За что отвечает митохондрия. Пластиды и митохондрии растительной клетки: структура, функции, особенности строения в связи с биологическими функциями

Митохондрии являются «электростанциями» эукариот, производящие энергию для деятельности клеток. Эти генерируют энергию путем ее преобразования в формы, которые могут быть использованы клеткой. Находящиеся в , митохондрии служат "базой" для клеточного дыхания. - процесс, генерирующий энергию для деятельности клетки. Митохондрии также участвуют в других клеточных процессах, таких как , рост и .

Отличительные характеристики

Митохондрии имеют характерную продолговатую или овальную форму и покрыты двойной мембраной. Они встречаются как в , так и в . Количество митохондрий внутри клетки изменяется в зависимости от типа и функции клетки. Некоторые клетки, такие как зрелые эритроциты, вообще не содержат митохондрий. Отсутствие митохондрий и других органелл оставляет место для миллионов молекул гемоглобина, необходимых для транспортировки кислорода по всему телу. С другой стороны, клетки мышц могут содержать тысячи митохондрий, генерирующих энергию, необходимую для мышечной активности. Митохондрии также обильны в жировых клетках и клетках печени.

Митохондриальная ДНК

Митохондрии имеют собственную ДНК (мтДНК), и могут синтезировать свои собственные белки. мтДНК кодирует белки, участвующие в переносе электронов и окислительном фосфорилировании, которые происходят при клеточном дыхании. При окислительном фосфорилировании в матрице митохондрий генерируется энергия в виде АТФ. Протеины, синтезированные из мтДНК, также кодируются для продуцирования молекул РНК, передающих РНК и рибосомную РНК.

Митохондриальная ДНК отличается от ДНК, обнаруженной в , тем, что она не обладает механизмами восстановления ДНК, которые помогают предотвратить мутации в ядерной ДНК. В результате мтДНК имеет гораздо более высокую скорость мутаций, чем ядерная ДНК. Воздействие реактивного кислорода, образующегося при окислительном фосфорилировании, также повреждает мтДНК.

Строение митохондрий

Митохондрии окружены двойной . Каждая из этих мембран представляет собой фосфолипидный бислой со встроенными белками. Внешняя мембрана гладкая, а внутренняя мембрана имеет много складок. Эти складки называются кристами. Они повышают «производительность» клеточного дыхания за счет увеличения доступной площади поверхности.

Двойные мембраны делят митохондрию на две различные части: межмембранное пространство и матрицу митохондрий. Межмембранное пространство представляет собой узкую часть между двумя мембранами, в то время как митохондриальная матрица является частью, заключенной внутри мембран.

Митохондриальная матрица содержит мтДНК, рибосомы и ферменты. Некоторые из этапов клеточного дыхания, включая цикл лимонной кислоты и окислительное фосфорилирование, происходят в матрице из-за высокой концентрации ферментов.

Митохондрии полуавтономны, так как лишь частично зависят от клетки, чтобы реплицировать и расти. У них есть свои ДНК, рибосомы, белки и контроль над их синтезированием. Подобно бактериям, митохондрии имеют циркулярную ДНК и реплицируются репродуктивным процессом, называемым бинарным делением. До репликации митохондрии сливаются вместе в процессе, называемом слияние. Это необходимо для поддержания стабильности, так как без него митохондрии будут уменьшаться по мере их деления. Уменьшенные митохондрии не способны продуцировать достаточное количество энергии, необходимой для нормального функционирования клетки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Строение. Поверхностный аппарат митохондрий состоит из двух мембран - наружной и внутренней. Внешняя мембрана гладкая, она отделяет митохондрию от гиалоплазмы. Под ней находится складчатая внутренняя мембрана, которая образует кристи (гребни). С обеих сторон крист обнаружены мелкие грибовидные тельца, называемые оксисомамы, или АТФ-сомами. Они содержат ферменты, участвующие в окислительном фосфорилирования (присоединении фосфатных остатков к АДФ с образованием АТФ). Количество крист в митохондриях связана с энергетическими потребностями клетки, в частности в мышечных клетках митохондрии содержат очень большое количество крист. При повышенной функции клетки митохондрии приобретают более овальной или удлиненной формы, и количество крист у них растет.

Митохондрии имеют собственный геном, их рибосомы типа 70S отличаются от рибосом цитоплазмы. ДНК митохондрий преимущественно имеет циклическую форму (плазмиды), кодирует все три вида собственных РНК и поставляет информацию для синтеза части митохондриальных белков (около 9%). Итак, митохондрии можно считать полуавтономными органелл. Митохондрии относятся к саморепликуючих (способных к размножению) органелл. Обновления митохондрий происходит в течение всего клеточного цикла. Например, в клетках печени они заменяются новыми спустя почти 10 дней. Наиболее вероятным путем воспроизведения митохондрий считают их разделение: посередине митохондрии появляется перетяжка или возникает перегородка, после чего органеллы распадаются на две новые митохондрии. Образуются митохондрии с промитохондрий - округлых телец диаметром до 50 нм с двойной мембраной.

Функции . Митохондрии участвуют в энергетических процессах клетки, они содержат ферменты, связанные с образованием энергии и клеточным дыханием. Иными словами, митохондрия является своеобразной биохимической мини-фабрикой, которая превращает энергию органических соединений на прикладное энергию АТФ. В митохондриях энергетический процесс начинается в матриксе, где происходит расщепление пировиноградной кислоты в цикле Кребса. Во время этого процесса освобождаются атомы водорода, которые транспортируются дыхательным цепью. Энергия, которая при этом высвобождается, используется в нескольких участках дыхательной цепи для осуществления реакции фосфорилирования - синтеза АТФ, то есть присоединения фосфатной группы к АДФ. Это происходит на внутренней мембране митохондрий. Итак, энергетическая функция митохондрий интегрируется с: а) окисления органических соединений, что происходит в матриксе, благодаря чему митохондрии называют дыхательным центром клеток, б) синтеза АТФ, осуществляется на кристах, благодаря чему митохондрии называют энергетическими станциями клеток. Кроме того, митохондрии берут участие в регуляции обмена воды, депонировании ионов кальция, продукции предшественников стероидных гормонов, в обмене веществ (например, митохондрии в клетках печени содержат ферменты, которые позволяют им обезвреживать аммиак) и другие.

БИОЛОГИЯ + Митохондриальные болезни - группа наследственных заболеваний, связанных с дефектами митохондрий, которые приводят к нарушению клеточного дыхания. Они передаются по женской линии детям обоего пола, поскольку яйцеклетка имеет больший объем цитоплазмы и, соответственно, передает потомкам и большее количество митохондрий. Митохондриальная ДНК, в отличие от ядерной, не защищена белками-гистонами, а механизмы репарации, которые достались от бактерий-предков, несовершенны. Поэтому в митохондриальной ДНК мутации накапливаются у 10-20 раз быстрее, чем в ядерной, что и приводит к митохондриальных болезней. В современной медицине их сейчас известно уже около 50. Например, синдром хронической усталости, мигрень, синдром Барта, синдром Пирсона и многие другие.

Митохондрии имеются во всех эукариотических клетках. Эти органеллы - главное место аэробной дыхательной активности клетки. Впервые митохондрии были обнаружены в виде гранул в мышечных клетках в 1850 г.

Число митохондрий в клетке очень непостоянно; оно зависит от вида организма и от природы клетки. В клетках, в которых потребность в энергии велика, содержится много митохондрий (водной печеночной клетке, например, их может быть около 1000). В менее активных клетках митохондрий гораздо меньше. Чрезвычайно сильно варьируют также размеры и форма митохондрий. Митохондрии могут быть спиральными, округлыми, вытянутыми, чашевидными и даже разветвленными: в более активных клетках они обычно крупнее. Длина митохондрий колеблется в пределах 1,5-10 мкм, а ширина - в пределах 0,25-1,00 мкм, но их диаметр не превышает 1 мкм.

Митохондрии способны изменять свою форму, а некоторые могут также перемещаться в особо активные участки клетки. Такое перемещение позволяет клетке сосредоточить большое число митохондрий в тех местах, где выше потребность в АТФ. В других случаях положение митохондрий более постоянно (как, например, в летательных мышцах насекомых).

Строение митохондрий

Митохондрии выделяют из клеток в виде чистой фракции с помощью гомогенизатора и ультрацентрифуги, как описано в статье. После этого их можно исследовать в электронном микроскопе, используя для этого различные методики, например изготовление срезов или негативный контраст,...

Каждая митохондрия окружена оболочкой, состоящей из двух мембран. Наружную мембрану отделяет от внутренней небольшое расстояние - внутримембранное пространство. Внутренняя мембрана образует многочисленные гребневидные складки, так называемые кристы. Кристы существенно увеличивают поверхность внутренней мембраны, обеспечивая место для размещения компонентов дыхательной цепи. Через внутреннюю митохондри-альную мембрану осуществляется активный транспорт АДФ и АТФ. Метод негативного контрастирования, при котором окрашенными оказываются не сами структуры, а пространство вокруг них, позволил выяоить присутствие особых «элементарных частиц» на той стороне внутренней митохондриальной мембраны, которая обращена к матриксу. Каждая такая частица состоит из головки, ножки и основания.

Хотя микрофотографии свидетельствуют, казалось бы, о том, что элементарные частицы выступают из мембраны в матрикс, считается, что это артефакт, обусловленный самой процедурой приготовления препарата, и что в действительности они полностью погружены в мембрану. Головки частиц ответственны за синтез АТФ; в них находится фермент АТФаза, обеспечивающий сопряжение фосфорилирования АДФ с реакциями в дыхательной цепи. В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты самой дыхательной цепи. В митохондриальном матриксе содержится большая часть ферментов, участвующих в цикле Кребса, и протекает окисление жирных кислот. Здесь же находятся митохондриальные ДНК, РНК и 70S-рибосомы.

1 - наружная мембрана;

3 - матрикс;

2 - внутренняя мембрана;

4 - перимитохондриальное пространство.

Свойства митохондрий (белки, структура) закодированы частично в ДНК митохондрий, а частично в ядре. Так, митохондриальный геном кодирует белки рибосом и частично систему переносчиков электронотранспортной цепи, а в геноме ядра кодирована информация о белках-ферментах цикла Кребса. Сопоставление размеров митохондриальной ДНК с числом и размером мито-хондриальных белков показывает, что в ней заложено информации почти для половины белков. Это и позволяет считать митохондрии, как и хлоропласты, полуавтономными, т. е. не полностью зависящими от ядра. Они имеют собственную ДНК и собственную белоксинтезирующую систему, и именно с ними и с пластидами связана так называемая цитоплазматическая наследственность. В большинстве случаев это наследование по материнской линии, так как инициальные частицы митохондрий локализованы в яйцеклетке. Таким образом, митохондрии всегда образуются от митохондрий. Широко обсуждается вопрос, как рассматривать митохондрии и хлоропласты с эволюционной точки зрения. Еще в 1921 г. русский ботаник Б.М. Козо-Полянский высказал мнение, что клетка - это симбиотрофная система, в которой сожительствует несколько организмов. В настоящее время эндосимбиотическая теория происхождения митохондрий и хлоропластов является общепринятой. Согласно этой теории, митохондрии - это в прошлом самостоятельные организмы. По мнению Л. Маргелис (1983), это могли быть эубактерии, содержащие ряд дыхательных ферментов. На определенном этапе эволюции они внедрились в примитивную, содержащую ядро, клетку. Оказалось, что ДНК митохондрий и хлоропластов по своей структуре резко отличается от ядерной ДНК высших растений и сходна с бактериальной ДНК (кольцевое строение, нуклеотидная последовательность). Сходство обнаруживается и по величине рибосом. Они мельче цитоплазматических рибосом. Синтез белка в митохондриях, подобно бактериальному, подавляется антибиотиком хлорамфениколом, который не влияет на синтез белка на рибосомах эукариот. Кроме того, система переноса электронов у бактерий расположена в плазматической мембране, что напоминает организацию электронтранспортной цепи во внутренней митохондриальной мембране.

Лекция № 6.

Количество часов: 2

МИТОХОНДРИИ И ПЛАСТИДЫ

1.

2. Пластиды, строение, разновидности, функции

3.

Митохондрии и пластиды – двухмембранные органоиды эукариотических клеток. Митохондрии встречаются во всех клетках животных и растений. Пластиды характерны для клеток растений, осуществляющих фотосинтетические процессы. Эти органоиды имеют сходный план строения и некоторые общие свойства. Однако по основным метаболическим процессам они существенно отличаются друг от друга.

1. Митохондрии, строение, функциональное значение

Общая характеристика митохондрий. Митохондрии (греч. “митос” - нить, “хондрион” - зерно, гранула) – округлые, овальные или палочковидные двухмембранные органоиды диаметром около 0,2-1 мкм и длиной до 7-10 мкм. Эти органоиды можно обнаружить с помощью световой микроскопии, поскольку они обладают достаточной величиной и высокой плотностью. Особенности внутреннего строения их можно изучить только с помощью электронного микроскопа. Митохондрии были открыты в 1894 г. Р. Альтманом, который дал им название «биобласты». Термин "митохондрия" был введен К. Бенда в 1897 г. Митохондрии имеются практически во всех эукариотических клетках. У анаэробных организмов (кишечные амебы и др.) митохондрии отсутствуют. Число митохондрий в клетке колеблется от 1 до 100 тыс. и зависит от типа, функциональной активности и возраста клетки. Так в растительных клетках митохондрий меньше, чем в животных; а в молодых клетках больше, чем в старых. Жизненный цикл митохондрий составляет несколько дней. В клетке митохондрии обычно скапливаются вблизи участков цитоплазмы, где возникает потребность в АТФ. Например, в сердечной мышце митохондрии находятся вблизи миофибрилл, а в спермиях образуют спиральный футляр вокруг оси жгутика.

Ультрамикроскопическое строение митохондрий. Митохондрии ограничены двумя мембранами, каждая из которых имеет толщину около 7 нм. Внешнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внешняя мембрана гладкая, а внутренняя образует складки – кристы (лат. “криста” – гребень, вырост), увеличивающие ее поверхность. Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен. Особенно много крист в митохондриях активно функционирующих клеток, например мышечных. В кристах располагаются цепи переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). Внутреннее пространство митохондрий заполнено гомогенным веществом, называемым матриксом. Митохондриальные кристы обычно полностью не перегораживают полость митохондрии. Поэтому матрикс на всем протяжении является непрерывным. В матриксе содержатся кольцевые молекулы ДНК, митохондриальные рибосомы, встречаются отложения солей кальция и магния. На митохондриальной ДНК происходит синтез молекул РНК различных типов, рибосомы участвуют в синтезе ряда митохондриальных белков. Малые размеры ДНК митохондрий не позволяют кодировать синтез всех митохондриальных белков. Поэтому синтез большинства белков митохондрий находится под ядерным контролем и осуществляется в цитоплазме клетки. Без этих белков рост и функционирование митохондрий невозможно. Митохондриальная ДНК кодирует структурные белки, ответственные за правильную интеграцию в митохондриальных мембранах отдельных функциональных компонентов.

Размножение митохондрий. Митохондрии размножаются путем деления перетяжкой или фрагментацией крупных митохондрий на более мелкие. Образовавшиеся таким путем митохондрии могут расти и снова делиться.

Функции митохондрий. Основная функция митохондрий заключается в синтезе АТФ. Этот процесс происходит в результате окисления органических субстратов и фосфорилирования АДФ. Первый этап этого процесса происходит в цитоплазме в анаэробных условиях. Поскольку основным субстратом является глюкоза, то процесс носит название гликолиза. На данном этапе субстрат подвергается ферментативному расщеплению до пировиноградной кислоты с одновременным синтезом небольшого количества АТФ. Второй этап происходит в митохондриях и требует присутствия кислорода. На этом этапе происходит дальнейшее окисление пировиноградной кислоты с выделением СО 2 и переносом электронов на акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые локализованы в матриксе митохондрии. Освободившиеся в процессе окисления в цикле Кребса электроны переносятся в дыхательную цепь (цепь переноса электронов). В дыхательной цепи они соединяются с молекулярным кислородом, образуя молекулы воды. В результате этого небольшими порциями выделяется энергия, которая запасается в виде АТФ. Полное окисление одной молекулы глюкозы с образованием диоксида углерода и воды обеспечивает энергией перезарядку 38 молекул АТФ (2 молекулы в цитоплазме и 36 в митохондриях).

Аналоги митохондрий у бактерий. У бактерий митохондрий нет. Вместо них у них имеются цепи переноса электронов, локализованные в мембране клетки.

2. Пластиды, строение, разновидности, функции. Проблема происхождения пластид

Пластиды (от. греч. plastides – создающие, образующие) – это двухмембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом. Пластиды связаны между собой единым происхождением в онтогенезе от пропластид меристематических клеток. Каждый их этих типов при определенных условиях может переходить один в другой. Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны размножаться независимо от деления клетки.

Хлоропласты (от греч. « chloros » – зеленый, « plastos » - вылепленный) – это пластиды, в которых осуществляется фотосинтез.

Общая характеристика хлоропластов. Хлоропласты представляют собой органоиды зеленого цвета длиной 5-10 мкм и шириной 2-4 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм. У высших растений хлоропласты имеют двояковыпуклую или эллипсоидную форму. Количество хлоропластов в клетке может варьировать от одного (некоторые зеленые водоросли) до тысячи (махорка). В клетке высших растений в среднем находится 15-50 хлоропластов. Обычно хлоропласты равномерно распределены по цитоплазме клетки, но иногда они группируются около ядра или клеточной оболочки. По-видимому, это зависит от внешних воздействий (интенсивность освещения).

Ультрамикроскопическое строение хлоропластов. От цитоплазмы хлоропласты отделены двумя мембранами, каждая из которых имеет толщину около 7 нм. Между мембранами находится межмембранное пространство диаметром около 20-30 нм. Наружная мембрана гладкая, внутренняя имеет складчатую структуру. Между складками располагаются тилакоиды , имеющие вид дисков. Тилакоиды образуют стопки наподобие столбика монет, называемые гранами. М ежду собой граны соединены другими тилакоидами (ламелы, фреты ). Число тилакоидов в одной гране варьирует от нескольких штук до 50 и более. В свою очередь в хлоропласте высших растений находится около 50 гран (40-60), расположенных в шахматном порядке. Такое расположение обеспечивает максимальную освещенность каждой граны. В центре граны находится хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл. Хлорофилл имеет сложное химическое строение и существует в нескольких модификациях ( a , b , c , d ). У высших растений и водорослей в качестве основного пигмента содержится х лорофилл а с формулой С 55 Н 72 О 5 N 4 М g . В качестве дополнительных содержатся хлорофилл b (высшие растения, зеленые водоросли), хлорофилл с (бурые и диатомовые водоросли), хлорофилл d (красные водоросли). Образование хлорофилла происходит только при наличии света и железа, играющего роль катализатора. Матрикс хлоропласта представляет собой бесцветное гомогенное вещество, заполняющее пространство между тилакоидами. В матриксе находятся ферменты "темновой фазы" фотосинтеза, ДНК, РНК, рибосомы. Кроме этого, в матриксе происходит первичное отложение крахмала в виде крахмальных зерен.

Свойства хлоропластов:

· полуавтономность (имеют собственный белоксинтезирующий аппарат, однако большая часть генетической информации находится в ядре);

· способность к самостоятельному движению (уходят от прямых солнечных лучей);

· способность к самостоятельному размножению.

Размножение хлоропластов. Хлоропласты развиваются из пропластид, которые способны реплицироваться путем деления. У высших растений также встречается деление зрелых хлоропластов, но крайне редко. При старении листьев и стеблей, созревании плодов хлоропласты утрачивают зеленую окраску, превращаясь в хромопласты.

Функции хлоропластов. Основная функция хлоропластов – фотосинтез. Кроме фотосинтеза хлоропласты осуществляют синтез АТФ из АДФ (фосфорилирование), синтез липидов, крахмала, белков. В хлоропластах также синтезируются ферменты, обеспечивающие световую фазу фотосинтеза.

Хромопласты (от греч. chromatos – цвет, краска и « plastos » – вылепленный) – это окрашенные пластиды. Цвет их обусловлен наличием следующих пигментов: каротина (оранжево-желтый), ликопина (красный) и ксантофилла (желтый). Хромопластов особенно много в клетках лепестков цветков и оболочек плодов. Больше всего хромопластов в плодах и увядающих цветках и листьях. Хромопласты могут развиваться из хлоропластов, которые при этом теряют хлорофилл и накапливают каротиноиды. Это происходит при созревании многих фруктов: налившись спелым соком, они желтеют, розовеют или краснеют. Основная функция хромопластов заключается в обеспечении окраски цветов, плодов, семян.

В отличие от лейкопластов и особенно хлоропластов внутренняя мембрана хлоропластов не образует тилакоидов (или образует одиночные). Хромопласты – это конечный итог развития пластид (в хромопласты превращаются хлоропласты и пластиды).

Лейкопласты (от греч. leucos – белый, plastos – вылепленный, созданный) . Это бесцветные пластиды округлой, яйцевидной, веретенообразной формы. Находятся в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Особенно богаты лейкопластами клубни картофеля. Внутренняя оболочка образует немногочисленные тилакоиды. На свету из хлоропластов образуются хлоропласты. Лейкопласты, в которых синтезируется и накапливается вторичный крахмал называют амилопластами , масла – эйлалопластами , белки – протеопластами. Основная функция лейкопластов – это аккумуляция питательных веществ.

3. Проблема происхождения митохондрий и пластид. Относительная автономия

Существует две основные теории происхождения митохондрий и пластид. Это теории прямой филиации и последовательных эндосимбиозов. Согласно теории прямой филиации митохондрии и пластиды образовались путем компартизации самой клетки. Фотосинтезирующие эукариоты произошли от фотосинтезирующих прокариот. У образовавшихся автотрофных эукариотических клеток путем внутриклеточной дифференцировки образовались митохондрии. В результате утраты пластид от автотрофов произошли животные и грибы.

Наиболее обоснованной является теория последовательных эндосимбиозов. Согласно этой теории возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя свободноживущие аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотической генофор формируется в обособленное от цитоплазмы ядро. Таким путем возникла первая эукариотическая клетка, которая была гетеротрофной. Возникшие эукариотические клетки путем повторных симбиозов включили в себя синезеленые водоросли, что привело к появлению в них структур типа хлоропластов. Таким образом, митохондрии уже были у гетеротрофных эукариотических клеток, когда последние в результате симбиоза приобрели пластиды. В дальнейшем в результате естественного отбора митохондрии и хлоропласты утратили часть генетического материала и превратились в структуры с ограниченной автономией.

Доказательства эндосимбиотической теории:

1. Сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов, с другой стороны.

2. Митохондрии и пластиды имеют собственную специфическую систему синтеза белков (ДНК, РНК, рибосомы). Специфичность этой системы заключается в автономности и резком отличии от таковой в клетке.

3. ДНК митохондрий и пластид представляет собой небольшую циклическую или линейную молекулу, которая отличается от ДНК ядра и по своим характеристикам приближается к ДНК прокариотических клеток. Синтез ДНК митохондрий и пластид не зависит от синтеза ядерной ДНК.

4. В митохондриях и хлоропластах имеются и-РНК, т-РНК, р-РНК. Рибосомы и р-РНК этих органоидов резко отличаются от таковых в цитоплазме. В частности рибосомы митохондрий и хлоропластов, в отличие от цитоплазматических рибосом, чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.

5. Увеличение числа митохондрий происходит путем роста и деления исходных митохондрий. Увеличение числа хлоропластов происходит через изменения пропластид, которые, в свою очередь, размножаются путем деления.

Эта теория хорошо объясняет сохранение у митохондрий и пластид остатков систем репликации и позволяет построить последовательную филогению от прокариот к эукариотам.

Относительная автономия хлоропластов и пластид. В некоторых отношениях митохондрии и хлоропласты ведут себя как автономные организмы. Например, эти структуры образуются только из исходных митохондрий и хлоропластов. Это было продемонстрировано в опытах на растительных клетках, у которых образование хлоропластов подавляли антибиотиком стрептомицином, и на клетках дрожжей, где образование митохондрий подавляли другими препаратами. После таких воздействий клетки уже никогда не восстанавливали отсутствующие органеллы. Причина в том, что митохондрии и хлоропласты содержат определенное количество собственного генетического материала (ДНК), который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. Оба типа органелл имеют свою собственную белок-синтезирующую систему (рибосомы и транспортные РНК), которая несколько отличается от основной белок-синтезирующей системы клетки; известно, например, что белок-синтезирующая система органелл может быть подавлена с помощью антибиотиков, тогда как на основную систему они не действуют. ДНК органелл ответственна за основную часть внехромосомной, или цитоплазматической, наследственности. Внехромосомная наследственность не подчиняется менделевским законам, так как при делении клетки ДНК органелл передается дочерним клеткам иным путем, нежели хромосомы. Изучение мутаций, которые происходят в ДНК органелл и ДНК хромосом, показало, что ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах. Относительная автономия митохондрий и пластид рассматривается как одно из доказательств их симбиотического происхождения.



Понравилась статья? Поделитесь ей
Наверх