижняя половина ромбовидной ямки, являющейся дном четвертого желудочка, и отделяющие ее веревочные тела, или нижние ножки мозжечка. Внутри расположены также ядра от VIII до XII (и одно из ядер VII) черепномозговых нервов, часть ретикулярной формации, медиальная петля и другие восходящие и нисходящие пути. Имеет вид усеченного конуса.

54. Ствол мозга. Строение среднего и промежуточного мозга.
Сре́дний мозг (лат. Mesencephalon) - отдел головного мозга, древний зрительный центр. Включен в ствол головного мозга.
Задний и средний мозг
Мозг человека
1. Cerebrum - большие полушария
2. Mesencephalon - средний мозг
3. Pons - мост
4. Medulla oblongata - продолговатый мозг
5. Cerebellum - мозжечок
Вентральную часть составляют массивные ножки мозга, основную часть которых занимают пирамидные пути. Между ножками находится межножковая ямка (лат. fossa interpeduncularis), из которой выходит III (глазодвигательный) нерв. В глубине межножковой ямки - заднее продырявленное вещество (лат. substantia perforata posterior).
Дорсальная часть - пластинка четверохолмия, две пары холмиков, верхние и нижние (Шаблон:Culliculi superiores & inferiores). Верхние, или зрительные холмики несколько крупнее нижних (слуховых). Холмики связаны со структурами промежуточного мозга - коленчатыми телами, верхние - с латеральными, нижние - с медиальными. С дорсальной стороны на границе с мостом отходит IV (блоковый) нерв, сразу же огибает ножки мозга, выходя на переднюю сторону. Чёткой анатомической границы с промежуточным мозгом нет, за ростральную границу принята задняя комиссура.
Внутри нижних холмиков находятся слуховые ядра, туда идет латеральная петля. Вокруг сильвиева водопровода - центральное серое вещество (лат. substantia grisea centralis).
В глубине покрышки среднего мозга (под четверохолмием) находятся ядра глазодвигательных нервов, красные ядра (лат. nuclei rubri, управление движением), черное вещество (лат. substantia nigra, инициация движений), ретикулярная формация.

55. Спинной мозг, его положение, строение, функции. Оболочки спинного мозга.
Спинной мозг (лат. Medulla spinalis) - орган ЦНС позвоночных, расположенный в позвоночном канале. Принято считать, что граница между спинным и головным мозгом проходит на уровне перекрёста пирамидных волокон (хотя эта граница весьма условна). Внутри спинного мозга имеется полость, называемая центральным каналом (лат. Canalis centralis). Спинной мозг защищён мягкой, паутинной и твёрдой мозговыми оболочками. Пространства между оболочками и спинномозговым каналом заполнены спинномозговой жидкостью. Пространство между внешней твёрдой оболочкой и костью позвонков называется эпидуральным и заполнено жиром и венозной сетью.
Внешнее строение.
Спинной мозг (лат. medulla spinalis) имеет по сравнению с головным мозгом относительно простой принцип строения и выраженную сегментарную организацию. Он обеспечивает связи головного мозга с периферией и осуществляет сегментарную рефлекторную деятельность.
Залегает спинной мозг в позвоночном канале от верхнего края I шейного позвонка до I или верхнего края II поясничного позвонка, повторяя до известной степени направление кривизны соответствующих частей позвоночного столба. У плода 3 мес он оканчивается на уровне V поясничного позвонка, у новорожденного - на уровне III поясничного позвонка.
Спинной мозг без резкой границы переходит в продолговатый мозг у места выхода первого шейного спинномозгового нерва. Скелетотопически эта граница проходит на уровне между нижним краем большого затылочного отверстия и верхним краем I шейного позвонка.
Внизу спинной мозг переходит в мозговой конус (лат. conus medullaris), продолжающийся в концевую (спинномозговую) нить (лат. filum terminale (spinale)), которая имеет поперечник до 1 мм и является редуцированной частью нижнего отдела спинного мозга. Концевая нить, за исключением её верхних участков, где есть элементы нервной ткани, представляет собой соединительнотканное образование. Вместе с твёрдой мозговой оболочкой она проникает в крестцовый канал и прикрепляется у его конца. Та часть концевой нити, которая располагается в полости твёрдой мозговой оболочки и не сращена с ней, называется внутренней концевой нитью (лат. filum terminale internum), остальная её часть, сращённая с твёрдой мозговой оболочкой, - это наружная концевая нить (лат. filum terminale externum). Концевая нить сопровождается передними спинномозговыми артериями и венами

56. Образование спинномозговых нервов. Их ветви.

57. Грудные спинномозговые нервы, их ветви, области иннервации.

58. Сегмент спинного мозга и его строение. Рефлекс, рефлекторная дуга.

59. Шейное сплетение. Его ветви, области иннервации.

60. Плечевое сплетение. Короткие ветви, области иннервации.

61. Иннервация мышц плеча и предплечья.

62. Иннервация мышц груди и живота

Начало: наружная поверхность V-VII ребер. Прикрепление: наружная губа подвздошного гребня, лобковый симфиз, белая линия живота, нижний край апоневроза между верхней передней подвздошной остью и лобковым бугорком образует паховую связку. Функция: поворачивает туловище в противоположную сторону. При двустороннем сокращении опускает ребра и сгибает позвоночник. Инн: Кровоснабжение:(внутренняякосаямышцаживота).Начало: промежуточная линия подвздошного гребня, паховая связка, пояснично-грудная фасция. Прикрепление: хрящи нижних ребер, бела линия живота. Функция: поворот туловища в свою сторону. При двустороннем сокращении опускает ребра и сгибает позвоночник. Инн: (поперечная)Начало: внутренняя поверхность VI-XII ребер, внутренняя губа подвздошного гребня, пояснично-грудная фасция, латеральная треть паховой связки. Прикрепление: белая линия живота. Функция: при двустороннем сокращении уменьшает размеры брюшной полости.Мышцы передней стенки живота. (прямая).Начало: лобковый гребень, лобковый симфиз. Прикрепление: хрящи V-VII ребер, мечевидный отросток грудины. Функция: тянет ребра и грудину вниз (опускает грудную клетку), сгибает позвоночник. При фиксированной грудной клетке поднимает таз.(пирамидальная).Начало: лобковый гребень, вплет. в белую линию живота. Функция: натягивает белую линию живота.

Иннервация мышц спины

Мышцы, прикрепляющиеся на поясе верхней конечности и плече: а) трапециевидная мышца, жаберного происхождения: переместилась на туловище с головы и потому иннервируется XI черепным нервом, п. ; б) широчайшая мышца спины, трункопетальная: переместилась на туловище с верхней конечности и потому иннервируется из плечевого сплетения; трункофугальные: переместились с туловища на пояс верхней конечности, иннервируются от коротких ветвей плечевого сплетения. 2. Мышцы, прикрепляющиеся на ребрах: ; обе эти мышцы - производные вентральной мускулатуры туловища, сместившиеся кзади. Иннервация их происходит от передних ветвей спинномозговых нервов, . Б. Глубокие мышцы. В процессе филогенеза мышцы, обслуживающие осевой скелет, возникают, как и скелет, первыми, поэтому и в онтогенезе человека они появляются раньше всего и лежат глубже, сохраняя примитивное метамерное строение. По своему происхождению они делятся следующим образом: 1. Аутохтонные мышцы, возникшие из дорсальных отделов мио-томов, иннервируемые поэтому задними ветвями спинномозговых нервов. 2. Глубокие мышцы вентрального происхождения, иннервируемые поэтому передними ветвями спинномозговых нервов.

Проводящие пути головного и спинного мозга объединены общей системой нервных волокон, обеспечивающих функциональность мозга, как отдельно, так и между собой. Благодаря работе проводящих путей обеспечивается интегративная работа ЦНС, взаимосвязь с внешними компонентами и нормализация организма в целом.

Действие проводящих путей

Спинной мозг обладает 2 видами проводящих путей (восходящие и нисходящие). Они способствуют передаче нервного сигнала к центрам расположения серого вещества для нормализации нервной деятельности.

К функции восходящих проводящих путей относится обеспечение выполнения движений тела, восприятие температурного режима, боли, тактильной восприимчивости.

Нисходящие проводящие пути спинного мозга обеспечивают скоординированность движений с сохранением равновесия. Кроме того, они ответственны за рефлексы, тем самым обеспечивая импульсную передачу к мышцам и мозговым оболочкам, что позволяет быстро передавать импульсы и осуществлять согласованное движение тела.

Классификация спинномозговых путей

Основная часть проводящих путей образована нейронами, что позволяет классифицировать их по функциональным особенностям нервных волокон:

  • комиссуральная связь;
  • ассоциативные проводящие пути;
  • проекционные волокна.

Нервные ткани располагаются в белом и сером веществе мозга и соединяют кору полушария и спинномозговые рога. Морфофункциональность проводящих нисходящих путей резко ограничивает передачу импульсом в одном направлении.


Основные восходящие спинномозговые пути

Проводниковая функция сопровождается следующими возможностями:

  • Ассоциативные пути – являются своего рода «мостом», который соединяет участки между ядром и корой мозгового вещества. Ассоциативные пути состоят из длинных (передача сигнала происходит в 2-3 сегментах мозгового вещества) и коротких (находящихся в 1 части полушария).
  • Комиссуральные пути – состоят из мозолистого тела, которое соединяет новые отделы в спинном и головном мозге, и расходятся в стороны в виде лучей.
  • Проекционные волокна – по функциональности могут быть афферентными и нисходящими. Место расположения этих волокон позволяет импульсу максимально быстро достигнуть коры полушария.


Проводниковая функция спинного мозга определяется нисходящими и восходящими путями

Помимо такой классификации, в зависимости от основных функций выделяются следующие формы проводящих путей:

  • Главной системой нервных волокон является корково-спинномозговой путь передачи импульса, который отвечает за двигательную активность. В зависимости от направления он разделяется на латеральную, корково-ядерную и корково-спинномозговую латеральную систему.
  • При проекционно-нисходящей нервной системе, которая начинается в корке среднего полушария и проходит через его канатик и ствол, заканчиваясь в передних рогах позвоночного столба, отмечается присутствие покрышечно-спинномозгового пути передачи импульса.
  • Диагностирование преддверно-спинномозгового пути нормализует работу в вестибулярном аппарате. При этом нервные ткани проходят в передней части спинномозгового канатика, начинаясь с латерального ядра в области преддверно-улиткового нерва.
  • Проведение нервного импульса от мозгового полушария к серому веществу и улучшение мышечного тонуса принадлежит ретикулярно-спинномозговому пути развития.

Важно помнить, что проводящие пути объединяются совокупностью всех нервных окончаний, которые обеспечивают поступление сигнала в различные отделы мозга.

Последствия спинномозгового повреждения

Патологические изменения в функции проводимости способны привести к нарушению функциональности организма, появлению болей, недержанию мочи и т.д. В результате получения различных видов травм, спинномозговых заболеваний и пороков развития возможно снижение или полное прекращение проводимости нервных рецепторов.


При нарушении импульсной проводимости возникает парез нижних конечностей

Полное нарушение проводимости импульса может сопровождаться парализацией и потерей чувствительности конечностей. Кроме того, наблюдаются нарушения работы внутренних органов, за функциональность которых отвечают поврежденные нейроны. Например, при поражениях нижней спинномозговой части возможна самопроизвольная дефекация.

В зависимости от тяжести повреждения спинномозговых нервов после получения травмы или в результате заболевания, возможны следующие проявления:

  • развитие застойной пневмонии;
  • образование пролежней и трофических язв;
  • инфекции мочевыводящих путей;
  • синдром Спастика (патологическое сокращение парализованных мышц), сопровождающийся болью, тугоподвижностью конечности и образованием контрактур;
  • септическое заражение крови;
  • нарушение поведенческих реакций (дезориентация, пугливость, заторможенная реакция);
  • психологическое изменение, проявляющееся резкими колебаниями в настроении, депрессивным состоянием, беспричинным плачем (смехом), бессонницей и т.д.

Нарушение проводимости и рефлекторной деятельности наблюдается сразу после выявления дегенеративного патологического изменения. При этом происходит некроз нервных клеток, что приводит к ускоренному прогрессированию болезни, требующего незамедлительного лечения. Последствия такого состояния определяются тяжестью негативной симптоматики и тем, какие именно клетки были повреждены.

Методы восстановления проходимости спинного мозга

Все лечебные мероприятия в первую очередь направлены на прекращение клеточного некроза и устранение факторов, которые явились катализаторами такого состояния.

Медикаментозная терапия предусматривает применение лекарственных препаратов, которые препятствуют отмиранию мозговых клеток и обеспечивают достаточное кровоснабжение поврежденных участков в спинном мозге. При этом обязательно следует учитывать возрастную категорию пациента и серьезность поражения. Кроме того, для того, чтобы обеспечивать дополнительную стимуляцию нервных клеток, рекомендуется использование электрических импульсов, которые поддерживают тонус мышц.

При необходимости проводится хирургическое вмешательство для восстановления проводимости, которое затрагивает 2 направления: удаление катализатора и стимулирование спинного мозга для обеспечения восстановления утраченной функции.


Операция по восстановлению проводимости выполняется опытными нейрохирургами с использованием самых современных способов наблюдения за процессом

До начала операции выполняется глубокое диагностическое обследование пациента, позволяющее выявить локализацию дегенеративного процесса, после чего нейрохирурги сужают операционное поле. При тяжелом течении симптоматики действие врача в первую очередь направлено на устранение компрессии, которая спровоцировала спинальный синдром позвоночника.

Помимо оперативного и терапевтического лечения, нередко используется апитерапия, траволечение и гирудотерапия, которые оказывают положительное воздействие на структурные проводящие пути позвоночного столба и головного мозга. Однако следует учитывать, что во всех случаях требуется обязательная врачебная консультация.

Необходимо учитывать, что восстановление нейронной связи после различного рода негативных воздействий требует длительного лечения. В этом случае большое значение имеет раннее обращение за высококвалифицированной помощью. В противном случае значительно снижаются шансы на восстановление функциональности спинного мозга. Это указывает на то, что проводящие пути в головном и спинном мозге тесно взаимодействуют друг с другом, объединяя весь организм, что обеспечивает единство действий.



Понравилась статья? Поделитесь ей
Наверх