Полезные бактерии в организме человека. Вредные бактерии, поражающие яйца и яичные продукты. Нарушенная микрофлора кишечника способна увеличить риск рака толстой кишки

Кто бы мог подумать, что бактерии в желудке могут влиять на ваше настроение? Количество этих одноклеточных организмов, живущих в животе, превышает количество клеток всего вашего организма в десять раз. Давно известно, что эти жители ЖКТ необходимы для правильного пищеварения. Однако совсем недавно появились доказательства того, что подобные бактерии могут влиять на настроение.

Вопрос такой: как эти микроскопические создания в желудке могут влиять на мозг?

У крыс, на которых было сфокусировано большинство исследований по влиянию бактерий на поведение, баланс между благоприятными для здоровья полезными микроорганизмами и вредными нарушался даже небольшим стрессом. Было обнаружено, что такие изменения влияют не только на физическое здоровье, но и на болевую чувствительность, эмоции и реакцию на стресс.

Подобные исследования людей находятся пока в зачаточном состоянии. В одном из них здоровые волонтеры прошли 30‑дневный курс «полезных бактерий», состоящих из двух видов пробиотиков (Lactobacillus helveticus и Bifidobacteria longum). В результате уменьшение симптомов депрессии и тревожности было очевидным. Другое, еще более свежее исследование показало, что у людей, регулярно потребляющих йогурт с пробиотическими культурами, по сравнению с теми, кто пил обычный, наблюдались изменения в областях мозга, вовлеченных в создание эмоциональных состояний.

Это лишь начало, но все указывает на то, что кишечные бактерии имеют значительное влияние на наш мозг и, как следствие, настроение.

Несмотря на доказательства, вопрос все еще актуален: как именно бактерии делают это, если мозг и кишечник разделены? Кишечные бактерии ответственны за производство 95 % серотонина – нейротрансмиттера, настолько же важного для стабилизации настроения, как и для нормального функционирования пищеварительной системы. Эти микроорганизмы также реагируют на некоторые другие химические вещества, вовлеченные в нервную связь, включая ацетилхолин, дофамин, мелатонин, ГАМК и норадреналин. Вам простительно думать, что полезные бактерии способны влиять на мозг просто потому, что химические вещества, которые они производят, поступают в него через кровь

Однако то, что оказывается в мозге благодаря крови, сильно отфильтровывается защитной оболочкой вокруг кровеносных сосудов мозга под названием гематоэнцефалический барьер. Похоже, что главный путь от желудка к мозгу, касающийся изменения настроения, проходит через блуждающий нерв. Этот пучок похожих на паутину нейронов соединяет мозг со многими другими органами, включая легкие, сердце, печень и желудок. Он позволяет переключать их состояния с активной работы на отдых в зависимости от того, что становится приоритетным в данный момент.

В экспериментах с крысами, когда блуждающий нерв перереза ли, влияние кишечных бактерий на мозг исчезало. Эмоциональное поведение, восприятие боли, реакции на стресс – все это вернулось в состояние нормы. Стимуляция блуждающего нерва на самом деле используется как крайняя мера в лечении депрессии у людей. И, кажется, это часто работает.

Вне зависимости от конкретных механизмов, с помощью которых это происходит, ваши кишечные бактерии являются тем, чему вы должны уделять серьезное внимание.

Если вы чувствуете раздражительность, уныние или испытываете стресс, вы можете улучшить положение дел с помощью «хороших» бактерий, посылая им подкрепление в виде йогуртов, богатых пробиотиками!

БАКТЕРИИ
обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра. Вместе с тем генетический материал бактерии (дезоксирибонуклеиновая кислота, или ДНК) занимает в клетке вполне определенное место - зону, называемую нуклеоидом. Организмы с таким строением клеток называются прокариотами ("доядерными") в отличие от всех остальных - эукариот ("истинно ядерных"), ДНК которых находится в окруженном оболочкой ядре. Бактерии, ранее считавшиеся микроскопическими растениями, сейчас выделены в самостоятельное царство Monera - одно из пяти в нынешней системе классификации наряду с растениями, животными, грибами и протистами.

Ископаемые свидетельства. Вероятно, бактерии - древнейшая известная группа организмов. Слоистые каменные структуры - строматолиты, - датируемые в ряде случаев началом археозоя (архея), т.е. возникшие 3,5 млрд. лет назад, - результат жизнедеятельности бактерий, обычно фотосинтезирующих, т.н. сине-зеленых водорослей. Подобные структуры (пропитанные карбонатами бактериальные пленки) образуются и сейчас, главным образом у побережья Австралии, Багамских островов, в Калифорнийском и Персидском заливах, однако они относительно редки и не достигают крупных размеров, потому что ими питаются растительноядные организмы, например брюхоногие моллюски. В наши дни строматолиты растут в основном там, где эти животные отсутствуют из-за высокой солености воды или по другим причинам, однако до появления в ходе эволюции растительноядных форм они могли достигать огромных размеров, составляя существенный элемент океанического мелководья, сравнимый с современными коралловыми рифами. В некоторых древних горных породах обнаружены крохотные обугленные сферы, которые также считаются остатками бактерий. Первые ядерные, т.е. эукариотические, клетки произошли от бактерий примерно 1,4 млрд. лет назад.
Экология. Бактерий много в почве, на дне озер и океанов - повсюду, где накапливается органическое вещество. Они живут в холоде, когда столбик термометра чуть превышает нулевую отметку, и в горячих кислотных источниках с температурой выше 90° С. Некоторые бактерии переносят очень высокую соленость среды; в частности, это единственные организмы, обнаруженные в Мертвом море. В атмосфере они присутствуют в каплях воды, и их обилие там обычно коррелирует с запыленностью воздуха. Так, в городах дождевая вода содержит гораздо больше бактерий, чем в сельской местности. В холодном воздухе высокогорий и полярных областей их мало, тем не менее они встречаются даже в нижнем слое стратосферы на высоте 8 км. Густо заселен бактериями (обычно безвредными) пищеварительный тракт животных. Эксперименты показали, что для жизнедеятельности большинства видов они не обязательны, хотя и могут синтезировать некоторые витамины. Однако у жвачных (коров, антилоп, овец) и многих термитов они участвуют в переваривании растительной пищи. Кроме того, иммунная система животного, выращенного в стерильных условиях, не развивается нормально из-за отсутствия стимуляции бактериями. Нормальная бактериальная "флора" кишечника важна также для подавления попадающих туда вредных микроорганизмов.

СТРОЕНИЕ И ЖИЗНЕДЕЯТЕЛЬНОСТЬ БАКТЕРИЙ


Бактерии гораздо мельче клеток многоклеточных растений и животных. Толщина их обычно составляет 0,5-2,0 мкм, а длина - 1,0-8,0 мкм. Разглядеть некоторые формы едва позволяет разрешающая способность стандартных световых микроскопов (примерно 0,3 мкм), но известны и виды длиной более 10 мкм и шириной, также выходящей за указанные рамки, а ряд очень тонких бактерий может превышать в длину 50 мкм. На поверхности, соответствующей поставленной карандашом точке, уместится четверть миллиона средних по величине представителей этого царства.
Строение. По особенностям морфологии выделяют следующие группы бактерий: кокки (более или менее сферические), бациллы (палочки или цилиндры с закругленными концами), спириллы (жесткие спирали) и спирохеты (тонкие и гибкие волосовидные формы). Некоторые авторы склонны объединять две последние группы в одну - спириллы. Прокариоты отличаются от эукариот главным образом отсутствием оформленного ядра и наличием в типичном случае всего одной хромосомы - очень длинной кольцевой молекулы ДНК, прикрепленной в одной точке к клеточной мембране. У прокариот нет и окруженных мембранами внутриклеточных органелл, называемых митохондриями и хлоропластами. У эукариот митохондрии вырабатывают энергию в процессе дыхания, а в хлоропластах идет фотосинтез (см. также КЛЕТКА). У прокариот вся клетка целиком (и в первую очередь - клеточная мембрана) берет на себя функцию митохондрии, а у фотосинтезирующих форм - заодно и хлоропласта. Как и у эукариот, внутри бактерии находятся мелкие нуклеопротеиновые структуры - рибосомы, необходимые для синтеза белка, но они не связаны с какими-либо мембранами. За очень немногими исключениями, бактерии не способны синтезировать стеролы - важные компоненты мембран эукариотической клетки. Снаружи от клеточной мембраны большинство бактерий одето клеточной стенкой, несколько напоминающей целлюлозную стенку растительных клеток, но состоящей из других полимеров (в их состав входят не только углеводы, но и аминокислоты и специфические для бактерий вещества). Эта оболочка не дает бактериальной клетке лопнуть, когда в нее за счет осмоса поступает вода. Поверх клеточной стенки часто находится защитная слизистая капсула. Многие бактерии снабжены жгутиками, с помощью которых они активно плавают. Жгутики бактерий устроены проще и несколько иначе, чем аналогичные структуры эукариот.


"ТИПИЧНАЯ" БАКТЕРИАЛЬНАЯ КЛЕТКА и ее основные структуры.


Сенсорные функции и поведение. Многие бактерии обладают химическими рецепторами, которые регистрируют изменения кислотности среды и концентрацию различных веществ, например сахаров, аминокислот, кислорода и диоксида углерода. Для каждого вещества существует свой тип таких "вкусовых" рецепторов, и утрата какого-то из них в результате мутации приводит к частичной "вкусовой слепоте". Многие подвижные бактерии реагируют также на колебания температуры, а фотосинтезирующие виды - на изменения освещенности. Некоторые бактерии воспринимают направление силовых линий магнитного поля, в том числе магнитного поля Земли, с помощью присутствующих в их клетках частичек магнетита (магнитного железняка - Fe3O4). В воде бактерии используют эту свою способность для того, чтобы плыть вдоль силовых линий в поисках благоприятной среды. Условные рефлексы у бактерий неизвестны, но определенного рода примитивная память у них есть. Плавая, они сравнивают воспринимаемую интенсивность стимула с ее прежним значением, т.е. определяют, стала она больше или меньше, и, исходя из этого, сохраняют направление движения или изменяют его.
Размножение и генетика. Бактерии размножаются бесполым путем: ДНК в их клетке реплицируется (удваивается), клетка делится надвое, и каждая дочерняя клетка получает по одной копии родительской ДНК. Бактериальная ДНК может передаваться и между неделящимися клетками. При этом их слияния (как у эукариот) не происходит, число особей не увеличивается, и обычно в другую клетку переносится лишь небольшая часть генома (полного набора генов), в отличие от "настоящего" полового процесса, при котором потомок получает по полному комплекту генов от каждого родителя. Такой перенос ДНК может осуществляться тремя путями. При трансформации бактерия поглощает из окружающей среды "голую" ДНК, попавшую туда при разрушении других бактерий или сознательно "подсунутую" экспериментатором. Процесс называется трансформацией, поскольку на ранних стадиях его изучения основное внимание уделялось превращению (трансформации) таким путем безвредных организмов в вирулентные. Фрагменты ДНК могут также переноситься от бактерии к бактерии особыми вирусами - бактериофагами. Это называется трансдукцией. Известен также процесс, напоминающий оплодотворение и называемый конъюгацией: бактерии соединяются друг с другом временными трубчатыми выростами (копуляционными фимбриями), через которые ДНК переходит из "мужской" клетки в "женскую". Иногда в бактерии присутствуют очень мелкие добавочные хромосомы - плазмиды, которые также могут переноситься от особи к особи. Если при этом плазмиды содержат гены, обусловливающие резистентность к антибиотикам, говорят об инфекционной резистентности. Она важна с медицинской точки зрения, поскольку может распространяться между различными видами и даже родами бактерий, в результате чего вся бактериальная флора, скажем кишечника, становится устойчивой к действию определенных лекарственных препаратов.

МЕТАБОЛИЗМ


Отчасти в силу мелких размеров бактерий интенсивность их метаболизма гораздо выше, чем у эукариот. При самых благоприятных условиях некоторые бактерии могут удваивать свою общую массу и численность примерно каждые 20 мин. Это объясняется тем, что ряд их важнейших ферментных систем функционирует с очень высокой скоростью. Так, кролику для синтеза белковой молекулы требуются считанные минуты, а бактерии - секунды. Однако в естественной среде, например в почве, большинство бактерий находится "на голодном пайке", поэтому если их клетки и делятся, то не каждые 20 мин, а раз в несколько дней.
Питание. Бактерии бывают автотрофами и гетеротрофами. Автотрофы ("сами себя питающие") не нуждаются в веществах, произведенных другими организмами. В качестве главного или единственного источника углерода они используют его диоксид (CO2). Включая CO2 и другие неорганические вещества, в частности аммиак (NH3), нитраты (NO-3) и различные соединения серы, в сложные химические реакции, они синтезируют все необходимые им биохимические продукты. Гетеротрофы ("питающиеся другим") используют в качестве основного источника углерода (некоторым видам нужен и CO2) органические (углеродсодержащие) вещества, синтезированные другими организмами, в частности сахара. Окисляясь, эти соединения поставляют энергию и молекулы, необходимые для роста и жизнедеятельности клеток. В этом смысле гетеротрофные бактерии, к которым относится подавляющее большинство прокариот, сходны с человеком.
Главные источники энергии. Если для образования (синтеза) клеточных компонентов используется в основном световая энергия (фотоны), то процесс называется фотосинтезом, а способные к нему виды - фототрофами. Фототрофные бактерии делятся на фотогетеротрофов и фотоавтотрофов в зависимости от того, какие соединения - органические или неорганические - служат для них главным источником углерода. Фотоавтотрофные цианобактерии (сине-зеленые водоросли), как и зеленые растения, за счет световой энергии расщепляют молекулы воды (H2O). При этом выделяется свободный кислород (1/2O2) и образуется водород (2H+), который, можно сказать, превращает диоксид углерода (CO2) в углеводы. У зеленых и пурпурных серных бактерий световая энергия используется для расщепления не воды, а других неорганических молекул, например сероводорода (H2S). В результате также образуется водород, восстанавливающий диоксид углерода, но кислород не выделяется. Такой фотосинтез называется аноксигенным. Фотогетеротрофные бактерии, например пурпурные несерные, используют световую энергию для получения водорода из органических веществ, в частности изопропанола, но его источником у них может служить и газообразный H2. Если основной источник энергии в клетке - окисление химических веществ, бактерии называются хемогетеротрофами или хемоавтотрофами в зависимости от того, какие молекулы служат главным источником углерода - органические или неорганические. У первых органика дает как энергию, так и углерод. Хемоавтотрофы получают энергию при окислении неорганических веществ, например водорода (до воды: 2H4 + O2 в 2H2O), железа (Fe2+ в Fe3+) или серы (2S + 3O2 + 2H2O в 2SO42- + 4H+), а углерод - из СO2. Эти организмы называют также хемолитотрофами, подчеркивая тем самым, что они "питаются" горными породами.
Дыхание. Клеточное дыхание - процесс высвобождения химической энергии, запасенной в "пищевых" молекулах, для ее дальнейшего использования в жизненно необходимых реакциях. Дыхание может быть аэробным и анаэробным. В первом случае для него необходим кислород. Он нужен для работы т.н. электронотранспортной системы: электроны переходят от одной молекулы к другой (при этом выделяется энергия) и в конечном итоге присоединяются к кислороду вместе с ионами водорода - образуется вода. Анаэробным организмам кислород не нужен, а для некоторых видов этой группы он даже ядовит. Высвобождающиеся в ходе дыхания электроны присоединяются к другим неорганическим акцепторам, например нитрату, сульфату или карбонату, или (при одной из форм такого дыхания - брожении) к определенной органической молекуле, в частности к глюкозе. См. также МЕТАБОЛИЗМ.

КЛАССИФИКАЦИЯ


У большинства организмов видом принято считать репродуктивно изолированную группу особей. В широком смысле это означает, что представители данного вида могут давать плодовитое потомство, спариваясь только с себе подобными, но не с особями других видов. Таким образом, гены конкретного вида, как правило, не выходят за его пределы. Однако у бактерий может происходить обмен генами между особями не только разных видов, но и разных родов, поэтому правомерно ли применять здесь привычные концепции эволюционного происхождения и родства, не вполне ясно. В связи с этой и другими трудностями общепринятой классификации бактерий пока не существует. Ниже приведен один из широко используемых ее вариантов.
ЦАРСТВО MONERA

Тип Gracilicutes (тонкостенные грамотрицательные бактерии)


Класс Scotobacteria (нефотосинтезирующие формы, например миксобактерии) Класс Anoxyphotobacteria (не выделяющие кислорода фотосинтезирующие формы, например пурпурные серные бактерии) Класс Oxyphotobacteria (выделяющие кислород фотосинтезирующие формы, например цианобактерии)


Тип Firmicutes (толстостенные грамположительные бактерии)


Класс Firmibacteria (формы с жесткой клеткой, например клостридии)
Класс Thallobacteria (разветвленные формы, например актиномицеты)


Тип Tenericutes (грамотрицательные бактерии без клеточной стенки)


Класс Mollicutes (формы с мягкой клеткой, например микоплазмы)


Тип Mendosicutes (бактерии с неполноценной клеточной стенкой)


Класс Archaebacteria (древние формы, например метанобразующие)


Домены. Недавние биохимические исследования показали, что все прокариоты четко разделяются на две категории: маленькую группу архебактерий (Archaebacteria - "древние бактерии") и всех остальных, называемых эубактериями (Eubacteria - "истинные бактерии"). Считается, что архебактерии по сравнению с эубактериями примитивнее и ближе к общему предку прокариот и эукариот. От прочих бактерий они отличаются несколькими существенными признаками, включая состав молекул рибосомной РНК (pРНК), участвующей в синтезе белка, химическую структуру липидов (жироподобных веществ) и присутствие в клеточной стенке вместо белково-углеводного полимера муреина некоторых других веществ. В приведенной выше системе классификации архебактерии считаются лишь одним из типов того же царства, которое объединяет и всех эубактерий. Однако, по мнению некоторых биологов, различия между архебактериями и эубактериями настолько глубоки, что правильнее рассматривать архебактерии в составе Monera как особое подцарство. В последнее время появилось еще более радикальное предложение. Молекулярный анализ выявил между двумя этими группами прокариот столь существенные различия в структуре генов, что присутствие их в рамках одного царства организмов некоторые считают нелогичным. В связи с этим предложено создать таксономическую категорию (таксон) еще более высокого ранга, назвав ее доменом, и разделить все живое на три домена - Eucarya (эукариоты), Archaea (архебактерии) и Bacteria (нынешние эубактерии).

ЭКОЛОГИЯ


Две важнейшие экологические функции бактерий - фиксация азота и минерализация органических остатков.
Азотфиксация. Связывание молекулярного азота (N2) с образованием аммиака (NH3) называется азотфиксацией, а окисление последнего до нитрита (NO-2) и нитрата (NO-3) - нитрификацией. Это жизненно важные для биосферы процессы, поскольку растениям необходим азот, но усваивать они могут лишь его связанные формы. В настоящее время примерно 90% (ок. 90 млн. т) годового количества такого "фиксированного" азота дают бактерии. Остальное количество производится химическими комбинатами или возникает при разрядах молний. Азот воздуха, составляющий ок. 80% атмосферы, связывается в основном грамотрицательным родом ризобиум (Rhizobium) и цианобактериями. Виды ризобиума вступают в симбиоз примерно с 14 000 видов бобовых растений (семейство Leguminosae), к которым относятся, например, клевер, люцерна, соя и горох. Эти бактерии живут в т.н. клубеньках - вздутиях, образующихся на корнях в их присутствии. Из растения бактерии получают органические вещества (питание), а взамен снабжают хозяина связанным азотом. За год таким способом фиксируется до 225 кг азота на гектар. В симбиоз с другими азотфиксирующими бактериями вступают и небобовые растения, например ольха. Цианобактерии фотосинтезируют, как зеленые растения, с выделением кислорода. Многие из них способны также фиксировать атмосферный азот, потребляемый затем растениями и в конечном итоге животными. Эти прокариоты служат важным источником связанного азота почвы в целом и рисовых чеков на Востоке в частности, а также главным его поставщиком для океанских экосистем.
Минерализация. Так называется разложение органических остатков до диоксида углерода (CO2), воды (H2O) и минеральных солей. С химической точки зрения, этот процесс эквивалентен горению, поэтому он требует большого количества кислорода. В верхнем слое почвы содержится от 100 000 до 1 млрд. бактерий на 1 г, т.е. примерно 2 т на гектар. Обычно все органические остатки, попав в землю, быстро окисляются бактериями и грибами. Более устойчиво к разложению буроватое органическое вещество, называемое гуминовой кислотой и образующееся в основном из содержащегося в древесине лигнина. Оно накапливается в почве и улучшает ее свойства.

БАКТЕРИИ И ПРОМЫШЛЕННОСТЬ


Учитывая разнообразие катализируемых бактериями химических реакций, неудивительно, что они широко используются в производстве, в ряде случаев с глубокой древности. Славу таких микроскопических помощников человека прокариоты делят с грибами, в первую очередь - дрожжами, которые обеспечивают большую часть процессов спиртового брожения, например при изготовлении вина и пива. Сейчас, когда стало возможным вводить в бактерии полезные гены, заставляя их синтезировать ценные вещества, например инсулин, промышленное применение этих живых лабораторий получило новый мощный стимул. См. также ГЕННАЯ ИНЖЕНЕРИЯ.
Пищевая промышленность. В настоящее время бактерии применяются этой отраслью в основном для производства сыров, других кисломолочных продуктов и уксуса. Главные химические реакции здесь - образование кислот. Так, при получении уксуса бактерии рода Acetobacter окисляют этиловый спирт, содержащийся в сидре или других жидкостях, до уксусной кислоты. Аналогичные процессы происходят при квашении капусты: анаэробные бактерии сбраживают содержащиеся в листьях этого растения сахара до молочной кислоты, а также уксусной кислоты и различных спиртов.
Выщелачивание руд. Бактерии применяются для выщелачивания бедных руд, т.е. переведения из них в раствор солей ценных металлов, в первую очередь меди (Cu) и урана (U). Пример - переработка халькопирита, или медного колчедана (CuFeS2). Кучи этой руды периодически поливают водой, в которой присутствуют хемолитотрофные бактерии рода Thiobacillus. В процессе своей жизнедеятельности они окисляют серу (S), образуя растворимые сульфаты меди и железа: CuFeS2 + 4O2 в CuSO4 + FeSO4. Такие технологии значительно упрощают получение из руд ценных металлов; в принципе, они эквивалентны процессам, протекающим в природе при выветривании горных пород.
Переработка отходов. Бактерии служат также для превращения отходов, например сточных вод, в менее опасные или даже полезные продукты. Сточные воды - одна из острых проблем современного человечества. Их полная минерализация требует огромных количеств кислорода, и в обычных водоемах, куда принято сбрасывать эти отходы, его для их "обезвреживания" уже не хватает. Решение заключается в дополнительной аэрации стоков в специальных бассейнах (аэротенках): в результате бактериям-минерализаторам хватает кислорода для полного разложения органики, и одним из конечных продуктов процесса в наиболее благоприятных случаях становится питьевая вода. Остающийся по ходу дела нерастворимый осадок можно подвергнуть анаэробному брожению. Чтобы такие водоочистные установки отнимали как можно меньше места и денег, необходимо хорошее знание бактериологии.
Другие пути использования. К другим важным областям промышленного применения бактерий относится, например, мочка льна, т.е. отделение его прядильных волокон от других частей растения, а также производство антибиотиков, в частности стрептомицина (бактериями рода Streptomyces).

БОРЬБА С БАКТЕРИЯМИ В ПРОМЫШЛЕННОСТИ


Бактерии приносят не только пользу; борьба с их массовым размножением, например в пищевых продуктах или в водных системах целлюлозно-бумажных предприятий, превратилась в целое направление деятельности. Пища портится под действием бактерий, грибов и собственных вызывающих автолиз ("самопереваривание") ферментов, если не инактивировать их нагреванием или другими способами. Поскольку главная причина порчи все-таки бактерии, разработка систем эффективного хранения продовольствия требует знания пределов выносливости этих микроорганизмов. Одна из наиболее распространенных технологий - пастеризация молока, убивающая бактерии, которые вызывают, например, туберкулез и бруцеллез. Молоко выдерживают при 61-63° С в течение 30 мин или при 72-73° С всего 15 с. Это не ухудшает вкуса продукта, но инактивирует болезнетворные бактерии. Пастеризовать можно также вино, пиво и фруктовые соки. Давно известна польза хранения пищевых продуктов на холоде. Низкие температуры не убивают бактерий, но не дают им расти и размножаться. Правда, при замораживании, например, до -25° С численность бактерий через несколько месяцев снижается, однако большое количество этих микроорганизмов все же выживает. При температуре чуть ниже нуля бактерии продолжают размножаться, но очень медленно. Их жизнеспособные культуры можно хранить почти бесконечно долго после лиофилизации (замораживания - высушивания) в среде, содержащей белок, например в сыворотке крови. К другим известным методам хранения пищевых продуктов относятся высушивание (вяление и копчение), добавка больших количеств соли или сахара, что физиологически эквивалентно обезвоживанию, и маринование, т.е. помещение в концентрированный раствор кислоты. При кислотности среды, соответствующей pH 4 и ниже, жизнедеятельность бактерий обычно сильно тормозится или прекращается.

БАКТЕРИИ И БОЛЕЗНИ

ИЗУЧЕНИЕ БАКТЕРИЙ


Многие бактерии нетрудно выращивать в т.н. культуральной среде, в состав которой могут входить мясной бульон, частично переваренный белок, соли, декстроза, цельная кровь, ее сыворотка и другие компоненты. Концентрация бактерий в таких условиях обычно достигает примерно миллиарда на кубический сантиметр, в результате чего среда становится мутной. Для изучения бактерий необходимо уметь получать их чистые культуры, или клоны, представляющие собой потомство одной-единственной клетки. Это нужно, например, для определения того, какой вид бактерии инфицировал больного и к какому антибиотику данный вид чувствителен. Микробиологические образцы, например, взятые из горла или ран мазки, пробы крови, воды или других материалов, сильно разводят и наносят на поверхность полутвердой среды: на ней из отдельных клеток развиваются округлые колонии. Отверждающим культуральную среду агентом обычно служит агар - полисахарид, получаемый из некоторых морских водорослей и почти ни одним видом бактерий не перевариваемый. Агаровые среды используют в виде "косячков", т.е. наклонных поверхностей, образующихся в стоящих под большим углом пробирках при застывании расплавленной культуральной среды, или в виде тонких слоев в стеклянных чашках Петри - плоских круглых сосудах, закрываемых такой же по форме, но чуть большей по диаметру крышкой. Обычно через сутки бактериальная клетка успевает размножиться настолько, что образует легко заметную невооруженным глазом колонию. Ее можно перенести на другую среду для дальнейшего изучения. Все культуральные среды должны быть перед началом выращивания бактерий стерильными, а в дальнейшем следует принимать меры против поселения на них нежелательных микроорганизмов. Чтобы рассмотреть выращенные таким способом бактерии, прокаливают на пламени тонкую проволочную петлю, прикасаются ею сначала к колонии или мазку, а затем - к капле воды, нанесенной на предметное стекло. Равномерно распределив взятый материал в этой воде, стекло высушивают и два-три раза быстро проводят над пламенем горелки (сторона с бактериями должна быть обращена вверх): в результате микроорганизмы, не повреждаясь, прочно прикрепляются к субстрату. На поверхность препарата капают краситель, затем стекло промывают в воде и вновь сушат. Теперь можно рассматривать образец под микроскопом. Чистые культуры бактерий идентифицируют главным образом по их биохимическим признакам, т.е. определяют, образуют ли они из определенных сахаров газ или кислоты, способны ли переваривать белок (разжижать желатину), нуждаются ли для роста в кислороде и т.д. Проверяют также, окрашиваются ли они специфическими красителями. Чувствительность к тем или иным лекарственным препаратам, например антибиотикам, можно выяснить, поместив на засеянную бактериями поверхность маленькие диски из фильтровальной бумаги, пропитанные данными веществами. Если какое-либо химическое соединение убивает бактерии, вокруг соответствующего диска образуется свободная от них зона.

Энциклопедия Кольера. - Открытое общество . 2000 .

Однажды Гиппократ сказал, что все болезни начинаются в кишечнике - и оказался прав. В последнее время ученым, исследователям и врачам стало известно, насколько кишечник влияет на состояние здоровья в целом. Было установлено, что в организме человека бактерий находится примерно в 10 раз больше, чем собственных клеток организма. Количество их видов исчисляется сотнями, и все кишечные бактерии составляют экосистему, которая играет огромную роль в состоянии организма. В данной статье сайт рассмотрит, на какие органы, функции и показатели здоровья нашего тела влияют бактерии кишечника.

Почему так важен здоровый баланс кишечных бактерий?

Не все бактерии, населяющие человеческий кишечник, полезны. Врачи определяют здоровый баланс кишечных бактерий как соотношение 80% полезных и 20% вредных бактерий. В определенных условиях этот баланс нарушается, например, в случае:

  • частого приема антибиотиков;
  • злоупотребления продуктами с высоким содержанием сахара;
  • частого употребления загрязненных пестицидами и химикатами продуктов;
  • чрезмерного употребления глютена;
  • питья хлорированной и/или фторированной воды из-под крана;
  • частых стрессов.

Здоровый баланс кишечных бактерий - 80% полезных и 20% вредных бактерий.

В случае нарушения баланса кишечных бактерий могут возникать следующие проблемы:

  • частые простуды;
  • аутоиммунные заболевания;
  • хроническая усталость;
  • головные боли;
  • пищевые аллергии;
  • кислотный рефлюкс;
  • диареи;
  • запоры;
  • депрессия;
  • похудение или набор веса;
  • акне;
  • розацеа;
  • экзема;
  • боль в суставах;
  • белый налет на языке.

Ниже сайт более подробно рассмотрит, как бактерии кишечника влияют на:

Как кишечные бактерии влияют на пищеварение?

Очевидно, что для нормального пищеварения необходим здоровый ЖКТ. Здоровый баланс кишечных бактерий обеспечивает надлежащую перистальтику кишечника. В наши дни чрезвычайно распространенными заболеваниями ЖКТ являются:

  • синдром раздраженного кишечника;
  • воспалительные заболевания кишечника (в особенности болезнь Крона, язвенный колит).

Доминирование вредных бактерий является одной из причин развития вышеуказанных заболеваний. К такому выводу пришли ученые в ходе исследований, направленных на изучение влияния трансплантации фекальной микробиоты от здоровых доноров больным пациентам. Согласно данным, опубликованным в журнале Gatroenterology Hepatology, фекальная трансплантация была эффективна в лечении заболеваний ЖКТ или устранении их симптомов в 93% случаев.

Как состояние иммунной системы зависит от микрофлоры кишечника?

Кишечник тесно связан с иммунной системой, поскольку 80% последней находится именно в данном органе, а именно в слизистых оболочках кишечника. Частые болезни - один из признаков нарушения баланса кишечных бактерий в результате воздействия ранее описанных факторов.

Кишечный иммунитет позволяет полезным бактериям не покидать пределы кишечника и своевременно нейтрализовать патогенные микроорганизмы. Потому так важно обеспечить комфортные условия для полезных бактерий кишечника и избегать факторов, провоцирующих рост вредных кишечных бактерий.

Каким образом кишечные бактерии влияют на настроение и психическое здоровье человека?

Как известно, кишечник называют вторым мозгом человеческого организма, поскольку в стенках кишечника находится около 500 миллионов нейтронов, составляющих энтеральную нервную систему (ЭНС). ЭНС вырабатывает около 30 различных нейромедиаторов, отвечающих за настроение, в том числе серотонин (90% от общего количества в организме).

В ходе исследований ученые наблюдали за изменениями настроения грызунов после изменения баланса бактерий в кишечнике. Исследователи Калифорнийского университета обнаружили, что у людей с нормальным бактериальным балансом в кишечнике отличались эмоциональной устойчивостью и хорошим настроением.

Некоторые ученые также полагают, что дисбактериоз может быть одной из причин аутизма с поздним началом и прочих заболеваний мозга.

Как микробиом кишечника влияет на вес человека?

Целый ряд проведенных исследований свидетельствует о том, что бактерии в кишечнике влияют на тягу к пище, обмен веществ и количество всасываемых из пищи питательных веществ.

Для поддержания здорового веса микробиом кишечника должен быть разнообразным. Проведенное в 2013 году исследование показало, что у худых людей количество кишечных бактерий и их видов больше, чем у людей с ожирением.

Также результаты исследований свидетельствуют о том, что у пациентов с ожирением по сравнению с людьми нормального веса примерно на 20% больше бактерий под названием фирмикуты - они способствуют превращению калорий, получаемых из сложных сахаров, в жировые отложения. Также было установлено, что в кишечнике худых людей находится значительное количество бактероидов - бактерий, которые помогают расщеплять крахмал и клетчатку.

Исследования показали, что фирмикуты и бактероиды - единственные бактерии, которые влияют на вес человека.

Как состояние кожи зависит от кишечных бактерий?

В развитии акне , розацеа и экземы значительную роль играет состояние кишечника. Так, было установлено, что употребление богатых пробиотиками ферментированных продуктов позволяет значительно снизить выраженность акне.

В 2008 году также было проведено исследование, результаты которого показали, что вероятность развития экземы у детей до 18 месяцев повышается при наличии недостаточно разнообразного микробиома кишечника. А при употреблении богатых пробиотиками продуктов риск развития экземы снижается.

Чтобы поддерживать здоровый баланс кишечных бактерий, необходимо позаботиться от правильном питании, ограничить влияние стресса на организм, не принимать антибиотики без назначения врача, включить в рацион ферментированные продукты. Также восстановить баланс бактерий в кишечнике помогут пробиотики в виде добавок, однако их прием обязательно необходимо согласовать с врачом.

Рис. 1. Человеческий организм на 90% состоит из микробных клеток. В нем содержится от 500 до 1000 всевозможных видов бактерий или триллионы этих удивительных жильцов, что составляет до 4-х кг совокупного веса.

Рис. 2. Бактерии, населяющие ротовую полость: Streptococcus mutants (зеленый цвет). Bakteroides gingivalis, вызывает периодонтит (сиреневый цвет). Candida albicus (желтый цвет). Вызывает кандидозы кожных покровов и внутренних органов.

Рис. 7. Микобактерии туберкулеза. Бактерии много тысячелетий вызывают заболевания у человека и животных. Туберкулезная палочка крайне устойчива во внешней среде. В 95% случаев передается воздушно-капельным путем. Чаще поражает легкие.

Рис. 8. Возбудитель дифтерии – коринебактерии или палочки Леффлера. Чаще развивается в эпителии слизистого слоя миндалин, реже гортани. Отек гортани и увеличенные лимфоузлы могут привести к асфиксии. Токсин возбудителя фиксируется на мембранах клеток сердечной мышцы, почек, надпочечников и нервных ганглиях и разрушает их.

Рис. 9. Возбудители стафилококковой инфекции. Патогенные стафилококки вызывают обширные поражения кожи и ее придатков, поражения многих внутренних органов, пищевую токсикоинфекцию, энтериты и колиты, сепсис и токсический шок.

Рис. 10. Менингококки – возбудители менингококковой инфекции. До 80% заболевших составляют дети. Инфекция передается воздушно-капельным путем от больных и здоровых носителей бактерий.

Рис. 11. Бордетеллы коклюша.

Рис. 12. Возбудители скарлатины стрептококки pyogenes.

Вредные бактерии микрофлоры воды

Местом обитания множества микробов является вода. В 1 см3 воды можно насчитать до 1 млн. микробных тел. Патогенные микроорганизмы попадают в воду от промышленных предприятий, населенных пунктов и животноводческих ферм. Вода с патогенными микробами может стать источником дизентерии, холеры, брюшного тифа туляремии, лептоспироза и др. Холерный вибрион и могут пребывать в воде достаточно много времени.

Рис. 13. Шигеллы. Возбудители вызывают бактериальную дизентерию. Шигеллы разрушают эпителий слизистой оболочки толстой кишки, вызывая тяжелый язвенный колит. Их токсины поражают миокард, нервную и сосудистую системы.

Рис. 14. . Вибрионы не разрушают клетки слизистого слоя тонкого кишечника, а находится на их поверхности. Выделяют токсин холероген, действие которого приводит к нарушению водно-солевого обмены в связи с чем организм теряет до 30 литров жидкости в сутки.

Рис. 15. Сальмонеллы — возбудители брюшного тифа и паратифов. Поражают эпителий и лимфоидные элементы тонкой кишки. С током крови попадают в костный мозг, селезенку и желчный пузырь, из которого вновь возбудители попадают в тонкий кишечник. В результате иммунного воспаления стенка тонкого кишечника разрывается и возникает перитонит.

Рис. 16. Возбудители туляремии (коккобактерии голубого цвета). Поражают респираторный отдел и кишечник. Обладают особенностью проникать в организм человека через целостные кожные покровы и слизистые глаз, носоглотки, гортани и кишечника. Особенность заболевания – поражение лимфоузлов (первичный бубон).

Рис. 17. Лептоспиры. Поражают капиллярную сеть человека, часто печень, почки и мышцы. Заболевание называют инфекционной желтухой.

Вредные бактерии микрофлоры почвы

Миллиарды «плохих» бактерий живет в почве. В 30-и сантиметровой толще 1-го гектара земли находится до 30-и тонн бактерий. Обладая мощным набором ферментов, занимаются расщеплением белков до аминокислот, тем самым принимают активное участие в процессах гниения. Однако эти бактерии приносят человеку немало неприятностей. Благодаря деятельности этих микробов очень быстро портятся продукты питания. Человек научился предохранять продукты длительного хранения путем стерилизации, засолки, копчения и замораживания. Некоторые виды этих бактерий способны испортить даже засоленные и замороженные продукты. попадают в почву от больных животных и человека. Некоторые виды бактерий и грибов пребывают в почве десятилетия. Этому способствует особенность этих микроорганизмов образовывать споры, которые долгие годы защищают их от неблагоприятных условий внешней среды. Они вызывают самые грозные заболевания – сибирскую язву, ботулизм, и столбняк.

Рис. 18. Возбудитель сибирской язвы. Десятилетия пребывает в почве в спорообразном состоянии. Особо опасная болезнь. Ее второе название – злокачественный карбункул. Прогноз заболевания неблагоприятный.

Рис. 19. Возбудитель ботулизма выделяет сильнейший токсин. 1 мкг этого яда убивает человека. Ботулотоксин поражает нервную систему, глазодвигательные нервы, вплоть до паралича и черепно-мозговые нервы. Смертность от ботулизма достигает 60%.

Рис. 20. Возбудители газовой гангрены очень быстро размножаются в мягких тканях организма без доступа воздуха, вызывая тяжелые поражения. В спорообразном состоянии сохраняется во внешней среде длительное время.

Рис. 21. Гнилостные бактерии.

Рис. 22. Поражение гнилостными бактериями продуктов питания.

Вредные бактерии, поражающие древесину

Ряд бактерий и грибов интенсивно разлагают клетчатку, играя важную санитарную роль. Однако среди них есть бактерии, вызывающие тяжелые заболевания животных. Плесневые грибы разрушают древесину. Деревоокрашивающие грибы окрашивают древесину в разные цвета. Домовой гриб приводит древесину в трухлое состояние. В результате жизнедеятельности этого гриба разрушаются деревянные постройки. Большой ущерб наносит деятельность этих грибов в разрушении животноводческих помещений.

Рис. 23. На фото видно, как домовой гриб разрушил деревянные балки перекрытия.

Рис. 24. Испорченный внешний вид бревен (синева), пораженных деревоокрашивающим грибом.

Рис. 25. Домовой гриб Merulius Lacrimans. а – ватообразная грибница; б – молодое плодовое тело; в – старое плодовое тело; г – старая грибница, шнуры и гниль древесины.

Вредные бактерии в пищевых продуктах

Продукты, обсемененные опасными бактериями, становятся источником кишечных заболеваний: брюшного тифа, сальмонеллеза, холеры, дизентерии и др. Токсины, которые выделяют стафилококки и палочки ботулизма , вызывают токсикоифекции. Сыры и все молочные продукты могут подвергнуться воздействию маслянокислых бактерий , которые вызывают маслянокислое брожение, в результате чего у продуктов появляется неприятный запах и цвет. Уксусные палочки вызывают уксусное брожение, что ведет к прокисанию вина и пива. Бактерии и микрококки, вызывающие гниение, содержат протеолитические ферменты, расщепляющие белки, чем придают продуктам дурно пахнущий запах и горький вкус. Плесенью покрываются продукты в результате поражения плесневыми грибами.

Рис. 26. Хлеб пораженный плесенью.

Рис. 27. Сыp пораженный плесенью и гнилостными бактериями.

Рис. 28. «Дикие дрожжи» Pichia pastoris. Фотография сделана с 600-кратным увеличением. Злостный вредитель пива. Повсеместно встречается в природе.

Вредные бактерии, разлагающие пищевые жиры

Маслянокислые микробы находятся повсюду. 25 их видов вызывают маслянокислое брожение. Жизнедеятельность жирорасщепляющих бактерий приводит к прогорканию масла. Под их воздействием прогоркают семена сои и подсолнечника. Маслянокислое брожение, которое вызывают эти микробы, портят силос, и он плохо поедается скотом. А влажное зерно и сено, пораженное маслянокислыми микробами, самосогревается. Влага, содержащаяся в сливочном масле, является хорошей средой, где размножаются гнилостные бактерии и дрожжевые грибы . Из-за этого масло портится не только снаружи, но и внутри. Если масло хранится долго, то на его поверхности могут поселиться плесневые грибы.

Рис. 29. Икорное масло, пораженное жирорасщепляющими бактериями.

Вредные бактерии, поражающие яйца и яичные продукты

В яйца бактерии и грибы проникают через поры наружной оболочки и ее повреждения. Наиболее чаще яйца инфицируются бактериями сальмонеллами и плесневыми грибами, яичный порошок — сальмонеллами и .

Рис. 30. Испорченные яйца.

Вредные бактерии в баночных консервах

для человека являются токсины ботулиновых палочек и палочек перфрингенс . Их споры проявляют высокую термоустойчивость, что позволяет микробам сохранять жизнедеятельность после пастеризации консервов. Находясь внутри банки, без доступа кислорода, они начинают размножаться. При этом выделяется углекислый газ и водород, от которых банка вздувается. Употребление в пищу такого продукта вызывает тяжелый пищевой токсикоз, который характеризуется крайне тяжелым течением и часто заканчивается смертью больного. Мясные и овощные консервы поражают уксуснокислые бактерии, в результате чего содержимое консерв закисает. Развитие не вызывает вздутие консерв, так как стафилококк не вырабатывает газы.

Рис. 31. Мясные консервы, пораженные уксуснокислыми бактериями в результате чего содержимое консерв закисает.

Рис. 32. Во вздутых консервах могут находиться ботулиновые палочеки и палочки перфрингенс. Вздувает банку углекислый газ, который выделяют бактерии при размножении.

Вредные бактерии в зерновых продуктах и хлебе

Спорынья и другие плесневые грибы, которые поражают зерна, являются самыми опасными для человека. Токсины этих грибов термоустойчивы и не разрушаются при выпечке. Токсикозы, вызванные употреблением такой продукции, протекают тяжело. Мука, пораженная молочнокислыми бактериями , имеет неприятный вкус и специфический запах, комковатая на вид. Уже испеченный хлеб поражается бациллой субтилис (Вас. subtilis) или «тягучей болезнью». Бациллы выделяют ферменты, расщепляющие хлебный крахмал, что проявляется, вначале, не свойственным хлебу запахом, а потом липкостью и тягучестью хлебного мякиша. Зеленая, белая и головчатая плесень поражают уже испеченный хлеб. Распространяется при этом она по воздуху.

Рис. 33. На фото cпорынья пурпурная. Низкие дозы спорыньи вызывают сильные боли, умственные расстройства и агрессивное поведение. Высокие дозы спорыньи вызывают мучительную смерть. Ее действие связано с сокращением мышц под воздействием алкалоидов гриба.

Рис. 34. Грибница плесени.

Рис. 35. Споры зеленой, белой и головчатой плесени могут попасть из воздуха на уже испеченный хлеб и поразить его.

Вредные бактерии, поражающие фрукты, овощи и ягоды

Фрукты, овощи и ягоды обсеменяют почвенные бактерии, плесневые грибы и дрожжи, которые вызывают кишечные инфекции. Микотоксин патулин, который выделяют грибы рода Penicillium , способен вызывать раковые заболевания у человека. Yersinia enterocolitica вызывает заболевание иерсиниоз или псевдотуберкулез, при котором поражаются кожные покровы, желудочно-кишечный тракт и другие органы и системы.

Рис. 36. Поражение ягод плесневыми грибами.

Рис. 37. Поражение кожи при иерсиниозе.

Вредные бактерии проникают в организм человека с продуктами питания, через воздух, раны и слизистые оболочки. Тяжесть заболеваний, вызванных болезнетворными микробами, зависит от ядов, которые они вырабатывают и токсинов, возникающих при их массовой гибели. В течение тысячелетий они приобрели множество приспособлений, позволяющих им проникать и удерживаться в тканях живого организма и противостоять иммунитету.

Изучить вредное влияние микроорганизмов на организм и разработать профилактические мероприятия – вот задача человека!


Статьи раздела "Что мы знаем о микробах" Самое популярное

Понравилась статья? Поделитесь ей
Наверх