Продолговатый мозг, за какие функции отвечает и при каких заболеваниях страдает

Продолговатый мозг – отдел центральной нервной системы, называемый также бульбусом, луковицей или medulla oblongata по-латыни. Находится между спинным отделом, мостом и , является частью головного ствола. Выполняет много важнейших функций: регуляцию дыхания, кровообращения, пищеварения. Является древнейшим образованием центральной нервной системы. Его поражение часто приводит к летальному исходу, так как при этом происходит выключение жизненно важных функций.

Месторасположение и анатомия продолговатого мозга

Задний отдел центральной нервной системы – то место, где находится продолговатый мозг. Снизу он переходит в спинной, а сверху соседствует с мостом. Полость четвертого желудочка, заполненная жидкостью (ликвором), отделяет бульбус от мозжечка. Заканчивается примерно там, где голова переходит в шею, то есть нижняя его граница расположена на уровне затылочного входа (отверстия).

Анатомия продолговатого мозга походит на спинную и головную части центральной нервной системы. Состоит луковица из белого и серого вещества, т.е. проводящих путей и ядер соответственно. Имеет образования (пирамиды), управляющие двигательной функцией и переходящие в передние спинные проводящие пути.

Сбоку от пирамид находятся оливы – овальные образования, разделенные бороздой. На задней поверхности продолговатого мозга находится медианная, промежуточная и латеральная границы. Сзади из латеральной границы выходят черепные волокна девятой, десятой и одиннадцатой пары.

Бульбус центральной нервной системы состоит из следующих образований серого вещества:

  1. Ядро оливы, имеющее связи с зубчатым ядром мозжечка. Обеспечивает равновесие.
  2. Ретикулярная формация – переключатель, интегрирующий различные отделы центральной нервной системы между собой, обеспечивает согласованную работу ядер.
  3. Сосудодвигательный и дыхательный центры.
  4. Ядра языкоглоточного, блуждающего, добавочного и подъязычного нервных волокон.

Белое вещество (нервные волокна продолговатого мозга) обеспечивает проводящую функцию и соединяет головную часть ЦНС со спинной. Различают длинные и короткие волокна. Пирамидные пути и пути клиновидного и тонкого пучков образованы длинными проводящими волокнами.

Функции продолговатого мозга

Бульбус в составе ствола центральной нервной системы отвечает за регуляцию артериального давления, работу дыхательных мышц. Эти функции продолговатого мозга являются жизненно важными для человека. Поэтому его поражение при травмах, других повреждениях часто приводит к летальному исходу.

Основные функции:

  1. Регуляция кровообращения, дыхания.
  2. Наличие рефлексов чихания, кашля.
  3. Ядро языкоглоточного нерва обеспечивает глотание.
  4. Блуждающий нерв имеет вегетативные волокна, оказывающие влияние на работу сердца, пищеварительной системы.
  5. Равновесие обеспечивается связью с мозжечком.

Дыхание регулируется при помощи согласованной работы инспираторного (отвечает за вдох) и экспираторного (ответственен за выдох) отделов. Иногда дыхательный центр угнетается шоковыми состояниями, травмами, инсультами, отравлениями, обменными нарушениями. Подавление его происходит также при гипервентиляции (повышении уровня кислорода в крови). Ядро 10 пары черепных нервов также участвует в дыхании.

Кровообращение регулируется при помощи работы ядра блуждающего нерва, влияющего как на сердечную деятельность, так и на тонус сосудов. Этот центр принимает информацию от сердца, пищеварительной системы и других частей человеческого организма. Десятая пара нервов, исходящая из него, снижает частоту сердечных сокращений.

Блуждающий нерв усиливает работу желудочно-кишечного тракта. Стимулирует выделение соляной кислоты, панкреатических ферментов, ускоряет перистальтику толстого кишечника. Чувствительные волокна его идут от глотки и барабанной перепонки. Двигательные волокна обеспечивают согласование процессов глотания, в котором участвуют мышцы глотки, мягкого нёба.

Языкоглоточные нервы, девятая пара, обеспечивает акт глотания, проталкивание пищевого комка из ротовой полости в глотку, затем пищевод.

Подъязычный нерв имеет двигательные волокна, регулирующие работу мышц языка. Обеспечивает сосание, лизание, глотание, артикуляцию (речь).

Симптомы повреждения бульбуса

Иногда в результате травм, интоксикаций, обменных заболеваний, кровоизлияний, ишемий, шоковых состояний деятельность medulla oblongata нарушается, что приводит к бульбарному синдрому. Основные причины патологии:

  1. Инсульты (кровоизлияния).
  2. Сирингомиелия (наличие полостей).
  3. Порфирия.
  4. Ботулизм.
  5. Дислокационный синдром при травмах, гематомах.
  6. Сахарный диабет, кетоацидоз.
  7. Действие лекарственных средств нейролептиков.

Важно узнать, : строение, функции, симптомы при патологических состояниях.

К чему приводят : лечение, диагностика, профилактика.

На заметку: и к чему приводит нарушение его функций.

Симптомы поражения продолговатого мозга включают:

  1. Нарушение кровообращения: брадикардия, снижение давления.
  2. Расстройство дыхательной функции: дыхание Куссмауля при кетоацидозе, одышка.
  3. Нарушение глотания, жевания.
  4. Двигательные расстройства.
  5. Потеря вкуса.
  6. Нарушение рефлексов.
  7. Расстройство речи.

При повреждении этого отдела мозга возможно выключение функции респираторного центра, приводящее к асфиксии (удушению). Расстройство прессорного отдела вызывает падение артериального давления.

Включают нарушение глотания, поперхивание пищей. У человека замедляются сердечные сокращения, возникает одышка. Так как нарушается деятельность подъязычного нерва, пациент теряет способность произносить слова, осуществлять жевание. Возможно вытекание слюны изо рта.

Как видно из статьи, продолговатый мозг имеет значение в обеспечении жизнедеятельности человека. Кровообращение, дыхание – главнейшие его функции. Повреждения этого отдела могут привести к смерти.

Продолговатый мозг - часть ствола головного мозга - получил свое название в связи с особенностями анатомического строения. Расположен он в задней черепной ямке, сверху граничит с варолиевым мостом; книзу без четкой границы переходит в спинной мозг через большое затылочное отверстие. Продолговатый мозг состоит из ядер черепных нервов, а также нисходящих и восходящих проводниковых систем. Важное образование продолговатого мозга - сетевидная субстанция, или ретикулярная формация. Ядерными образованиями продолговатого мозга являются: 1) оливы, имеющие отношение к экстрапирамидной системе (они связаны с мозжечком); 2) ядра Голля и Бурдаха, в которых расположены вторые нейроны проприоцептивно; В продолговатом мозге проходят проводящие пути: нисходящие и восходящие, связывающие продолговатый мозг со спинным мозгом, верхним отделом ствола мозга, стриопаллидарной системой, корой больших полушарий, ретикулярной формацией, лимбической системой.Проводящие пути продолговатого мозга являются продолжением путей спинного мозга. Спереди располагаются образующие перекрест пирамидные пути. Большая часть волокон пирамидного пути перекрещивается и переходит в боковой столб спинного мозга. Меньшая, неперекрещенная, часть переходит в передний столб спинного мозга. В средней части продолговатого мозга лежат проприоцептивные чувствительные пути от ядер Голля и Бурдаха; эти пути переходят на противоположную сторону. Кнаружи от них проходят волокна поверхностной чувствительности (температурной, болевой).Наряду с чувствительными путями и пирамидным путем через продолговатый мозг проходят нисходящие эфферентные пути экстрапирамидной системы.На уровне продолговатого мозга в составе нижней мозжечковой ножки проходят восходящие пути к мозжечку. В продолговатом мозге располагаются следующие центры: регулирующие сердечную деятельность, дыхательный и сосудо-двигательный, тормозящие деятельность сердца (система блуждающего нерва), возбуждающие слезоотделение, секрецию слюнных, поджелудочных и желудочных желез, вызывающие выделение желчи и сокращение желудочно-кишечного тракта, т.е. центры, регулирующие деятельность пищеварительных органов. Сосудо-двигательный центр находится в состоянии повышенного тонуса.Являющийся частью ствола мозга, продолговатый мозг принимает участие в осуществлении простых и сложных рефлекторных актов. В выполнении этих актов участвуют также ретикулярная формация ствола мозга, система ядер продолговатого мозга (блуждающего, языко-глоточного, вестибулярного, тройничного), нисходящие и восходящие проводниковые системы продолговатого мозга.Продолговатому мозгу принадлежит важная роль в регуляции дыхания, сердечно-сосудистой деятельности, которые возбуждаются как нервно-рефлекторными импульсами, так и химическими раздражителями, воздействующими на эти центры.Дыхательный центр обеспечивает регуляцию ритма и частоты дыхания. На уровне продолговатого мозга располагается сосудодвигательный центр, который регулирует сужение и расширение сосудов. Ядра продолговатого мозга принимают участие в обеспечении сложных рефлекторных актов (сосания, жевания, глотания, рвоты, чихания, моргания), благодаря которым осуществляется ориентировка в окружающем мире и выживание индивидуума. В связи с важностью этих функций системы блуждающего, языко-глоточного, подъязычного и тройничного нервов развиваются на самых ранних этапах онтогенеза. Даже при анэнцефалии (речь идет о детях, которые рождаются без коры больших полушарий) сохраняются акты сосания, жевания, глотания. Сохранность этих актов обеспечивает выживаемость этих детей.Средний мозг связывает два передних отдела мозга с двумя задними отделами мозга, поэтому все нервные пути головного мозга проходят через эту область, составляющую часть ствола головного мозга. Крышу среднего мозга образует четверохолмие, где находятся центры зрительных рефлексов и слуховых рефлексов. Верхняя пара бугорков четверохолмия получает сенсорные импульсы от глаз и мышц головы и контролирует зрительные рефлексы. Нижняя пара бугорков четверохолмия получает импульсы от ушей и мышц головы и контролирует слуховые рефлексы.В вентральной части среднего мозга расположены многочисленные центры или ядра, управляющие разнообразными бессознательными стереотипными движениями, таким как наклоны или повороты головы и туловища.

Основная функция дыхательной системы заключается в обеспечении газообмена кислорода и углекислого газа между окружающей средой и организмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов ЦНС, которые связаны с дыхательным центром продолговатого мозга.

Под дыхательным центром понимают совокупность нейронов, расположенных в разных отделах ЦНС, обеспечивающих координированную деятельность мышц и приспособление дыхания к условиям внешней и внутренней среды. В 1825 г. П. Флуранс выделил в ЦНС «жизненный узел», Н.А. Миславский (1885) открыл инспираторную и экспираторную части, а позже Ф.В. Овсянниковым был описан дыхательный центр.

Дыхательный центр представляет собой парное образование, состоящее из центра вдоха (инспираторного) и центра выдоха (экспираторного). Каждый центр регулирует дыхание одноименной стороны: при разрушении дыхательного центра с одной стороны наступает прекращение дыхательных движений с этой стороны.

Экспираторный отдел - часть дыхательного центра, регулирующая процесс выдоха (его нейроны располагаются в вентральном ядре продолговатого мозга).

Инспираторный отдел — часть дыхательного центра, регулирующая процесс вдоха (локализуется преимущественно в дорсальном отделе продолговатого мозга).

Нейроны верхнего отдела моста, регулирующие акт дыхания, были названы пневмотаксическим центром. На рис. 1 показано расположение нейронов дыхательного центра в различных отделах ЦНС. Центр вдоха обладает автоматизмом и находится в тонусе. Центр выдоха регулируется из центра вдоха через пневмотаксический центр.

Ппевмотаксический комплекс — часть дыхательного центра, расположенная в области варолиева моста и регулирующая вдох и выдох (во время вдоха вызывает возбуждение центра выдоха).

Рис. 1. Локализация дыхательных центров в нижней части ствола мозга (вид сзади):

ПН — пневмотаксический центр; ИНСП — инспираторный; ЗКСП — экспираторный. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один. Перерезка по линии 1 не отражается на дыхании, по линии 2 отделяется пневмотаксический центр, ниже линии 3 наступает остановка дыхания

В структурах моста тоже различают два дыхательных центра. Один из них — пневмотаксический — способствует смене вдоха на выдох (за счет переключения возбуждения из центра вдоха на центр выдоха); второй центр осуществляет тоническое влияние на дыхательный центр продолговатого мозга.

Экспираторный и инспираторный центры находятся в реципрокных отношениях. Под влиянием спонтанной активности нейронов инспираторного центра возникает акт вдоха, во время которого при растяжении легких возбуждаются механорецепторы. Импульсы от механорецепторов по афферентным нейронам возбуждающего нерва поступают вдыхательный центр и вызывают возбуждение экспираторного и торможение инспираторного центра. Это обеспечивает смену вдоха на выдох.

В смене вдоха на выдох существенное значение имеет пневмотаксический центр, который свое влияние осуществляет через нейроны экспираторного центра (рис. 2).

Рис. 2. Схема нервных связей дыхательного центра:

1 — инспираторный центр; 2 — пневмотаксический центр; 3 — экспираторный центр; 4 — механорецепторы легкого

В момент возбуждения инспираторного центра продолговатого мозга одновременно возникает возбуждение в инспираторном отделе пневмотаксического центра. От последнего по отросткам его нейронов импульсы приходят к экспираторному центру продолговатого мозга, вызывая его возбуждение и по индукции — торможение инспираторного центра, что приводит к смене вдоха на выдох.

Таким образом, регуляция дыхания (рис. 3) осуществляется благодаря согласованной деятельности всех отделов ЦНС, объединенных понятием дыхательного центра. На степень активности и взаимодействие отделов дыхательного центра влияют различные гуморальные и рефлекторные факторы.

Автомашин дыхательного центра

Способность дыхательного центра к автоматии впервые обнаружена И.М. Сеченовым (1882) в опытах на лягушках в условиях полной деафферентации животных. В этих экспериментах, несмотря на то что афферентные импульсы не поступали в ЦНС, регистрировались колебания потенциалов в дыхательном центре продолговатого мозга.

Об автоматии дыхательного центра свидетельствует опыт Гейманса с изолированной головой собаки. Ее мозг был перерезан на уровне моста и лишен различных афферентных влияний (были перерезаны языкоглоточный, язычный и тройничный нервы). В этих условиях к дыхательному центру не поступали импульсы не только от легких и дыхательных мышц (вследствие предварительного отделения головы), но и от верхних дыхательных путей (вследствие перерезки названных нервов). Тем не менее у животного сохранились ритмические движения гортани. Этот факт можно объяснить только наличием ритмической активности нейронов дыхательного центра.

Автоматия дыхательного центра поддерживается и изменяется под влиянием импульсов от дыхательных мышц, сосудистых рефлексогенных зон, различных интеро- и экстерорецепторов, а также под влиянием многих гуморальных факторов (рН крови, содержание углекислого газа и кислорода в крови и др).

Влияние углекислого газа на состояние дыхательного центра

Влияние углекислого газа на активность дыхательного центра особенно ярко демонстрируется в опыте Фредерика с перекрестным кровообращением. У двух собак перерезают сонные артерии и яремные вены и соединяют перекрестно: периферический конец сонной артерии соединяют с центральным концом этого же сосуда второй собаки. Так же перекрестно соединяют и яремные вены: центральный конец яремной вены первой собаки соединяется с периферическим концом яремной вены второй собаки. В результате кровь от туловища первой собаки поступает к голове второй собаки, а кровь от туловища второй собаки — к голове первой собаки. Все другие сосуды перевязывают.

После такой операции у первой собаки производили зажатие трахеи (удушение). Это приводило к тому, что через некоторое время наблюдались увеличение глубины и частоты дыхания у второй собаки (гиперпноэ), тогда как у первой собаки наступала остановка дыхания (апноэ). Объясняется это тем, что у первой собаки в результате зажатия трахеи не осуществлялся обмен газов, а в крови увеличивалось содержание углекислого газа (наступала гиперкапния) и уменьшалось содержание кислорода. Эта кровь поступала к голове второй собаки и оказывала влияние на клетки дыхательного центра, следствием чего явилось гиперпноэ. Но в процессе усиленной вентиляции легких в крови второй собаки уменьшалось содержание углекислого газа (гипокапния) и увеличивалось содержание кислорода. Кровь с уменьшенным содержанием углекислого газа поступала к клеткам дыхательного центра первой собаки, и раздражение последнего уменьшалось, что приводило к апноэ.

Таким образом, увеличение содержания углекислого газа в крови приводит к увеличению глубины и частоты дыхания, а уменьшение содержания углекислого газа и увеличение кислорода — к его уменьшению вплоть до остановки дыхания. В тех наблюдениях, когда первой собаке давали дышать различными газовыми смесями, наибольшее изменение дыхания наблюдалось при увеличении содержания углекислого газа в крови.

Зависимость деятельности дыхательного центра от газового состава крови

Деятельность дыхательного центра, определяющая частоту и глубину дыхания, зависит прежде всего от напряжения газов, растворенных в крови, и концентрации в ней водородных ионов. Ведущее значение в определении величины вентиляции легких имеет напряжение углекислого газа в артериальной крови: оно как бы создает запрос на нужную величину вентиляции альвеол.

Для обозначения повышенного, нормального и сниженного напряжения углекислого газа в крови используют термины «гиперкапния», «нормокапния» и «гипокапния» соответственно. Нормальное содержание кислорода называется нормоксией , недостаток кислорода в организме и тканях - гипоксией, в крови - гипоксемиеи. Увеличение напряжения кислорода есть гиперксия. Состояние, при котором гиперкапния и гипоксия существуют одновременно, называется асфиксией.

Нормальное дыхание в состоянии покоя называется эипноэ. Гиперкапния, а также снижение величины рН крови (ацидоз) сопровождаются непроизвольным увеличением вентиляции легких - гиперпноэ , направленным на выведение из организма избытка углекислого газа. Вентиляция легких возрастает преимущественно за счет глубины дыхания (увеличения дыхательного объема), но при этом возрастает и частота дыхания.

Гипокапния и повышение уровня рН крови ведут к уменьшению вентиляции, а затем и к остановке дыхания - апноэ.

Развитие гипоксии вначале вызывает умеренное гиперпноэ (в основном в результате возрастания частоты дыхания), которое при увеличении степени гипоксии сменяется ослаблением дыхания и его остановкой. Апноэ вследствие гипоксии смертельно опасно. Его причиной является ослабление окислительных процессов в мозге, в том числе в нейронах дыхательного центра. Гипоксическому апноэ предшествует потеря сознания.

Гиперкаинию можно вызвать вдыханием газовых смесей с повышенным до 6% содержанием углекислого газа. Деятельность дыхательного центра человека находится под произвольным контролем. Произвольная задержка дыхания на 30-60 с вызывает асфиксичсские изменения газового состава крови, после прекращения задержки наблюдается гиперпноэ. Гипокапнию легко вызывать произвольным усилением дыхания, а также избыточной искусственной вентиляцией легких (гипервентиляция). У бодрствующего человека даже после значительной гипервентиляции остановки дыхания обычно не возникает вследствие контроля дыхания передними отделами мозга. Гипокапния компенсируется постепенно, в течение нескольких минут.

Гипоксия наблюдается при подъеме на высоту вследствие снижения атмосферного давления, при крайне тяжелой физической работе, а также при нарушении дыхания, кровообращения и состава крови.

Во время сильной асфиксии дыхание становится максимально глубоким, в нем принимают участие вспомогательные дыхательные мышцы, возникает неприятное ощущение удушья. Такое дыхание называют диспноэ.

В целом поддержание нормального газового состава крови основано на принципе отрицательной обратной связи. Так, гииеркапния вызывает усиление активности дыхательного центра и увеличение вентиляции легких, а гипокапния — ослабление деятельности дыхательного центра и уменьшение вентиляции.

Рефлекторные влияния на дыхание с сосудистых рефлексогенных зон

Дыхание особенно быстро реагирует на различные раздражения. Оно быстро изменяется под влиянием импульсов, приходящих с экс- теро- и интерорецепторов к клеткам дыхательного центра.

Раздражителем рецепторов могут быть химические, механические, температурные и другие воздействия. Наиболее ярко выраженным механизмом саморегуляции является изменение дыхания под влиянием химического и механического раздражения сосудистых рефлексогенных зон, механического раздражения рецепторов легких и дыхательных мышц.

Синокаротидная сосудистая рефлексогенная зона содержит рецепторы, чувствительные к содержанию углекислого газа, кислорода и водородных ионов в крови. Это отчетливо показано в опытах Гейманса с изолированным каротидным синусом, который отделяли от сонной артерии и снабжали кровью от другого животного. С ЦНС каротидный синус был соединен только нервным путем — сохранился нерв Геринга. При повышении содержания углекислого газа в крови, омывающей каротидное тельце, возникает возбуждение хеморецепторовэтой зоны, вследствие чего увеличивается количество импульсов, идущих к дыхательному центру (к центру вдоха), и наступает рефлекторное увеличение глубины дыхания.

Рис. 3. Регуляция дыхания

К — кора; Гт — гипоталамус; Пвц — пневмотаксический центр; Апц — центр дыхания (экспираторный и инспираторный); Ксин — каротидный синус; Бн — блуждающий нерв; См — спинной мозг; С 3 -С 5 — шейные сегменты спинного мозга; Дфн — диафрагмальный нерв; ЭМ — экспираторные мышцы; ИМ — инспираторные мышцы; Мнр — межреберные нервы; Л — легкие; Дф — диафрагма; Th 1 — Th 6 — грудные сегменты спинного мозга

Увеличение глубины дыхания наступает и при воздействии углекислого газа на хеморецепторы аортальной рефлексогенной зоны.

Такие же изменения дыхания наступают при раздражении хемо- рецепторов названных рефлексогенных зон кровыо с повышенной концентрацией водородных ионов.

В тех же случаях, когда в крови увеличивается содержание кислорода, раздражение хеморецепторов рефлексогенных зон уменьшается, вследствие чего ослабевает поток импульсов к дыхательному центру и наступает рефлекторное уменьшение частоты дыхания.

Рефлекторным возбудителем дыхательного центра и фактором, влияющим на дыхание, является изменение АД в сосудистых рефлексогенных зонах. При повышении АД раздражаются механорецепторы сосудистых рефлексогенных зон, вследствие чего наступает рефлекторное угнетение дыхания. Уменьшение величины АД приводит к увеличению глубины и частоты дыхания.

Рефлекторные влияния на дыхание с механорецепторов легких и дыхательных мышц. Существенным фактором, вызывающим смену вдоха и выдоха, являются влияния с механорецепторов легких, что впервые было обнаружено Герингом и Брейером (1868). Они показали, что каждый вдох стимулирует выдох. Во время вдоха при растяжении легких раздражаются механорецепторы, расположенные в альвеолах и дыхательных мышцах. Возникшие в них импульсы по афферентным волокнам блуждающего и межреберных нервов приходят к дыхательному центру и вызывают возбуждение экспираторных и торможение инспираторных нейронов, вызывая смену вдоха на выдох. Это один из механизмов саморегуляции дыхания.

Подобно рефлексу Геринга-Брейера, осуществляются рефлекторные влияния на дыхательный центр от рецепторов диафрагмы. Во время вдоха в диафрагме при сокращении ее мышечных волокон раздражаются окончания нервных волокон, возникающие в них импульсы поступают в дыхательный центр и вызывают прекращение вдоха и возникновение выдоха. Этот механизм имеет особенно большое значение при усиленном дыхании.

Рефлекторные влияния на дыхание с различных рецепторов организма. Рассмотренные рефлекторные влияния на дыхание относятся к постоянно действующим. Но существуют различные кратковременные воздействия почти со всех рецепторов нашего организма, которые влияют на дыхание.

Так, при действии механических и температурных раздражителей на экстерорецепторы кожи наступает задержка дыхания. При действии холодной или горячей воды на большую поверхность кожи возникает остановка дыхания на вдохе. Болевое раздражение кожи вызывает резкий вдох (вскрикивание) с одновременным закрытием голосовой шели.

Некоторые изменения акта дыхания, возникающие при раздражении слизистых оболочек дыхательных путей, получили название защитных дыхательных рефлексов: кашель, чихание, задержка дыхания, наступающая при действии резких запахов, и др.

Дыхательный центр и его связи

Дыхательным центром называют совокупность нейронных структур, расположенных в различных отделах центральной нервной системы, регулирующих ритмические координированные сокращения дыхательных мышц и приспосабливающих дыхание к изменяющимся условиям среды и потребностям организма. Среди этих структур выделяют жизненно важные отделы дыхательного центра, без функционирования которых дыхание прекращается. К ним относятся отделы, расположенные в продолговатом и спинном мозге. В спинном мозге к структурам дыхательного центра относят мотонейроны, формирующие их аксонами диафрагмальные нервы (в 3-5-м шейных сегментах), и мотонейроны, формирующие межреберные нервы (во 2-10-м грудных сегментах, при этом испираторные нейроны сосредоточены во 2-6-м, а экспираторные — в 8-10-м сегментах).

Особую роль в регуляции дыхания играет дыхательный центр, представленный отделами, локализованными в стволе мозга. Часть нейронных групп дыхательного центра расположена в правой и левой половинах продолговатого мозга в области дна IV желудочка. Выделяют дорзальную группу нейронов, активирующих мышцы вдоха, — инспираторный отдел и вентральную группу нейронов, контролирующих преимущественно выдох, — экспираторный отдел.

В каждом из этих отделов имеются различные по свойствам нейроны. Среди нейронов инспираторного отдела выделяют: 1) ранние инспираторные — их активность повышается за 0,1-0,2 с до начала сокращения инспираторных мышц и длится в течение вдоха; 2) полные инспираторные — активны во время вдоха; 3) поздние инспираторные — активность повышается в середине вдоха и заканчивается в начале выдоха; 4) нейроны промежуточного типа. Часть нейронов инспираторного отдела обладает способностью самопроизвольно ритмически возбуждаться. Описаны аналогичные по свойствам нейроны в экспираторном отделе дыхательного центра. Взаимодействие между этими нейронными пулами обеспечивает формирование частоты и глубины дыхания.

Важная роль в определении характера ритмической активности нейронов дыхательного центра и дыхания принадлежит сигналам, приходящим к центру по афферентным волокнам от рецепторов, а также от коры большого мозга, лимбической системы и гипоталамуса. Упрощенная схема нервных связей дыхательного центра представлена на рис. 4.

Нейроны инспираторного отдела получают информацию о напряжении газов в артериальной крови, рН крови от хеморецепторов сосудов и о рН ликвора от центральных хеморецепторов, расположенных на вентральной поверхности продолговатого мозга.

К дыхательному центру поступают также нервные импульсы от рецепторов, контролирующих растяжение легких и состояние дыхательных и других мышц, от терморецепторов, болевых и сенсорных рецепторов.

Сигналы, поступающие к нейронам дорзальной части дыхательного центра, модулируют их собственную ритмическуюактивность и оказывают влияние на формирование ими потоков эфферентных нервных импульсов, передающихся в спинной мозг и далее к диафрагме и наружным межреберным мышцам.

Рис. 4. Дыхательный центр и его связи: ИЦ — инспираторный центр; ПЦ — инсвмотакснчсскнй центр; ЭЦ — экспираторный центр; 1,2- импульсы от рецепторов растяжения дыхательных путей, легких и грудной клетки

Таким образом, дыхательный цикл запускается инспираторными нейронами, которые активируются благодаря автома- тии, а его продолжительность, частота и глубина дыхания зависят от влияния на нейронные структуры дыхательного центра сигналов рецепторов, чувствительных к уровню р0 2 , рС0 2 и рН, а также от других интеро- и экстерорецепторов.

Эфферентные нервные импульсы от инспираторных нейронов передаются по нисходящим волокнам в составе вентрального и передней части бокового канатика белого вещества спинного мозга к а-мотонейронам, формирующим диафрагмальные и межреберные нервы. Все волокна, следующие к мотонейронам, иннервирующим мышцы выдоха, являются перекрещенными, а из волокон, следующих к моторным нейронам, иннервирующим инспираторные мышцы, перекрещены 90%.

Моторные нейроны, активированные потоком нервных импульсов инспираторных нейронов дыхательного центра, посылают эфферентные импульсы к нервно-мышечным синапсам мышц вдоха, обеспечивающих увеличение объема грудной клетки. Вслед за грудной клеткой увеличивается объем легких и происходит вдох.

Во время вдоха активируются рецепторы растяжения дыхательных путей и легких. Поток нервных импульсов от этих рецепторов по афферентным волокнам блуждающего нерва поступает в продолговатый мозг и активирует экспираторные нейроны, запускающие выдох. Так замыкается один контур механизма регуляции дыхания.

Второй регуляторный контур также начинается от инспираторных нейронов и проводит импульсы к нейронам пневмотаксического отдела дыхательного центра, расположенного в мосту ствола мозга. Этот отдел координирует взаимодействие между инспираторными и экспираторными нейронами продолговатого мозга. Пневмотаксический отдел перерабатывает пришедшую от инспираторного центра информацию и посылает поток импульсов, возбуждающих нейроны экспираторного центра. Потоки импульсов, приходящих от нейронов пневмотаксического отдела и от рецепторов растяжения легких, конвергируют на экспираторных нейронах, возбуждают их, экспираторные нейроны тормозят (но принципу реципрокного торможения) активность инспираторных нейронов. Посылка нервных импульсов к мышцам вдоха прекращается и они расслабляются. Этого достаточно, чтобы произошел спокойный выдох. При усиленном выдохе от экспираторных нейронов посылаются эфферентные импульсы, вызывающие сокращение внутренних межреберных мышц и мышц брюшного пресса.

Описанная схема нервных связей отражает лишь наиболее общий принцип регуляции дыхательного цикла. В действительности же афферентные потоки сигналов от многочисленных рецепторов дыхательных путей, сосудов, мышц, кожи и т.д. поступают ко всем структурам дыхательного центра. На одни группы нейронов они оказывают возбуждающее действие, на другие — тормозное. Переработка и анализ этой информации в дыхательном центре ствола мозга находится под контролем и корригируется высшими отделами головного мозга. Например, гипоталамус играет ведущую роль в изменениях дыхания, связанных с реакциями на болевые раздражения, физическую нагрузку, а также обеспечивает вовлечение дыхательной системы в терморегуляторные реакции. Лимбические структуры оказывают влияние на дыхание при эмоциональных реакциях.

Кора большого мозга обеспечивает включение дыхательной системы в поведенческие реакции, речевую функцию, пенис. О наличии влияния коры большого мозга на отделы дыхательного центра в продолговатом и спинном мозге свидетельствует возможность произвольного изменения частоты, глубины и задержки дыхания человеком. Влияние коры мозга на бульбарный дыхательный центр достигается как через кортико-бульбарные пути, так и через подкорковые структуры (стрпопаллидариые, лимбические, ретикулярную формацию).

Рецепторы кислорода, углекислого газа и рН

Рецепторы кислорода активны уже при нормальном уровне рО 2 и непрерывно посылают потоки сигналов (тоническая импульсация), активирующих инспираторные нейроны.

Рецепторы кислорода сосредоточены в каротидных тельцах (область бифуркации общей сонной артерии). Они представлены гломусными клетками 1-го типа, которые окружены поддерживающими клетками и имеют синаптоподобные связи с окончаниями афферентных волокон языкоглоточного нерва.

Гломусные клетки 1-го типа реагируют на снижение рО 2 в артериальной крови усилением выделения медиатора допамина. Допамин вызывает генерацию нервных импульсов в окончаниях афферентных волокон язы ко глоточного нерва, которые проводятся к нейронам инспираторного отдела дыхательного центра и к нейронам прессорного отдела сосудодвигательного центра. Таким образом, снижение напряжения кислорода в артериальной крови приводит к увеличению частоты посылки афферентных нервных импульсов и повышению активности инспираторных нейронов. Последние увеличивают вентиляцию легких, главным образом за счет учащения дыхания.

Рецепторы, чувствительные к углекислому газу, имеются в каротидных тельцах, аортальных тельцах дуги аорты, а также непосредственно в продолговатом мозге — центральные хеморецепторы. Последние расположены на вентральной поверхности продолговатого мозга в области между выходом подъязычного и блуждающего нервов. Рецепторы углекислого газа воспринимают также изменения концентрации ионов Н + . Рецепторы артериальных сосудов реагируют на изменения рС0 2 и рН плазмы крови, при этом поступление к инспиратор- ным нейронам афферентных сигналов от них возрастает при увеличении рСО 2 , и (или) снижении рН плазмы артериальной крови. В ответ на поступление от них большего числа сигналов в дыхательный центр рефлекторно увеличивается вентиляция легких за счет углубления дыхания.

Центральные хеморецепторы реагируют на изменения рН и рСО 2 , ликвора и межклеточной жидкости продолговатого мозга. Считают, что центральные хеморецепторы преимущественно реагируют на изменение концентрации протонов водорода (рН) в интерстициальной жидкости. При этом изменение рН достигается вследствие легкого проникновения углекислого газа из крови и ликвора через структуры гематоэнцефалического барьера в мозг, где в результате его взаимодействия с Н 2 0 образуется углекислота, диссоциирующая с высвобождением прогонов водорода.

Сигналы от центральных хеморецепторов также проводятся к инспираторным нейронам дыхательного центра. Некоторой чувствительностью к сдвигу рН интерстициальной жидкости обладают сами нейроны дыхательного центра. Снижение рН и накопление углекислого газа в ликворе сопровождается активацией инспираторных нейронов и увеличением вентиляции легких.

Таким образом, регуляция рС0 0 и рН тесно связаны как на уровне эффекторных систем, влияющих на содержание водородных ионов и карбонатов в организме, так и на уровне центральных нервных механизмов.

При быстром развитии гиперкапнии увеличение вентиляции легких лишь приблизительно на 25% вызвано стимуляцией периферических хеморсцегггоров углекислого газа и рН. Остальные 75% связаны с активацией протонами водорода и углекислым газом центральных хеморецепторов продолговатого мозга. Это обусловлено высокой проницаемостью гематоэнцефалического барьера для углекислого газа. Поскольку ликвор и межклеточная жидкость мозга имеют гораздо меньшую емкость буферных систем, чем кровь, то аналогичное с кровью по величине возрастание рС0 2 создает в ликворе более кислую среду, чем в крови:

При длительной гиперкапнии рН ликвора возвращается к норме из-за постепенного увеличения проницаемости гематоэнцефалического барьера для анионов НС0 3 и накопления их в ликворе. Это приводит к снижению вентиляции, развившейся в ответ на гиперкапнию.

Чрезмерное увеличение активности рецепторов рСО 0 и рН способствуют возникновению субъективно тягостных, мучительных ощущений удушья, нехватки воздуха. В этом легко убедиться, если сделать длительную задержку дыхания. В то же время при недостатке кислорода и снижении р0 2 в артериальной крови, когда рСО 2 и рН крови поддерживаются нормальными, человек не испытывает неприятных ощущений. Следствием этого могут быть ряд опасностей, возникающих в быту или в условиях дыхания человека газовыми смесями из замкнутых систем. Наиболее часто они имеют место при отравлении угарным газом (смерть в гараже, другие бытовые отравления), когда человек из-за отсутствия явных ощущений удушья не предпринимает защитных действий.

Головной мозг выполняет самые важные функции в человеческом теле и является главным органом центральной нервной системы. При прекращении его деятельности, даже если дыхание поддерживается с помощью искусственной вентиляции лёгких, врачи констатируют клиническую смерть.

Анатомия

Продолговатый мозг помещается в задней черепной выемке и похож на перевёрнутую луковицу. Снизу через затылочное отверстие он соединяется со спинным мозгом, сверху имеет общую границу с Где находится продолговатый мозг в черепной коробке, наглядно изображено на картинке, размещенной далее в статье.

У взрослого человека орган в самой широкой его части приблизительно 15 мм в диаметре, в полную длину достигает не более 25 мм. Снаружи продолговатый мозг обволакивает а внутри он заполнен серым веществом. В нижней его части расположены отдельные сгустки - ядра. Через них осуществляются рефлексы, охватывающие все системы организма. Давайте разберёмся подробнее в строении продолговатого мозга.

Внешняя часть

Вентральная поверхность - это внешняя передняя часть продолговатого мозга. Она состоит из парных конусовидных боковых долей, расширяющихся кверху. Отделы образованы пирамидными трактами и имеют срединную щель.

Дорсальная поверхность - это задняя внешняя часть продолговатого мозга. Выглядит как два цилиндрических утолщения, разделённых срединной бороздой, состоит из волокнистых пучков, соединяющихся со спинным мозгом.

Внутренняя часть

Рассмотрим анатомию продолговатого мозга, отвечающего за двигательные функции скелетных мышц и формирование рефлексов. Ядро оливы представляет собой пластину серого вещества с зазубренными краями и напоминает форму подковы. Оно находится по бокам пирамидных частей и имеет вид овального возвышения. Ниже располагается ретикулярная формация, состоящая из сплетений нервных волокон. Продолговатый мозг включает ядра черепных нервов, центры дыхания и кровоснабжения.

Ядра

Содержит 4 ядра и оказывает влияние на следующие органы:

  • мышцы глотки;
  • нёбные миндалины;
  • рецепторы вкуса задней части языка;
  • слюнные железы;
  • барабанные полости;
  • слуховые трубы.

Блуждающий нерв включает 4 ядра продолговатого мозга и отвечает за работу:

  • органов живота и груди;
  • мышц гортани;
  • кожных рецепторов ушной раковины;
  • внутренних желёз брюшной полости;
  • органов шеи.

Добавочный нерв имеет 1 ядро, контролирует грудинно-ключичную и трапециевидную мышцы. содержит 1 ядро и оказывает влияние на мышцы языка.

Каковы функции продолговатого мозга?

Рефлекторная функция выступает как барьер при попадании болезнетворных микробов и внешних раздражителей, регулирует тонус мышц.

Защитные рефлексы:

  1. При поступлении в желудок слишком большого объёма пищи, ядовитых веществ или при раздражении вестибулярного аппарата рвотный центр в продолговатом мозге даёт команду организму на его опорожнение. При срабатывании рвотного рефлекса содержимое желудка выходит через пищевод.
  2. Чихание - это безусловный рефлекс, удаляющий пыль и другие раздражающие агенты из носоглотки путём ускоренного выдоха.
  3. Выделение слизи из носа выполняет функцию защиты организма от проникновения патогенных бактерий.
  4. Кашель - это форсированный выдох, вызываемый сокращением мышц верхних дыхательных путей. Очищает бронхи от мокроты и слизи, предохраняет трахею от попадания в неё инородных предметов.
  5. Моргание и слезоотделение - это защитные рефлексы глаз, возникающие при контакте с посторонними агентами и защищающие роговицы от пересыхания.

Тонические рефлексы

Центры продолговатого мозга отвечают за тонические рефлексы:

  • статические: положение тела в пространстве, вращение;
  • статокинетические: установочные и выпрямительные рефлексы.

Пищевые рефлексы:

  • выделение желудочного сока;
  • сосание;
  • глотание.

Каковы функции продолговатого мозга в остальных случаях?

  • сердечно-сосудистые рефлексы регулируют работу сердечной мышцы и кровообращение;
  • дыхательная функция обеспечивает вентиляцию лёгких;
  • проводниковая - отвечает за тонус скелетной мускулатуры и выступает анализатором сенсорных раздражителей.

Симптомы при поражении

Первые описания анатомии продолговатого мозга встречаются в XVII веке после изобретения микроскопа. Орган имеет сложную структуру и включает главные центры нервной системы, при нарушении работы которых страдает весь организм.

  1. Гемиплегия (перекрёстный паралич) - паралич правой руки и левой нижней половины туловища или наоборот.
  2. Дизартрия - ограничение подвижности органов речи (губ, нёба, языка).
  3. Гемианестезия - снижение чувствительности мышц одной половины лица и онемение нижней противоположной части туловища (конечностей).

Другие признаки дисфункции продолговатого мозга:

  • остановка умственного развития;
  • односторонние параличи тела;
  • нарушение потоотделения;
  • потеря памяти;
  • парез мышц лица;
  • тахикардия;
  • снижение вентиляции лёгких;
  • западение глазного яблока;
  • сужение зрачка;
  • торможение формирования рефлексов.

Альтернирующие синдромы

Изучение анатомии продолговатого мозга показало, что при поражении левой или правой части органа возникают альтернирующие (чередующиеся) синдромы. Заболевания вызываются нарушением проводниковых функций черепных нервов с одной стороны.

Синдром Джексона

Развивается при дисфункции ядер подъязычного нерва, образовании тромбов в ветвях подключичной и позвоночной артерии.

Симптомы:

  • паралич мышц гортани;
  • нарушение двигательной реакции;
  • парез языка с одной стороны;
  • гемиплегия;
  • дизартрия.

Синдром Авеллиса

Диагностируется при поражении пирамидных отделов мозга.

Симптомы:

  • паралич мягкого нёба;
  • нарушение глотания;
  • дизартрия.

Синдром Шмидта

Возникает при дисфункции двигательных центров продолговатого мозга.

Симптомы:

  • паралич трапециевидной мышцы;
  • несвязная речь.

Синдром Валленберга-Захарченко

Развивается при нарушении проводящей способности волокон мышц глаза и дисфункции подъязычного нерва.

Симптомы:

  • вестибулярно-мозжечковые изменения;
  • парез мягкого нёба;
  • снижение чувствительности кожи лица;
  • гипертонус скелетных мышц.

Синдром Глика

Диагностируется при обширном поражении отделов ствола мозга и ядер продолговатого мозга.

Симптомы:

  • снижение зрения;
  • спазм мимических мышц;
  • нарушение глотательной функции;
  • гемипарез;
  • боль косточек под глазами.

Гистологическое строение продолговатого мозга схоже со спинным, при поражении ядер происходит нарушение формирования условных рефлексов и двигательных функций организма. Для определения точного диагноза проводят инструментально-лабораторные исследования: томографию головного мозга, забор цереброспинальной жидкости, рентгенографию черепа.

Продолговатый мозг (medulla oblongata, bulbus, myelencephalon) развивается из пятого мозгового пузыря. Является на­чальным отделом головного мозга (рис. № 146, 149, 150). Несмотря на малые размеры (длина его составляет в среднем 25-30 мм) и массу (около 7 г), он является жизненно важным отделом ЦНС. Располагается на скате черепа между спинным мозгом и мостом. По внешнему строению продолговатый мозг несколько напоминает спинной мозг. На его передней поверхности имеется передняя срединная щель, на задней - задняя срединная борозда, а по бокам с каж­дой стороны находятся передняя и задняя латеральные борозды.

На передней (вентральной) поверхности продолговатого мозга видны два продольных возвышения - пирамиды, состоящие из волокон двига­тельных нисходящих путей: переднего и латерального корково-спинно-мозговых (пирамидных) проводящих путей. В пирамидах происходит пе­рекрест (переход на другую сторону) латерального корково-спинно-мозгового пирамидного пути. Место перекреста служит также анатомиче­ской границей между продолговатым и спинным мозгом. Кнаружи от пи­рамид лежат овальные возвышения - оливы, ядра которых являются про­межуточным центром равновесия. На задней поверхности продолговатого мозга по обе стороны от задней срединной борозды располагаются тонкий и клиновидный пучки, являющиеся продолжением одноименных пучков спинного мозга. Эти пучки заканчиваются утолщениями - бугорками тон­кого и клиновидного ядер (скопление нейронов). Данные ядра служат ме­стом переключения мышечно-суставной (проприоцептивной) чувстви­тельности коркового направления.

Верхняя часть задней поверхности продолговатого мозга плоская, имеет форму треугольника и образует нижнюю половину ромбовидной ямки и дна четвертого желудочка.

Внутреннее строение продолговатого мозга отличается от строения спинного мозга. Серое вещество здесь не образует сплошного столба, а распадается на отдельные скопления клеток - ядра продолговатого мозга.

К ним относятся ядра последних четырех пар черепных нервов: языкоглоточного (IX пара), блуждающего (X пара), добавочного (XI пара), подъязычного (XII пара) нервов, одно ядро тройничного нерва (V пара), ядра центров дыхания, кровообращения, олив, тонкого и клиновидного пучков, ретикулярной формации (РФ). Эти ядра являются центрами ряда безусловных рефлексов:

1) защитных (кашель, чихание, мигание, слезотечение, рвота);

2) пищевых (сосание, глотание, сокоотделение пищеварительных желез);

3) сердечно-сосудистых, регулирующих деятельность сердца и кро­веносных сосудов;

4) дыхательных, обеспечивающих вентиляцию легких, ритм и глуби­ну дыхания;

5) установочных рефлексов позы и перераспределения тонуса мышц (ядра олив).

Белое вещество продолговатого мозга состоит из коротких и длинных пучков нервных волокон. Короткие пучки осуществляют связь между яд­рами продолговатого мозга, а также между ними и ядрами близлежащих отделов головного мозга. Длинные пучки нервных волокон представляют собой восходящие и нисходящие пути головного и спинного мозга. За счет этих путей продолговатый мозг осуществляет проводниковую функцию.

При частичном поражении продолговатого мозга (кровоизлияние, травма и т.д.) наблюдается нарушение дыхания, сердечной деятельности и других функций, а при полном повреждении (разрушении) его наступает гибель организма от остановки дыхания и кровообращения. У бульварного животного, у которого произведена перерезка ствола мозга выше продол­говатого мозга на границе с мостом, произвольные движения исчезают вследствие нарушения проведения управляющих импульсов от коры боль­шого мозга к мотонейронам спинного мозга по пирамидному пути.



Понравилась статья? Поделитесь ей
Наверх