Нервные центры обладают. Дивергенция и конвергенция возбуждения. Проще и сложнее

Нервный центр – это совокупность нейронов, обеспечивающих регуляцию какого-либо конкретного физиологического процесса или функции.

Нервный центр в узком смысле – это совокупность нейронов, без которых данная конкретная функция не может регулироваться. Например, без нейронов дыхательного центра продолговатого мозга дыхание прекращается. Нервный центр в широком смысле - это совокупность нейронов, которые участвуют в регуляции конкретной физиологической функции, но не являются строго обязательными для ее осуществления! Например, в регуляции дыхания кроме нейронов продолговатого мозга участвуют нейроны пневмотаксического центра варолиевого моста, отдельные ядра гипоталамуса, кора больших полушарий и другие образования головного мозга.

Все нейроны нервного центра разделяют на 2 неравные по количеству и качеству группы.

Первая группа – нейроны центральной зоны . Это наиболее возбудимые нейроны, которые возбуждаются в ответ на поступление порогового (для нервного центра) сигнала. Таких нейронов около 15-20%, и они не обязательно располагаются в середине нервного центра, как это изображено на рис.1. Особенностью их является то, что они имеют на своем теле больше синаптических терминалей от сенсорных и вставочных нейронов.

Вторая группа – нейроны подпороговой каймы. Это менее возбудимые нейроны, которые не возбуждаются в ответ на поступление пороговых им-пульсов, но при действии более сильных раздражителей они возбуждаются и включаются в работу нервного центра, обеспечивая ее усиление. Таких нейронов большинство (80-85%), и они не обязательно располагаются на периферии нервного центра, но все имеют значительно меньше синаптических терминалей от сенсорных и вставочных нейронов по сравнению с нейронами центральной зоны.

На рис. 1 нейроны центральной зоны условно поставлены в центр внутреннего круга (А), а нейроны подпороговой каймы – в пространство между внутренним и наружным кругами (Б). Таким образом, если к нервному центру по афферентному входу (В) придет пороговый импульс, то возбудятся три нейрона центральной зоны, а на десяти нейронах подпороговой каймы потенциалы действия не возникнут, но появится местная деполяризация – возбуждающий постсинаптический потенциал (ВПСП).



От структуры нервного центра зависят его свойства, а они, в свою очередь, влияют на процесс проведения возбуждения через нервный центр, на его скорость и степень выраженности. От свойств нервных центров во многом зависит процесс распространения возбуждения по ЦНС, что имеет важное значение в интегративной деятельности организма.

Свойства нервных центров обусловлены описанной выше нейронной организацией нервного центра, а также химическим способом передачи возбуждения в синапсах. При электрическом способе передачи возбуждения нервные центры не имели бы подобных свойств.

Свойства нервных центров: 1 одностороннее проведение возбуждения; 2 задержка проведения возбуждения; 3 суммация; 4 облегчение; 5 окклюзия; 6 мультипликация; 7 трансформация; 8 последействие; 9 посттетаническая потенциация; 10 утомление; 11 тонус; 12 высокая чувствительность к изменению состояния внутренней среды организма; 13 пластичность.

1) Свойство «одностороннее проведение возбуждения» прямо связано со структурно-функциональными особенностями синапса. В синапсе медиатор выделяется из пресинаптического аппарата и поступает на постсинаптическую мембрану, на которой находятся белки-рецепторы, чувствительные к этому медиатору (они закрывают различные ионные каналы на постсинаптической мембране). Следовательно, возбуждение через синапс, а значит, и через нервный центр проходит только в одну сторону.

2) Свойство «задержка проведения возбуждения» также связано с химическим способом передачи возбуждения в синапсах. В отличие от электрического, при этом способе на передачу возбуждения в синапсе, а значит, и в нервном центре затрачивается больше времени (выделение медиатора из пресинаптического аппарата, поступление его на постсинаптическую мембрану, контакт с белками-рецепторами и т.д.), чем на проведение возбуждения по нервному волокну. Русский физиолог А.Ф. Самойлов (1924) определил, что скорость проведения возбуждения по нервному волокну в 1,5 раза больше, чем через синапс. На основании этого факта ученый высказал предположение, что в основе проведения возбуждения по нервному волокну лежат физические процессы, а в основе синаптического способа передачи – химические.

Время проведения возбуждения («синаптическая задержка») через синапсы соматической нервной системы составляет 0,5-1 мс, а через синапсы вегетативной нервной системы – до 10 мс.

3) Суммация – это возникновение возбуждения в нервном центре при поступлении к нему нескольких допороговых импульсов, каждый из которых в отдельности не может возбуждения (рис. 2). Фактически этот процесс происходит на нейронах подпороговой каймы. Различают два вида суммации: пространственную и временною .

Пространственная суммация возникает в том случае, когда к нервному центру (к его нейронам) приходят одновременно, несколько допороговых импульсов. На рисунке 2А видно, что к нейрону подпороговой каймы, имеющему пороговый потенциал 30 мВ одновременно по пяти различным афферентным входам (их аксоны обозначены сплошной линией) приходят пять импульсов, каждый из которых деполяризует мембрану нейрона на 5 мВ (то есть возникают пять отдельных ВПСП). В этом случае возбуждение нейрона не наступает, так как суммарная деполяризация мембраны нейрона составляет лишь 25 мВ (суммированный ВПСП мал для достижения КУД). Но если к нейрону придет еще один подобный импульс по шестому входу (его аксон обозначен пунктирной линией), то суммированный ВПСП будет достаточен по величине и мембрана нейрона в зоне аксонного холмика деполяризуется до критического уровня, в результате чего нейрон из состояния покоя перейдет в состояние возбуждения. На постсинаптической мембране происходит суммация ВПСП в пространстве.

Временная (последовательная) суммация возникает в том случае, когда к нейронам нервного центра по одному афферентному входу приходит не один, а серия импульсов с очень небольшими по времени межимпульсными промежутками (рис. 2Б). Два механизма временной суммации:

1) интервалы между отдельными импульсами настолько малы, что за это время медиатор, выделившийся в синаптическую щель, не успевает полностью разрушиться и вернуться в пресинаптический аппарат. В этом случае возникает постепенное накопление медиатора до критического объема, необходимого для возникновения достаточного по амплитуде ВПСП, а значит, и для возникновения ПД;

2) интервалы между отдельными импульсами настолько малы, что возникший за это время на постсинаптической мембране ВПСП не успевает исчезнуть и усиливается за счет новой порции медиатора – суммируется. На постсинаптической мембране происходит суммация ВПСП во времени.

4) Облегчение – это увеличение количества возбужденных нейронов в нервном центре (по сравнению с ожидаемым) при одновременном поступлении к нему возбуждения не по одному, а по двум или более афферентным входам. На рис. 3 рассмотрен случай, когда при отдельном раздражении первого афферентного входа возбуждается только три нейрона центральной зоны (А), а на пяти нейронах подпороговой каймы (Б) возникают ВПСП. Если раздражать отдельно только второй афферентный вход, то возбуждены будут пять нейронов (Г), а четыре нейрона подпороговой каймы (Д) не возбудятся. Раздражая и первый, и второй афферентные входы одновременно (!), мы ожидаем вовлечения в процесс возбуждения восьми нейронов. И они, естественно, будут возбуждаться, но кроме них (сверх ожидания!) могут возбуждаться еще некоторые нейроны подпороговой каймы. Это произойдет потому, что один или несколько нейронов подпороговой каймы являются общими как для первого, так и для второго афферентных входов (в нашем случае это два нейрона, обозначенные буквой В), и при одновременном поступлении возбуждения к этим нейронам дни возбудятся за счет возникновения пространственной суммации.

5) Окклюзия – это уменьшение количества возбужденных нейронов в нервной центре (по сравнению с ожидаемым) при одновременном поступлении к нему возбуждения не по одному. а по двум или более афферентным входам (рис. 4).

На рис. 4 видно, что при поступлении возбуждения только по первому афферентному входу возбуждаются четыре нейрона, а при раздражении только второго афферентного входа – пять нейронов, так как и в том, и другом случае они относятся к центральным зонам. Понятно, что при одновре­менном поступлении возбуждения по первому и второму входам мы ожидаем увидеть девять возбужденных нейронов, но на самом деле таких нейронов будет только восемь. Это произойдет потому, что нейрон, обозначенный буквой В, является общим для обоих входов и по закону «все или ничего» будет возбуждаться в любом случае независимо от того, сколько пороговых импульсов к нему прилет одновременно.

6) Мультипликационное возбуждение (мультипликация ) заключается в том, что по разветвлениям аксона вставочного нейрона возбуждение поступает одновременно не на один, а на несколько моторных нейронов (рис. 6). В связи с этим эффект на рабочем органе усиливается в несколько раз, или в работу вовлекаются не одна, а несколько рабочих структур, Это свойство особенно ярко проявляется в ганглиях автономной (вегетативной) нервной системы.

7) Трансформация ритма возбуждения – это изменение частоты импульсов на выходе из нервного центра по сравнению с частотой импульсов на входе в нервный центр.

Частота импульсов на выходе из нервного центра может быть значительно меньше, чем на входе. Говоря техническим языком, это «понижающая трансформация». Подобное явление мы уже рассматривали выше («временная суммация»).

Частота импульсов на выходе из нервного центра может быть значительно выше, чем на входе («повышающая трансформация»). Это связано с особенностями взаимосвязи вставочных нейронов:

а) наличием дублирующих цепей вставочных нейронов, связывающих сенсорные и моторные нейроны;

б) разным количеством синапсов в каждой из этих цепей.

Например, на рис.7 представлены два варианта трансформации, которые, на первый взгляд, не отличаются друг от друга, так как в том и в другом случае показаны две дополнительные цепи вставочных нейронов (кроме прямого пути), с помощью которых возбуждение может передаваться по цепи нейронов А-Б-В. Рассмотрим эти схемы.

Вариант 1. Верхняя цепь состоит из двух дополнительных вставочных нейронов, а значит, по сравнению с прямым путем передачи возбуждения с нейрона Б на нейрон В, имеет два дополнительных синапса. Поэтому возбуждение, проходя по верхней цепи, задержится на 2 мс (время синаптической задержки в одном синапсе составляет ~1 мс) и придет на нейрон В после того, как пройдет возбуждение по прямому пути. В нижней цепи три дополнительных вставочных нейрона (то есть три дополнительных синапса), значит, возбуждение будет доходить до нейрона В еще дольше, чем по верхней цепи (задержка составит 3 мс). Следовательно, по нижней цепи возбуждение на нейрон В придет после того, как пройдет возбуждение по верхней цепи. В результате на один импульс, пришедший по сенсорному нейрону А, на моторном нейроне В возникнет три потенциала действия (трансформация 1:3).

Вариант 2. В этом случае и верхняя и нижняя цепи вставочных нейронов состоят из двух дополнительных нейронов. Возбуждение по обеим цепям придет к нейрону В одновременно в виде одного потенциала действие, который появится на нейроне В только после прохождения возбуждения к нему от нейрона Б по прямому пути. В этом варианте мы тоже получим трансформацию ритма, но уже в соотношении 1:2.

8) Последействие – это продолжение возбуждения моторного нейрона в течение некоторого времени после прекращения действия раздражителя.

Сущность механизма последействия заключается в том, что по разветвлениям аксона вставочного нейрона возбуждение распространяется на соседние вставочные нейроны и по ним возвращается на первоначальный вставочный нейрон. Возбуждение как бы «запирается» в нейронной ловушке и циркулирует в ней достаточно долго (рис. 8). Наличием таких нейронных ловушек объясняют, в частности, механизм кратковременной памяти.

Другими причинами последействия могут быть:

а) возникновение высокоамплитудного ВПСП, в результате которого возникает не один, а несколько потенциалов действия то есть ответ длится большее время;

б) длительная следовая деполяризация постсинаптической мембраны, в результате чего возникают несколько потенциалов действия, вместо одного.

9) Посттетаническая потенциация (синаптическое облегчение) – это улучшение проведения в синапсах после короткого раздражения афферентных путей.

Если в качестве контроля вызвать одиночное раздражение афферентного нерва тестирующим раздражителем (рис. 9А), то на моторном нейроне мы получим ВПСП вполне определенной амплитуды (в нашем случае 5 мВ). Если после этого тот же афферентный нерв раздражать некоторое время серией частых импульсов (рис. 9Б), а потом вновь подействовать тестирующим раздражителем (рис. 9В), то величина ВПСП будет больше (в нашем случае 10 мВ). Причем она будет тем больше, чем более частыми импульсами мы раздражали афферентный нерв.

Длительность синаптического облегчения зависит от свойств синапса и характера раздражения: после одиночных стимулов оно выражено слабо, после раздражающей серии потенциация (облегчение) может продолжаться от нескольких минут до нескольких часов. Объясняется он тем, что при частом раздражении афферентного волокна в его пресинаптической терминали (окончании) накапливаются ионы кальция, а значит, улучшается выделение медиатора. Кроме того, показано, что частое раздражение нерва приводит к усилению синтеза медиатора, мобилизации пузырьков медиатора, к усилению синтеза белков-рецепторов на постсинаптической мембране и увеличению их чувтствительности. Поэтому фоновая активность нейронов способствует возникновению возбуждения в нервных центрах.

10) Утомление нервного центра (посттетаническая депрессия, синаптическая депрессия) – это уменьшение или прекращение импульсной активности нервного центра в результате длительной стимуляции его афферентными импульсами (или произвольного вовлечения его в процесс возбуждения по­средством импульсов, идущих из коры больших полушарий). Причинами утомления нервного центра могут быть:

Истощение запасов медиатора в афферентном или вставочном нейроне;

Снижение возбудимости постсинаптической мембраны (то есть мембраны моторного или вставочного нейрона) из-за накопления, например, продуктов метаболизма.

Утомляемость нервных центров продемонстрировал Н.Е. Введенский в опыте на препарате лягушки при многократном рефлекторном вызове сокращения икроножной мышцы с помощью раздражения п. tibialis и п. peroneus. В этом случае ритмическое раздражение одного нерва вызывает ритмические сокращения мышцы, приводящие к ослаблению силы ее сокращения вплоть до полного отсутствия сокращения. Переключение раздражения на другой нерв сразу же вызывает сокращение той же мышцы, что свидетельствует о локализации утомления не в мышце, а в центральной части рефлекторной дуги. Синаптическая депрессия при длительной активации центра выражается в снижении постсинаптических потенциалов.

11) Тонус нервного центра – это длительное, умеренное возбуждение нервного центра без видимо утомления Причинами тонуса могут быть:

Потоки афферентных импульсов, постоянно поступающие с неадаптирующихся рецепторов;

Гуморальные факторы, постоянно присутствующие в плазме крови;

Спонтанная биоэлектрическая активность нейронов (автоматия);

Циркуляция (реверберация) импульсов в ЦНС.

12) Нервный центр состоит из нейронов, а они очень чувствительны к изменению состава внутренней среды организма , что и отражается на свойствах нервных центров. Наиболее важными факторами, влияющими на работу нервных центров, являются: гипоксия; недостаток питательных веществ (например, глюкозы); изменение температуры; воздействие продуктов метаболизма; воздействие различных токсических и фармакологических препаратов .

Разные нервные центры имеют неодинаковую чувствительность к воздействию названных факторов. Так, нейроны коры больших полушарий наиболее чувствительны к гипоксии, недостатку глюко­зы, продуктам метаболизма; клетки гипоталамуса – к изменению температуры, содержанию глюкозы, аминокислот, жирных кислот и др.; различные участки ретикулярной формации выключаются разными фармакологическими препаратами, различные нервные центры избирательно активируются или тормозятся разными медиаторами.

13) Пластичность нервного центра означает его способность изменять при определенных обстоятельствах свои функциональные свойства. В основе этого явления лежит поливалентность нейронов нервных центров. Особенно ярко проявляется это свойство при всевозможных повреждениях ЦНС, когда организм компенсирует утраченные функции за счет сохранившихся нервных центров. Особенно хорошо свойство пластичности выражено в коре больших полушарий. Например, центральные параличи, связанные с патологией двигательных центров коры, иногда полностью компенсируются, и ранее утраченные двигательные функции восстанавливаются.

Свойства нервных центров

Нервные центры обладают большими возможностями, чем один нейрон. Это проявляется в их свойствах. Во многом эти свойства определяются наличием синапсов. Нервные центры обладают односторонностью проведения возбуждения.

Возбуждение в нервном центре проводитсяот афферентного нейрона к эфферентному. Нервный центр обладает трансформацией ритма; трансформация может быть повышающей (на один импульс нервный центр может ответить «автоматной очередью») или понижающей (в ответ на серию возбуждений нервный центр дает одиночный импульс или не отвечает вовсе). В нервном центре обнаружено последействие. Это свойство связано, вероятно, с наличием в нервных центрах нейронных цепей с положительной обратной связью и с таким свойством синапсов, как постсинаптическая потенциация. Последействие проявляется в продолжающемся рефлекторном процессе при отсутствии раздражителя, вызвавшего эту реакцию. Нервному центру характерна высокая чувствительность к недостатку кислорода. Это связано с интенсивными метаболическими процессами в нейронах. Нервный центр избирательно чувствителен к различным биологически активным веществам, ядам и другим химическим веществам. Это свойство называется хемотропностью. Хемотропность определяется специфическим набором медиаторов, ферментов, нейропептидов и других веществ, которые синтезируются системой нейронов, входящей в конкретный нервный центр. Нервные центры обладают низкой лабильностью и быстрой утомляемостью, а также замедлением проведения возбуждения через нервный центр. Эти свойства связаны с наличием в нервных центрах огромного числа синапсов. Нервные центры всегда находятся в тонусе.Тонус нервных центров (определенный уровень возбудимости) поддерживается притоком различной афферентации из периферии и поступлением возбуждения из нервных центров высших отделов ЦНС. Понижение или повышение тонуса нервных центров лежит в основе регуляции и организации функций.

5. Принципы координационной деятельности
центральной нервной системы

Принцип рефлекса

Принцип рефлекса – это универсальная и своеобразная форма взаимодействия организма со средой, происходящая при участии нервной системы. Понятие о рефлексе возникло в XVI веке в учении
Р. Декарта (1596-1650) о механической картине мира. Р. Декарт жил в эпоху расцвета механики, физики и математики. На его мировоззрение определяющее влияние оказало открытие У. Гарвеем механизма кровообращения и новаторские идеи А. Везалия о том, что носителями психики являются «животные духи», которые вырабатываются в желудочках мозга и передаются по нервам к соответствующим органам. Р. Декарт представлял нервные процессы по образцу системы кровообращения, используя существовавшие в то время принципы оптики и механики.

Под рефлексом Р. Декарт понимал движение «животных духов» от мозга к мышцам по типу отражения светового луча. Согласно его схеме внешние предметы действуют на периферические окончания расположенных внутри нервных «трубок» нервных «нитей», которые, натягиваясь, открывают клапаны отверстий, ведущих из мозга в нервы. По каналам этих нервов «животные духи» перемещаются в соответствующие мышцы, которые в результате раздуваются, и, таким образом, происходит движение. Однако, находясь под влиянием социально-исторических противоречий своей эпохи, Р. Декарт сделал серьезные уступки идеализму: сознание человека он рассматривал в виде субстанционного начала, способного воздействовать посредством мозговой шишковидной железы на подчиненные рефлекторным законам телесные процессы. Согласно Р. Декарту, тело и душа – самостоятельные субстанции. Поведение и сознание разводились, превращались в два независимых ряда явлений. В этом проявился дуализм Р. Декарта.

Биологическая концепция рефлекса была сформирована чешским анатомом и физиологом Йиржи Прохазкой (1749-1820). Свои представления о рефлексе Й. Прохазка выразил следующим образом: внешние впечатления, возникающие в чувствительных нервах, быстро распространяются по всей их длине до самого начала. Там они отражаются по определенному закону, переходят на соответствующие им двигательные нервы и по ним очень быстро направляются к мышцам, которые затем производят точные и строго ограниченные движения. Впервые термин «рефлекс» был введен в научный язык Й. Прохазкой. В отличие от Р. Декарта, Й. Прохазка утверждает монистическое представление о нервной системе, в целом относящейся к композиции «общего чувствилища», телесная часть которого локализуется в спинном мозге, а душевная – в головном.

Большой вклад в развитие рефлекторной теории сделали английский анатом и врач Чарльз Белл (1774-1842) и французский физиолог Ф. Мажанди (1783-1855). Они экспериментально показали наличие анатомической основы рефлекса. Так, Ч. Белл в 1811 году в трактате «О новой анатомии мозга» писал, что можно произвести перерезку заднего пучка нервов, исходящего из задней части спинного мозга, без конвульсивных сокращений мышц спины. Однако это становится невозможным даже при одном прикосновении кончиком ножа к переднему корешку. Переход нервного возбуждения по афферентным нервам через спинной мозг на эфферентные нервы получил название закона Белла-Мажанди. Ч. Белл создал теорию о «мышечной чувствительности» и сформулировал физиологическое обоснование циклической функции нервной системы . Между мозгом и мышцей имеется замкнутый нервный круг: один нерв передает влияние от мозга к мышце, а другой передает в мозг чувство состояния мышцы. Если круг будет разомкнут перерезкой моторного нерва, то исчезнет движение. Если же он размыкается перерезкой чувствительного нерва, пропадает ощущение самой мышцы, а вместе с тем исчезает и регуляция ее деятельности. Так, например, у женщины на одной руке была потеряна чувствительность, а на другой – способность к движению. Она могла держать ребенка на руке, потерявшей только чувствительность, до тех пор, пока на него смотрела. Как только женщина отводила взор от ребенка, сразу же возникала опасность его падения на пол.

Рефлексы спинного мозга широко использовались клиницистами, среди которых наиболее значительными фигурами были английский врач Маршал Холл и немецкий физиолог Иоганес Мюллер. Именно М. Холлу принадлежит термин «рефлекторная дуга». Согласно его учению, рефлекторная дуга состоит из афферентного нерва, спинного мозга и эфферентного нерва. М. Холл и И. Мюллер настаивали на принципиальном отличии работы спинного мозга от головного. По их мнению, рефлекторный механизм свойственен только спинному мозгу. Головной мозг оказывался все дальше от сферы влияния физиологии.

Следующий этап развития рефлекторной теории связан с работами великого русского физиолога И.М. Сеченова (1829-1905). Само понятие о рефлекторном характере нервной деятельности у И.М. Сеченова претерпело существенные изменения. Основные положения его теории заключаются в следующем.

1. Рефлекс им понимался как универсальная и своеобразная форма взаимодействия организма со средой, опирающаяся на эволюционную биологию. И.М. Сеченов поставил вопрос о существовании двух родов рефлексов. Он выделил, во-первых, рефлексы постоянные врожденные, осуществляемые низшими отделами нервной системы, которые назвал «чистыми» рефлексами; во-вторых, рефлексы головного мозга изменчивые, приобретенные в индивидуальной жизни. Последние И.М. Сеченов представлял себе одновременно и физиологическим, и психическим явлением.

Таким образом, была впервые показана неотделимость психических процессов от мозга и одновременно обусловленность психики внешним миром. Важнейшим для И.М. Сеченова было положение о единстве организма и условий внешней среды. Большое значение в становлении рефлексов он придавал факторам эволюции.

2. Физиологический субстрат рефлекторных актов характеризуется как нейродинамика, отличная от динамики других систем. Открытие центрального торможения И.М. Сеченовым в 1862 году было первым шагом к созданию им новой физиологии головного мозга. Деятельность нервных центров мыслится ученым как непрерывная динамика процессов возбуждения и торможения.

3. На первый план ставятся межцентральные координационные отношения. Физиологическому анализу начинают подвергаться высшие мозговые центры. Если до И.М. Сеченова усиление или угнетение рефлекторных реакций трактовалось усилием воли, сознания, разума, то И.М. Сеченов переводит все это на строгий физиологический язык и показывает, как центры головного мозга могут задерживать или усиливать спинальные рефлексы.

4. Функции мозговых центров трактуются в широком плане биологической адаптации. Центры влияют усиливающим или тормозным образом на движения не потому, что высвобождается заложенная в них «психическая сила», и не потому, что укорачивается или удлиняется путь прохождения нервного импульса. И.М. Сеченов вводит понятие «физиологического состояния центра», которое непосредственно связано с биологическими потребностями. Само же состояние центра, отражая характер отношений со средой, представляет собой нервный субстрат потребности. Таким образом, в учение о рефлексах вносится существенное дополнение. Реакция становится в непосредственную зависимость не только от наличных раздражений, но и от всей суммы прежних воздействий, оставивших длительно сохраняющиеся следы в нервных центрах.

5. И.М. Сеченов считает, что мышечное чувство при выполнении одного движения становится в порядке ассоциации рефлексов сигналом для другого движения. Принцип ассоциации рефлексов лежит в основе обучения человека сложным формам трудовой деятельности. Устанавливается общий характер для движений и для психической деятельности – это наличие мышечной чувствительности.

По вопросу соотношения физиологического и психического И.М. Сеченов занял совершенно определенную позицию, которая отражена в его словах: «Для нас, как физиологов, достаточно и того, что мозг есть орган души, то есть такой живой механизм, который, будучи приведен какими ни на есть причинами в движение, дает в окончательном результате тот же ряд внешних явлений, которыми характеризуется психическая деятельность».

Для большей убедительности своих взглядов И.М. Сеченову не хватало экспериментального подтверждения.

Блестящие догадки, предвидения и мысли И.М. Сеченова экспериментально подкрепил И.П. Павлов. Он создал научную концепцию условного рефлекса, которая благодаря его блестящим экспериментам была введена в строгие рамки лабораторного опыта. Вот основные элементы рефлекторной теории И.П. Павлова.

1. Прежде всего был создан лабораторный метод объективного изучения приспособительной деятельности человека и животных – метод условных рефлексов.

2. Изучая условные рефлексы на целостном организме, И.П. Павлов подчеркивал их приспособительно-эволюционный смысл для животного мира.

3. И.П. Павлов предпринял попытку локализовать сам нервный процесс замыкания нервных связей в коре головного мозга у высших животных и человека. При этом он не исключал специфического участия других отделов мозга в этом процессе.

4. И.П. Павлов констатировал наличие в коре головного мозга процесса торможения, чем подкрепил сеченовские идеи о тормозящем влиянии головного мозга.

5. Было четко сформулировано учение о физиологии анализаторов, под которыми И.П. Павлов, как и И.М. Сеченов, мыслил конструкции, состоящие из периферических рецепторов, проводящих путей и мозговых центров, вплоть до коры больших полушарий.

6. И.П. Павлов сформировал представление о коре головного мозга как мозаике из возбуждений и торможений.

7. В конце творческой жизни И.П. Павлов выдвинул принцип системности в работе коры головного мозга, способной формировать динамический стереотип деятельности, уже в какой-то мере независимый от качества внешних раздражений.

Дальнейшее развитие рефлекторного принципа происходит в работах А.А. Ухтомского и П.К. Анохина.

А.А. Ухтомский подчеркивал: «… рефлекс – это такая реакция, которая мотивируется вполне отчетливо текущей обстановкой или средой. Этим, однако, не уничтожается спонтанное действие субстрата, оно лишь ставится в определенные границы в его противоположении факторам среды, и от этого оно становится более определенным по поддержанию и значению. Рефлекс рисуется не чисто пассивным передвижением шарика под влиянием полученного им удара извне, так рефлекс мог изображаться, пока надо было подчеркнуть в особенности его мотивировку из среды. Но в полноте своей он представляется встречею во времени двух условий: с одной стороны, деятельности заготовленной, или сложившейся в самом субстрате (клетке) за предыдущую его историю, и, с другой стороны, внешних импульсов текущего момента». Принципы историзма и соотношения реактивности и активности в целостном поведении как способе разрешения противоречий, принесенные в физиологию А.А. Ухтомским, существенно обогатили рефлекторную теорию, которая окончательно избавилась от дуализма и механицизма картезианского толка, встав на твердые диалектические позиции.

П.К. Анохин рассматривал поведение как системный процесс. В основе организации поведения, согласно П.К. Анохину, лежат функциональные системы. Созданием теории функциональных систем П.К. Анохин определил дальнейшее развитие рефлекторного принципа.

Все основные формы деятельности нервной системы в сложных многоклеточных организмах животных и человека связаны с функционированием определенных групп нервных клеток – нервных центров. Нервный центр является центральным компонентом рефлекторной дуги, в нем происходит переработка информации, вырабатывается программа действия, формируется эталон результата.

Нервный центр – это совокупность нейронов, расположенных на различных уровнях ЦНС и регулирующих сложный рефлекторный процесс или функцию. В нервном центре выделяют следующие отделы: низший, или исполнительный, рабочий и высший, или регуляторный.

Низший (исполнительный ) отдел нервного центра локализован в спинном мозге и передает информацию от рабочего отдела к рабочим органам.

Рабочий отдел нервного центра – это отдел, ответственный за осуществление данной функции, как правило, находится в стволовых отделах головного мозга.

Высший (регуляторный ) отдел нервного центра расположен в коре больших полушарий мозга и регулирует активность рабочего отдела нервного центра, он вмешивается в регуляцию функций эпизодически, при необходимости корректировки автоматической деятельности рабочего отдела. Высшие отделы включаются в работу нервного центра по условно-рефлекторному механизму. Активность регуляторного (высшего) отдела нервного центра зависит от функционального состояния рабочего отдела.

Строение нервного центра можно рассмотреть на примере дыхательного центра. Исполнительный отдел дыхательного нервного центра расположен в передних рогах грудного отдела спинного мозга и транслирует приказы рабочего центра к дыхательным мышцам. Рабочий отдел представлен центрами вдоха, выдоха и пневмотаксиса, расположенными в продолговатом мозге и варолиевом мосту. Нарушение этого отдела вызывает остановку дыхания. Регуляторный (высший) отдел дыхательного центра находится в лобной доле коры больших полушарий и позволяет произвольно регулировать легочную вентиляцию (глубину и частоту дыхания). Однако эта произвольная регуляция ограничена, она зависит от функциональной активности рабочего отдела и афферентной импульсации, отражающей состояние внутренней среды (в данном случае pH крови, концентрации СО2 и О2 в крови).

Свойства нервных центров обусловлены особенностями проведения нервных импульсов через синапсы, соединяющие различные нервные клетки:

  • 1. Одностороннее проведение возбуждения – импульс проводится только в одном направлении, обратное проведение возбуждения через синапс невозможно.
  • 2. Наличие латентного периода от начала действия сигнала до проявления рефлекторного акта, так называемая синаптическая задержка. Она обусловлена тем, что на выделение и диффузию медиатора в синапсе требуется промежуток времени в 1,5–2 мс. Соответственно, чем больше нейронов в рефлекторной дуге, тем продолжительнее время рефлекса.
  • 3. Суммация возбуждений. В работе нервных центров происходят процессы пространственной и временной суммации подпороговых (недостаточных для передачи импульса через синапс) раздражений. Временная суммация наблюдается, если множество слабых импульсов приходит к нейрону по одному и тому же пути через один синапс с коротким интервалом времени. В результате их действие суммируется, приводя к генерации возбуждения. Пространственная суммация связана с суммированием подпороговых потенциалов, возникающих одновременно в разных синапсах одного нейрона. Оба вида суммации происходят в области аксонного холмика нейрона.
  • 4. Более низкая скорость передачи импульса в синапсе по сравнению с передачей его по аксону (около 50–100 импульсов в секунду, что в 5-6 раз ниже скорости передачи в аксоне).
  • 5. Утомление нервных центров – длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения. Этот процесс связан с деятельностью синапсов – в них наступает истощение запасов медиатора, уменьшаются энергетические ресурсы, снижается реакция постсинаптического рецептора на медиатор. Разные нервные центры имеют различную скорость утомления. Менее утомляемы центры вегетативной нервной системы, координирующие работу внутренних органов. Значительно более утомляемы центры соматической нервной системы, управляющие произвольной скелетной мускулатурой.
  • 6. Трансформация ритма – нервные клетки обладают свойством изменять частоту передающихся импульсов. Характер ответного разряда нейрона зависит от свойств раздражителя, а также и от функционального состояния самого нейрона (его мембранного заряда, возбудимости, лабильности). В обычных условиях – чем сильнее раздражение, тем интенсивнее проявляется ответ.
  • 7. В нервных клетках осуществляется интенсивный обмен веществ, для чего необходимо постоянное поступление достаточного количества энергии и кислорода. Особенно чувствительны к недостатку кислорода нервные клетки коры больших полушарий головного мозга: после 5-6 мин кислородного голодания они погибают, даже кратковременное ограничение мозгового кровообращения приводит у человека к потере сознания. Недостаточное снабжение кислородом легче переносят нервные клетки мозгового ствола: их функция восстанавливается через 15–20 мин после полного прекращения кровоснабжения. А функция клеток спинного мозга восстанавливается даже после 30 мин отсутствия кровоснабжения.
  • 8. Нервные центры всегда находятся в тонусе, который обеспечивается постоянно поступающими импульсами от разных структур мозга и исполнительных органов. В ответ центры посылают редкие импульсы к органам, поддерживая в них соответствующий тонус. Даже во время сна мышцы не расслабляются полностью и контролируются соответствующими центрами.
  • 9. Нервные центры чувствительны к химическим веществам (в том числе лекарственным), проникающим через гематоэицефалический барьер, и обладают специфической реакцией на различные вещества. К примеру, стрихнин возбуждает нервные центры, блокируя работу тормозных синапсов; хлороформ и эфир сначала возбуждают, а затем подавляют работу нервных центров; апоморфин возбуждает рвотный центр; цититои и лобелии возбуждают дыхательный центр; морфин его угнетает, коразол возбуждает клетки двигательной зоны коры, вызывая судороги.
  • 10. После окончания действия раздражителя активное состояние нервного центра продолжается еще некоторое время – так называемое последействие, или следовые процессы. Длительность следовых процессов различна: в спинном мозге – несколько секунд или минут, в подкорковых центрах мозга – десятки минут, часы и даже дни, в коре больших полушарий могут сохраняться до нескольких десятков лет. Следовые процессы имеют важное значение в понимании механизмов памяти. Непродолжительное последействие до 1 ч связано с циркуляцией (реверберацией) импульсов в нервных цепях (Р. Лоренте де Но, 1934) и обеспечивает согласно ревербационной теории кратковременную память. Согласно биохимической теории памяти (X. Хиден, 1969) механизмы долговременной памяти обеспечиваются изменением структуры белков нейронов и глиальных клеток: при запоминании происходят структурные изменения в молекулах РНК, на основе которых строятся новые белки, несущие информацию о прежних раздражителях. Эти белки длительно содержатся в нейронах, а также в глиальных клетках головного мозга.

От рецепторов нервные импульсы по афферентным путям поступают в нервные центры. Следует различать анатомическое и физиологическое понимание нервного центра.

Анатомическое определение нервного центра. Нервный центр это совокупность нейронов, расположенных в определенном отделе центральной нервной системы. За счет работы такого нервного центра осуществляется несложная рефлекторная деятельность, например коленный рефлекс. Нервный центр этого рефлекса располагается в поясничном отделе спинного мозга.

Физиологическое определение нервного центра. Нервный центр это сложное функциональное объединение нескольких анатомических нервных центров, расположенных на разных уровнях центральной нервной системы и обусловливающих за счет своей активности сложнейшие рефлекторные акты. Например, в осуществлении пищевых реакций участвуют многие органы (железы, мышцы, кровеносные и лимфатические сосуды и т. л.). Деятельность этих органов регулируется нервными импульсами, поступающими из нервных центров, располагающихся в различных отделах центральной нервной системы. При пищевых реакциях различные анатомические нервные центры функционально объединяются для получения определенного полезного результата.

Физиологические свойства нервных центров . Нервные центры обладают рядом характерных функциональных свойств, зависящих от наличия синапсов и большого количества нейронов, входящих в их состав. Основными свойствами нервных центров являются:

* Одностороннее проведение возбуждения. В центральной нервной системе возбуждение распространяется только в одном направлении от рецепторного нейрона к эффекторному. Это обусловлено наличием в нервных центрах синапсов, в которых передача возбуждения возможна только в одном направлении от нервного окончания, выделяющего медиатор, к постсинаптической мембране.

* Задержка проведения возбуждения в нервных центрах также связана с наличием большого количества синапсов. На выделение медиатора, его диффузию через синаптическую щель, возбуждение постсинаптической мембраны требуется больше времени, чем на распространение возбуждения по нервному волокну.

* Суммация возбуждений в нервных центрах возникает или при нанесении слабых, но повторяющихся (ритмичных) раздражений, или при одновременном действии нескольких подпороговых раздражений. Механизм этого явления связан с накоплением медиатора на постсинаптической мембране и повышением возбудимости клеток нервного центра. Примером суммации возбуждения может служить рефлекс чихания. Этот рефлекс возникает только при длительном раздражении рецепторов слизистой оболочки носа.

* Трансформация ритма возбуждений . Центральная нервная система на любой ритм раздражения, даже медленный, отвечает залпом импульсов. Частота возбуждений, поступающих из нервных центров на периферию к рабочему органу, колеблется от 50 до 200 в 1 с. Этой особенностью центральной нервной системы объясняется то, что все сокращения скелетных мышц в организме являются тетаническими.

* Рефлекторное последействие . Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длительный период. Это явление получило название рефлекторного последействия. Установлены два механизма, обусловливающие последействие. Первый связан с тем, что возбуждение в нервных клетках исчезает не сразу после прекращения раздражения. В течение некоторого времени (сотые доли секунды) нервные клетки продолжают давать ритмические разряды импульсов. Этот механизм может обусловить лишь сравнительно кратковременное последействие. Второй механизм является результатом циркуляции нервных импульсов по замкнутым нейронным цепям нервного центра и обеспечивает более длительное последействие.

Возбуждение одного из нейронов передается на другой, а по ответвлениям его аксона вновь возвращается к первой нервной клетке и т. д. Циркуляция нервных импульсов в нервном центре будет продолжаться до тех пор, пока не наступит утомление одного из синапсов или же активность нейронов не будет приостановлена приходом тормозных импульсов.

* Утомление нервных центров . Нервные центры в отличие от нервных волокон легко утомляемы. При продолжительном раздражении афферентных нервных волокон утомление нервного центра проявляется постепенным снижением, а затем и полным прекращением рефлекторного ответа.

ов), более или менее строго локализованная в нервной системе и непременно участвующая в осуществлении рефлекса, в регуляции той или иной функции организма или одной из сторон этой функции. В простейших случаях Н. ц. состоит из нескольких нейронов, образующих обособленный узел (ганглий). Так, у некоторых раков биениями сердца руководит сердечный ганглий, состоящий из 9 нейронов. У высокоорганизованных животных Н. ц. входят в состав центральной нервной системы и могут состоять из многих тысяч и даже миллионов нейронов.

В каждый Н. ц. по входным каналам - соответствующим нервным волокнам - поступает в виде импульсов нервных (См. Импульс нервный) информация от органов чувств или от др. Н. ц. Эта информация перерабатывается нейронами Н. ц., отростки (Аксон ы) которых не выходят за его пределы. Конечным звеном служат нейроны, отростки которых покидают Н. ц. и доставляют его командные импульсы к периферическим органам или др. Н. ц. (выходные каналы). Нейроны, составляющие Н. ц., связаны между собой посредством возбуждающих и тормозных синапсов (См. Синапсы) и образуют сложные комплексы, так называемые нейронные сети. Наряду с нейронами, которые возбуждаются только в ответ на приходящие нервные сигналы или действие разнообразных химических раздражителей, содержащихся в крови, в состав Н. ц. могут входить нейроны-ритмоводители (англ. pacemaker neurones), обладающие собственным автоматизмом; им присуща способность периодически генерировать нервные импульсы.

Из представления о Н. ц. следует, что разные функции организма регулируются различными частями нервной системы. Локализацию Н. ц. определяют на основании опытов с раздражением, ограниченным разрушением, удалением или перерезкой тех или иных участков головного или спинного мозга. Если при раздражении данного участка центральной нервной системы возникает та или иная физиологическая реакция, а при его удалении или разрушении она исчезает, то принято считать, что здесь расположен Н. ц., влияющий на данную функцию или участвующий в определённом рефлексе. Это представление о локализации функций в нервной системе (см. Кора больших полушарий головного мозга) многими физиологами не разделяется или принимается с оговорками. При этом ссылаются на эксперименты, доказывающие: 1) пластичность определённых участков нервной системы, её способность к функциональным перестройкам, компенсирующим, например, потери мозгового вещества; 2) что структуры, расположенные в разных частях нервной системы, связаны между собой и могут оказывать воздействие на выполнение одной и той же функции. Это давало повод одним физиологам вовсе отрицать локализацию функций, а др. расширять понятие Н. ц., включая в него все структуры, влияющие на выполнение данной функции. Современная нейрофизиология преодолевает это разногласие, пользуясь представлением о функциональной иерархии Н. ц., согласно которому отдельные стороны одной и той же функции организма управляются Н. ц., расположенными на разных «этажах» (уровнях) нервной системы. Координированная деятельность Н. ц., составляющих иерархическую систему, обеспечивает осуществление определённой сложной функции в целом, её приспособительный характер. Один из важных принципов работы Н. ц. - принцип доминанты (См. Доминанта) - сформулирован А. А Ухтомским (См. Ухтомский) (1911-23).

Лит.: Общая и частная физиология нервной системы, Л., 1969; физиология человека, под ред. Е. Б. Бабского, 2 изд., М., 1972.

Д. А. Сахаров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Нервный центр" в других словарях:

    Большой Энциклопедический словарь

    Совокупность нейронов, б. или м. строго локализованная в нервной системе и участвующая в осуществлении рефлекса, в регуляции той или иной функции организма или одной из сторон этой функции. В простейших случаях Н. ц. состоит из неск. нейронов,… … Биологический энциклопедический словарь

    Совокупность нервных клеток (нейронов), необходимая для регуляции деятельности других нервных центров или исполнительных органов. Простейший нервный центр состоит из нескольких нейронов, образующих узел (ганглий). У высших животных и человека… … Энциклопедический словарь

    нервный центр - nervinis centras statusas T sritis Kūno kultūra ir sportas apibrėžtis Grupė nervų ląstelių, reguliuojančių arba dalyvaujančių vykdant kurią nors organizmo funkciją (pvz., kvėpavimo, regėjimo). atitikmenys: angl. nerve centre vok. Nervenzentrum, n … Sporto terminų žodynas

    Совокупность нерв. клеток (нейронов), необходимая для регуляции деятельности др. Н. ц. или исполнит. органов. Простейший Н. ц. состоит из неск. нейронов, образующих узел (ганглий). У высших животных и человека Н.ц. включает тысячи и даже миллионы … Естествознание. Энциклопедический словарь

    НЕРВНЫЙ ЦЕНТР - совокупность нейронов, более или менее локализованная в нервной системе и участвующая в осуществлении рефлекса, в регуляции той или функции организма или одной из ее сторон. Представления о Н. ц. лежат в основе представления о локализации функций … Психомоторика: cловарь-справочник

    Нервный центр - более или менее локализованная совокупность нервных клеток, осуществляющая регуляцию какой либо функции организма. Нервные образования, связанные с регуляцией одной функции, могут находиться в различных отделах ЦНС. Н. ц. состоит из афферентных,… … Словарь дрессировщика

    Нервный центр - – 1. вообще – любая область (локальная зона) центральной нервной системы, которая выполняет функции интегрирования и координирования нервной информации; 2. специальное значение – местоположение нервной ткани, где афферентная (входящая в мозг)… … Энциклопедический словарь по психологии и педагогике

    НЕРВНЫЙ ЦЕНТР - 1. Вообще любая точка нервной системы, которая выполняет функции интегрирования и координирования нервной информации. 2. Специальное значение – местоположение нервной ткани, где афферентная информация совершает переход к эфферентной информации … Толковый словарь по психологии

    Нервный центр - – совокупность нервных образований в ЦНС разных отделов, осуществляющих регуляцию специализированной функции организма или выполнение рефлекса; нервных центров в организме столько же, сколько и рефлекторных актов; основные свойства:… … Словарь терминов по физиологии сельскохозяйственных животных



Понравилась статья? Поделитесь ей
Наверх