Патофизиология экстремальных состояний. Кома, связанная с черепно-мозговой травмой. Нарушения углеводного обмена

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное автономное образовательное

учреждение высшего профессионального образования

«Белгородский государственный национальный исследовательский университет»

(НИУ «БелГУ»)

Медицинский институт

Кафедра патологии

Реферат на тему:

Клиническая патофизиология шока

Выполнила: студентка 4 курса

Факультета лечебного дела и педиатрии

Группы 03011207 Кашичкина А.А.

Проверила: ассистент кафедры патологии Конова О.В.

Белгород 2015

Введение

2. Травматический шок

3. Патогенез

4. Изменения в организме

5. Обоснование терапии

Список литературы

шок травматический клинический терапия

Введение

Интенсивная разработка проблемы шока была начата в период становления капиталистического общества. Железнодорожные катастрофы, промышленный травматизм и в особенности войны побуждали исследователей заниматься изучением шока. Нетрудно убедиться, что каждая война стимулировало научные исследования по проблеме шока. Во время войн 20-го века правительство воюющих стран вынуждены были принимать специальные меры для борьбы с шоком. Например, в английской армии в войну 1914-го - 1918-го годов был создан специальный комитет по борьбе с шоком.

Собственно говоря, в развитие учения у шоке наибольший вклад внесли военные врачи. Описание шока было дано ещё Гиппократом в 24-м афоризме, в котором обращалась внимание на развитие бреда или ступора при черепно-мозговой травме.

Сам же термин шок, применяемый в настоящее время очень широко, вошёл в литературу весьма прочно. Автор этого термина точно не установлен, однако большинство исследователей считают, что это понятие применительно к реакции на тяжелую механическую травму в первые появилось в английском переводе книги консультанта армии Людовика XV Le Dran (1737), сделанном Latta (1795).

1. Понятие шока и его этиология

Шок - Это сложный типовой патологический процесс, возникающий при действии на организм экстремальных факторов внешней и внутренней среды, которые, наряду с первичным повреждением, вызывают черезмерные и неадекватные реакции адаптивных систем. Шок характеризуется стадионным прогрессирующим расстройством жизнедеятельности организма в результате нарастающего нарушения функций нервной, эндокринной, сердечно-сосудистой, дыхательной и других жизненноважных систем.

Важной отличительной чертой шока является то, что его вызывает экстремальный фактор большой повреждающий силы, как правило, приводящий к различного масштаба разрушением структурных элементов тканей и органов.

Основные причины шока:

1) Различные виды травм (Например, механическую разрушение, разрывы, утраивает, раздавливание тканей, обширные ожоги, электротравмы)

2) Массивная Кровопотеря

3) Переливание несовместимой крови

4) Попадание в сенсибилизированный организм аллергенов

5) Обширная ишемия или некроз органов.

В зависимости от причины вызвавшие шок, обычно выделяют травматический шок, ожоговый, геморрагический, гемотрансфузионный, анафилактический, кардиогенный, психогенный и другие. Несмотря на некоторые отличия в клинической картине, все перечисленные разновидности шока имеют одинаковый патогенез. Исходя из этого, рассмотрим механизм развития шока на примере травматического шока.

2. Травматический шок

Травматический шок - это типовой патологический процесс, возникающий в результате повреждения органов, раздражения рецепторов и нервов травмированной ткани, кровопотери и поступления в кровь биологически активных веществ, т.е. факторов, вызывающих в совокупности чрезмерные и неадекватные реакции адаптивных систем, особенно симпатико-адреналовой, стойкие нарушения нейроэндокринной регуляции гомеостаза, особенно гемодинамики, нарушения специфических функций повреждённых органов, расстройств микроциркуляции, кислородного режима организма и обмена веществ.

Для развития травматического шока большое значение имеет условия внешней среды. Травматическому шоку способствуют: перегревание, переохлаждение, недостаточное питание, психическая травма.

К своеобразным фактором риска можно относить: наследственность, тип нервной деятельности, возраст, предшествующие травме заболевания (гипертоническая болезнь, гиподинамия, нервно-психическое напряжение, кровопотерю), алкогольное опьянение.

Очень важно учитывать динамику травматического шока - его фазное развитие. Представление о двух фазах в развитии травматического шока: первой, наступающей вслед за травмой и проявляющейся активацией функций, эректильной, и второй, выражающейся угнетением функций, торпидной, было дано ещё Н.И. Пироговым, а обоснованно Н.Н.Бурденко.

Эректильная фаза шока - фаза возбуждения - является начальным этапом реакции на тяжелые повреждения. Внешне она проявляется двигательным беспокойством, криком, побледнением покровов и слизистых, повышением артериального и венозного давления, тахикардией, иногда мочеиспусканием и дефекацией. В этой фазе в результате генерализованного возбуждения и стимуляцией эндокринного аппарата активизируются обменные процессы, тогда как их циркуляторное обеспечение оказывается недостаточным. В этой фазе возникают предпосылки к развитию торможения в нервной системе, расстройствам циркуляции, возникает дефицит кислорода. Эректильная фаза кратковременна и продолжается обычно минуты.

Торпидная фаза шока - фаза угнетения, развивающаяся вслед за эректильной, проявляется гиподинамией, гипорефлексией, значительными циркуляторными нарушениями, в частности артериальной гипотензией, тахикардией, расстройствами внешнего дыхания (тахипноэ вначале, брадипноэ или периодическое дыхание в конце), олигурией, гипотермией и т.д. В торпидной фазе шока усугубляются нарушения обмена вследствие расстройств нейрогуморальной регуляции и циркуляторного обеспечения. Эти нарушения в различных органах неодинаковы. Торпидная фаза -наиболее типичная и продолжительная фаза шока, ее продолжительность может быть от нескольких минут до многих часов. Кроме эректильной и торпидной фаз шока при тяжелом шоке, заканчивающемся гибелью, целесообразно различать терминальную фазу травматического шока, подчеркивая тем самым ее специфичность и отличие от предсмертных стадий других пат.процессов, объединяемых обычно общим термином "терминальные состояния".

Терминальная фаза характеризуется определённой динамикой: она начинает выявляться расстройствами внешнего дыхания (биотовское или куссмаулевское дыхание), Не устойчивостью и резким снижением артериального давления, замедлением пульса. Для терминальной фазы шока характерно сравнительно медленное развитие, а следовательно, большее истощение механизмов адаптации, более значительное, чем, например, при кровопотере, интоксикации, и более глубокие нарушения функций органов. Восстановление же этих функций при терапии происходит медленнее.

Травматический шок следует классифицировать по времени развития и тяжести течения. По времени развития различают первичный шок и вторичный шок. Первичный шок развивается как осложнение вскоре после травмы и может пройти или привести к смерти пострадавшего. Вторичный шок обычно возникает через несколько часов после выхода больного из первичного шока. Причиной его развития чаще всего бывает дополнительная травма из-за плохой иммобилизации, тяжелой транспортировки, преждевременной операции и т.д. Вторичный шок протекает существенно тяжелее первичного, так как он развивается на фоне очень низких адаптационных механизмов организма, которые были исчерпаны в борьбе с первичным шоком, поэтому смертность при вторичном шоке существенно выше.

По тяжести клинического течения различают легкий шок, шок средней тяжести и тяжелый шок. Наряду с этим шок подразделяют на четыре степени. В основу такого подразделения положен уровень систолического артериального давления. I степень шока наблюдается при максимальном артериальном давлении выше 90 мм рт. ст. - легкий ступор, тахикардия до 100 уд/мин, мочеотделение не нарушено. Кровопотеря: 15-25% от ОЦК. II степень - 90-70 мм рт. ст., ступор, тахикардия до 120 уд/мин, олигурия. Кровопотеря: 25-30% от ОЦК. III степень - 70-50 мм рт. ст., сопор, тахикардия более 130-140 уд/мин, мочеотделение отсутствует. Кровопотеря: более 30% от ОЦК. IV степень - ниже 50 мм рт. ст., кома, пульс на периферии не определяется, появление патологического дыхания, полиорганная недостаточность, арефлексия. Кровопотеря: более 30% от ОЦК. Следует расценивать как терминальное состояние. На клиническую картину шока определенный отпечаток накладывают тип нервной системы, пол, возраст пострадавшего, сопутствующая патология, инфекционные заболевания, травмы в анамнезе, сопровождавшиеся шоком. Важную роль играют кровопотеря, дегидротирующие заболевания и состояния, влияющие на ОЦК и закладывающие базис гемодинамических расстройств. О степени снижения ОЦК и глубине гиповолемических нарушений определенное представление позволяет получить шоковый индекс. Его можно рассчитать по следующей формуле: шоковый индекс = частота пульса / систолическое АД. В норме показатель шокового индекса составляет 0,5. В случае повышения индекса до 1 (пульс и АД равны 100) ориентировочно снижение ОЦК равно 30% от должного, при повышении его до 1,5 (пульс равен 120, АД - 80) ОЦК составляет 50% от должного, а при значениях шокового индекса 2,0 (пульс - 140, АД - 70) объем циркулирующей крови, находящейся в активном кровообращении, составляет всего 30% от должного, что, безусловно, не может обеспечить адекватную перфузию организма и ведет к высокому риску гибели пострадавшего. В качестве главных патогенетических факторов травматического шока можно выделить следующие: неадекватная импульсация из поврежденных тканей; местная крово- и плазмопотеря; поступление в кровь биологически активных веществ, возникающих в результате деструкции клеток и кислородного голодания тканей; выпадение или нарушение функций поврежденных органов. При этом первые три фактора являются неспецифическими, то есть присущими любой травме, а последний характеризует специфику травмы и развивающегося при этом шока.

3. Патогенез

Травмирующий фактор действует на органы и ткани, вызывая их повреждение. В результате этого возникает деструкция клеток и выход их содержимого в межклеточную среду; другие клетки подвергаются контузии, вследствие чего в них нарушается метаболизм и присущие им функции. Первично (вследствие действия травмирующего фактора) и вторично (вследствие изменения тканевой среды) раздражаются многочисленные рецепторы в ране, что субъективно воспринимается как боль, а объективно характеризуется многочисленными реакциями органов и систем. Неадекватная импульсация из поврежденных тканей имеет ряд последствий. 1. В результате неадекватной импульсации с поврежденных тканей в нервной системе формируется болевая доминанта, которая подавляет другие функции нервной системы. Наряду с этим возникает типичная оборонительная реакция со стереотипным вегетативным сопровождением, так как боль является сигналом к бегству или борьбе. В основе этой вегетативной реакции важнейшими компонентами являются: выброс катехоламинов, повышение давления и тахикардия, учащение дыхания, активация гипоталамо-гипофизарно-надпочечниковой системы. 2. Эффекты болевого раздражения зависят от его интенсивности. Слабое и умеренное раздражение вызывает стимуляцию многих адаптивных механизмов (лейкоцитоз, фагоцитоз, усиление функции СФМ и др.); сильные раздражения угнетают адаптивные механизмы. 3. В становлении шока большую роль играет рефлекторная ишемия тканей. При этом накапливаются недоокисленные продукты, а рН снижается до величин, пограничных с допустимыми для жизни. На этой основе возникают расстройства микроциркуляции, патологическое депонирование крови, артериальная гипотензия. 4. Боль и вся обстановка в момент нанесения травмы, безусловно, вызывают эмоциональный стресс, психическое напряжение, чувство тревоги к опасности, что еще более усиливает нейровегетативную реакцию.

4. Изменения в организме

Роль нервной системы.

При воздействии на организм повреждающего механического агента в зоне повреждения подвергаются раздражению различные нервные элементы, причем не только рецепторы, но и другие элементы - нервные волокна, проходящие в тканях, входящие в состав нервных стволов. В то время как у рецепторов имеется известная специфичность по отношению к раздражителю, характеризующаяся различиями в пороговой величине для разных раздражителей, нервные волокна по отношению к механическому раздражению не отличаются между собой столь резко, поэтому механическое раздражение вызывает возбуждение в проводниках разного рода чувствительности, а не только болевой или тактильной. Именно этим объясняется то, что повреждения, сопровождающиеся размозжением или разрывами крупных нервных стволов, характеризуются более тяжелым травматическим шоком. Эректильная фаза шока характеризуется генерализацией возбуждения, что находит внешнее проявление в двигательном беспокойстве, речевом возбуждении, крике, повышении чувствительности к различным раздражителям. Возбуждение охватывает и вегетативные нервные центры, что проявляется повышением функциональной активности эндокринного аппарата и выбросом в кровь катехоламинов, адаптивных и других гормонов, стимуляцией деятельности сердца и повышением тонуса сосудов сопротивления, активацией обменных процессов. Длительная и интенсивная импульсация с места повреждения, а затем и из органов с нарушенными функциями, изменения в лабильности нервных элементов в связи с расстройствами кровообращения и кислородного режима определяют последующее развитие тормозного процесса. Иррадиация возбуждения - его генерализация - является необходимой предпосылкой для возникновения торможения. Особое значение имеет тот факт, что торможение в зоне ретикулярной формации охраняет кору больших полушарий от потоков импульсов с периферии, чем обеспечивает сохранность ее функций. При этом элементы ретикулярной формации, облегчающие проведение импульсов (РФ+), более чувствительны к расстройствам циркуляции, чем тормозящие проведение импульсов (РФ-). Из этого следует, что циркуляторные нарушения в указанной зоне должны способствовать функциональной блокаде проведения импульсов. Постепенное торможение распространяется и на другие уровни нервной системы. Оно склонно к углублению за счет импульсации из области травмы.

Роль эндокринной системы.

Травматический шок сопровождается также изменениями со стороны эндокринной системы (в частности, гипоталамо-гипофизарно-надпочечниковой системы). Во время эректильной фазы шока в крови увеличивается содержание кортикостероидов, а в торпидную - их количество уменьшено. Однако корковый слой надпочечников сохраняет реакцию на введенный извне АКТГ. Следовательно, угнетение коркового слоя во многом обусловлено недостаточностью гипофиза. Для травматического шока весьма типична гиперадреналинемия. Гиперадреналинемия, с одной стороны, является следствием интенсивной афферентной импульсации, вызванной повреждением, с другой - реакцией на постепенное развитие артериальной гипотонии.

Местная крово- и плазмопотеря.

При любой механической травме имеет место утрата крови и плазмы, размеры которой весьма вариабельны и зависят от степени травматизации тканей, а также от характера повреждения сосудов. Даже при небольшой травме наблюдается экссудация в травмированные ткани из-за развития воспалительной реакции, а значит и потеря жидкости. Однако специфика травматического шока определяется все же нервно-болевой травмой. Нервно-болевая травма и кровопотеря являются синергетиками в действии на сердечно-сосудистую систему. При болевом раздражении и при утрате крови сначала возникает спазм сосудов и выброс катехоламинов. При кровопотере сразу, а при болевом раздражении позднее уменьшается объем циркулирующей крови: в первом случае за счет выхода из сосудистого русла, а во втором - в результате патологического депонирования. При этом следует заметить, что даже небольшое кровопускание (1% к массе тела) сенсибилизирует (повышает чувствительность организма) к механическому повреждению.

Нарушение кровообращения.

Уже само понятие «шок» включает в себя обязательные и тяжелые нарушения гемодинамики. Нарушения гемодинамики при шоке характеризуются резкими отклонениями многих параметров системного кровообращения. Нарушения системной гемодинамики характеризуются тремя кардинальными признаками - гиповолемией, уменьшением сердечного выброса и артериальной гипотензией. Гиповолемии всегда придавалось важное значение в патогенезе травматического шока. С одной стороны, она обусловлена кровопотерей, а с другой - задержкой крови в емкостных сосудах (венулах, мелких венах), капиллярах - ее депонированием. Исключение части крови из циркуляции может быть отчетливо обнаружено уже в конце эректильной фазы шока. К началу развития торпидной фазы гиповолемия даже более выражена, чем в последующие за этим периоды. Одним из наиболее типичных симптомов травматического шока являются фазные изменения артериального давления - его повышение в эректильной фазе травматического шока (повышается тонус резистивных и емкостных сосудов, о чем свидетельствует артериальная и венозная гипертензия), а также кратковременное увеличение объема циркулирующей крови, сочетающееся с уменьшением емкости функционирующего сосудистого русла органов. Типичное для эректильной фазы травматического шока повышение артериального давления есть результат увеличения общего периферического сопротивления сосудов, обусловленного активацией симпатоадреналовой системы. Повышение тонуса резистивных сосудов сочетается с активацией артерио-венозных анастомозов и отбрасыванием крови из системы сосудов высокого давления (артериальное русло) в систему сосудов низкого давления (венозное русло), что приводит к возрастанию венозного давления и препятствует оттоку крови из капилляров. Если же учесть то обстоятельство, что большинство капилляров лишено сфинктеров на их венозном конце, то нетрудно представить, что в подобных условиях возможно не только прямое, но и ретроградное заполнение капилляров. Многочисленными исследователями было показано, что гиповолемия ограничивает афферентную импульсацию с барорецепторов (рецепторов растяжения) дуги аорты и синокаротидной зоны, в результате чего возбуждаются (растормаживаются) прессорные образования сосудодвигательного центра и возникает спазм артериол во многих органах и тканях. Усиливается симпатическая эфферентная импульсация к сосудам и сердцу. По мере снижения АД падает тканевой кровоток, нарастает гипоксия, что вызывает импульсацию с хеморецепторов тканей и еще более активирует симпатическое влияние на сосуды. Сердце полнее опорожняется (уменьшается резидуальный объем), возникает также тахикардия. С барорецепторов сосудов возникает также рефлекс, приводящий к повышенному выделению адреналина и норадреналина мозговым слоем надпочечников, концентрация которых в крови увеличивается в 10-15 раз. В более позднем периоде, когда развивается гипоксия почек, спазм сосудов поддерживается не только за счет усиленной секреции катехоламинов и вазопрессина, но также выделением ренина почками, который является инициатором ренин-ангиотензиновой системы. Полагают, что в этой генерализованной вазоконстрикции не участвуют сосуды мозга, сердца и печени. Поэтому эту реакцию называют централизацией кровообращения. Периферические органы все более страдают от гипоксии, в результате чего нарушается обмен веществ и в тканях появляются недоокисленные продукты и биологически активные метаболиты. Поступление их в кровь приводит к ацидозу крови, а также появлению в ней факторов, специфически угнетающих сократительную способность мышцы сердца. Здесь возможен и другой механизм. Развитие тахикардии приводит к сокращению времени диастолы - периода, во время которого осуществляется коронарный кровоток. Все это приводит к нарушению метаболизма миокарда. При развитии необратимой стадии шока на сердце также могут оказывать влияние эндотоксины, лизосомные ферменты и другие специфические для этого периода биологически активные вещества. Таким образом, крово- и плазмопотеря, патологическое депонирование крови, экстравазация жидкости приводят к уменьшению объема циркулирующей крови, уменьшению венозного возврата крови. Это в свою очередь наряду с нарушениями метаболизма в миокарде и снижением производительности сердечной мышцы приводит к гипотензии, характерной для торпидной фазы травматического шока. Накапливающиеся при гипоксии тканей вазоактивные метаболиты нарушают функцию гладких мышц сосудов, что приводит к понижению тонуса сосудов, а значит к падению общего сопротивления сосудистого русла и опять же к гипотонии.

Расстройства капиллярного кровотока углубляются в результате нарушения реологических свойств крови, агрегации эритроцитов, которая наступает в результате повышения активности свертывающей системы и сгущения крови из-за выхода жидкости в ткани. Нарушения дыхания. В эректильной стадии травматического шока наблюдается частое и глубокое дыхание. Основным стимулирующим фактором является раздражение рецепторов травмированных тканей, которое вызывает возбуждение коры головного мозга и подкорковых центров, возбуждается и дыхательный центр продолговатого мозга.

Нарушения в легких и вызываемые ими эффекты объединяют в симптомокомплекс, получивший название респираторный дистресс-синдром. Это острое расстройство легочного газообмена с угрожающей жизни тяжелой гипоксемией в результате снижения до критического уровня и ниже числа нормальных респиронов (респирон - терминальная или конечная респираторная единица), к которому приводят отрицательные нейрогуморальные влияния (нейрогенный спазм легочных микрососудов при патологической боли), повреждение легочного капиллярного эндотелия с цитолизом и деструкцией межклеточных соединений, миграция форменных элементов крови (прежде всего лейкоцитов), плазменных белков в легочную мембрану, а затем и в просвет альвеол, развитие гиперкоагуляции и тромбоз легочных сосудов.

Нарушения обмена веществ. Энергетический обмен.

Шок различной этиологии посредством расстройств микроциркуляции и деструкции гистогематического барьера (обменный капилляр - интерстиций - цитозоль клетки) критически уменьшает доставку кислорода в митохондрии. В результате возникают быстро прогрессирующие расстройства аэробного обмена. Звеньями патогенеза дисфункций на уровне митохондрий при шоке являются: отек митохондрий, расстройства ферментных систем митохондрий вследствие дефицита необходимых кофакторов, снижение содержания в митохондриях магния, рост содержания в митохондриях кальция, патологические изменения содержания в митохондриях натрия и калия, расстройства митохондриальных функций вследствие действия эндогенных токсинов (свободных жирных кислот и др.), свободнорадикальное окисление фосфолипидов мембран митохондрий. Таким образом, при шоке ограничивается аккумуляция энергии в виде макроэргических фосфорных соединений. Накапливается большое количество неорганического фосфора, который поступает а плазму. Недостаток энергии нарушает функцию натрий-калиевого насоса, в результате чего в клетку поступает избыточное количество натрия и воды, и из нее выходит калий. Натрий и вода вызывают набухание митохондрий, что еще более разобщает дыхание и фосфорилирование. В результате понижения продукции энергии в цикле Кребса ограничивается активация аминокислот, и вследствие этого угнетается синтез белков. Понижение концентрации АТФ замедляет соединение аминокислот с рибонуклеиновыми кислотами (РНК), нарушается функция рибосом, в результате чего продуцируются ненормальные, некомплектные пептиды, часть из которых может быть биологически активными. Выраженный ацидоз в клетке вызывает разрыв мембран лизосом, вследствие чего гидролитические ферменты поступают в протоплазму, вызывая переваривание белков, углеводов, жиров. Клетка погибает. В результате недостаточности энергии клетки и нарушения обменных процессов в плазму крови входят аминокислоты, жирные кислоты, фосфаты, молочная кислота. По-видимому, митохондриальные дисфункции (как и любые патологические процессы) развиваются в разных органах и тканях асинхронно, мозаично. Особенно повреждения митохондрий и расстройства их функций выражены в гепатоцитах, тогда когда в нейронах головного мозга они остаются минимальными и при декомпенсированном шоке.

Следует заметить, что митохондриальные повреждения и дисфункции обратимы при компенсированном и декомпенсированном шоке и подвергаются обратному развитию рациональными анальгезией, инфузиями, оксигенотерапией и остановкой кровотечения.

Углеводный обмен. В эректильную фазу травматического шока в крови повышается концентрация антагонистов инсулина катехоламинов, стимулирующих распад гликогена, глюкокортикоидов, усиливающих процессы глюконеогенеза, тироксина и глюкагона в результате повышения активности эндокринных желез. Кроме того, повышена возбудимость симпатической нервной системы (гипоталамические центры), что также способствует развитию гипергликемии. Во многих тканях потребление глюкозы угнетается. При этом в целом обнаруживается ложнодиабетическая картина. В поздних стадиях шока развивается гипогликемия. Ее происхождение связано с полным использованием доступных для потребления резервов гликогена печени, а также снижением интенсивности глюконеогенеза из-за использования необходимых для этого субстратов и относительной (периферической) кортикостероидной недостаточности.

Липидный обмен. С изменениями углеводного обмена теснейшим образом сопряжены расстройства липидного обмена, выявляющиеся в торпидной фазе шока кетонемией и кетонурией. Объясняется это тем, что жиры (как один из главных энергетических источников) мобилизуются при шоке из депо (их концентрация в крови повышается), а окисление идет не до конца.

Глобулинов, имеющих, как известно, прямое отношение к вазоактивным свойствам крови. Накоплению азотистых продуктов и изменениям в ионном составе плазмы способствуют нарушения функции почек. Олигурия, а в тяжелых случаях шока - анурия постоянны при этом процессе. Нарушения функции почек обычно соответствуют тяжести шока. Известно, что с понижением АД до 70-50 мм рт. ст. почки нацело прекращают фильтрацию в клубочковом аппарате почки из-за изменений в соотношениях между гидростатическим, коллоидоосмотическим и капсульным давлением. Однако при травматическом шоке расстройства функций почек не являются исключительно следствием артериальной гипотензии: для шока характерно ограничение корковой циркуляции из-за увеличения сопротивления сосудов и шунтирования через юкстагломерулярные пути. Это определяется не только уменьшением производительности сердца, но и повышением тонуса сосудов коркового слоя.

Белковый обмен. Проявлением его нарушения являются увеличение содержания небелкового азота в крови главным образом за счет азота полипептидов и в меньшей степени - азота мочевины, синтез которой с развитием шока нарушается. Изменения в составе сывороточных белков при травматическом шоке выражаются уменьшением их общего количества преимущественно за счет альбуминов. Последнее может быть связано как с нарушением в обмене, так и с изменением проницаемости сосудов. Следует заметить, что с развитием шока увеличивается содержание в сыворотке Ионный обмен. Значительные сдвиги обнаруживаются в ионном составе плазмы. При травматическом шоке наступает постепенное сближение, концентрация ионов в клетках и внеклеточной жидкости, в то время как в норме в клетках преобладают ионы К+, Мg2+, Са2+, НРО42-, PO43-, а во внеклеточной жидкости Na+, С1-, НСОз-. Поступление в кровь биологически активных веществ. Для последующего течения процесса большое значение имеет освобождение из клеток активных аминов, которые являются химическими медиаторами воспаления. В настоящее время описано свыше 25 таких медиаторов. Важнейшими из них, появляющимися сразу после повреждения, являются гистамин и серотонин. При обширном повреждении тканей гистамин может поступить в общий кровоток, а так как гистамин вызывает расширение прекапилляров и спазм вен, не затрагивая непосредственно капиллярного русла, то это приводит к уменьшению периферического сопротивления сосудов и падению артериального давления. Под влиянием гистамина образуются каналы и щели в эндотелии, через которые в ткани проникают составные части крови, в том числе и клеточные элементы (лейкоциты и эритроциты). В результате указанного происходят экссудация и межклеточный отек. Под влиянием травмы проницаемость сосудистых и тканевых мембран повышается, но все же из-за расстройств кровообращения всасывание из травмированных тканей различных веществ замедляется. Большую роль в развитии вторичной альтерации играют ферменты лизосом клеток тканей и нейтрофилов. Эти ферменты (гидролазы) обладают выраженной протеолитической активностью. Наряду с указанными факторами определенную роль в расстройствах циркуляции играют плазменные кинины (брадикинин), а также простагландины. Эти факторы также оказывают влияние на систему микроциркуляции, вызывая расширение артериол, капилляров и повышение их проницаемости, что происходит вначале (главным образом в венулах) вследствие образования межклеточных щелей и трансэндотелиальных каналов. Позднее изменяется проницаемость капиллярного и прекапиллярного отдела сосудистого русла.

5. Принципы терапии

Основной принцип лечения шока - это комплексность терапии. Важное значение в терапии шока имеет учет фазности развития шока. Проводимое лечение должно быть по возможности быстрым и энергичным. При лечении шока в эректильной фазе, когда еще не развились полностью расстройства циркуляции, не наступило глубокой гипоксии и далеко зашедших метаболических нарушений, мероприятия должны сводиться к предупреждению их развития. В эту фазу широко используются средства, ограничивающие афферентную импульсацию; различного рода новокаиновые блокады, анальгетики, нейроплегические средства, наркотические вещества. Анальгетики, угнетающие передачу импульсов, подавляющие вегетативные реакции, ограничивающие чувство боли, показаны в ранние периоды шока. Важным моментом, ограничивающим импульсацию с места повреждения, является покой поврежденного участка (иммобилизация, повязки и т.д.). В эректильной фазе шока рекомендуется применение солевых растворов, содержащих нейротропные и энергетические вещества (жидкостей Попова, Петрова, Филатова и др.). Значительные расстройства циркуляции, тканевого дыхания и метаболизма, имеющего место в торпидной фазе шока, требуют различных мероприятий, направленных на их коррекцию. С целью коррекции расстройств кровообращения используются переливание крови либо кровезаменителей. При тяжелом шоке более эффективными оказываются внутриартериальные переливания. Их высокую эффективность связывают со стимуляцией сосудистых рецепторов, с усилением капиллярного кровотока и выходом части депонированной крови. В связи с тем, что при шоке имеют место преимущественно депонирование форменных элементов и их агрегация, представляется весьма перспективным использование низкомолекулярных коллоидных плазмозаменителей (декстранов, поливинола), обладающих дезагрегирующим действием и понижающих вязкость крови при малых напряжениях сдвига. Следует быть осторожными при применении вазопрессорных веществ.

Заметное влияние на кровоток при травматическом шоке оказывают гормоны - АКТГ и кортизон, вводимые с целью нормализации обменных процессов. В ходе развития шока обнаруживается вначале относительная, а затем абсолютная надпочечниковая недостаточность. В свете этих данных применение АКТГ оказывается более уместным в ранние периоды шока или при его профилактике. Глюкокортикоиды, вводимые в торпидной фазе, оказывают многообразное действие. Они изменяют реакцию сосудов на вазоактивные вещества, в частности потенцируют действие вазопрессоров. Кроме того, они уменьшают проницаемость сосудов. И все же главное их действие связано с влиянием на процессы обмена и прежде всего на обмен углеводов. Восстановление кислородного баланса в условиях шока обеспечивается не только восстановлением циркуляции, но и использованием оксигенотерапии. В последнее время рекомендуется и оксигенобаротерапия. С целью улучшения обменных процессов используют витамины (аскорбиновая кислота, тиамин, рибофлавин, пиридоксин, кальция пангамат). В связи с повышением резорбции из поврежденных тканей биогенных аминов и прежде всего гистамина важное значение в лечении травматического шока может иметь применение антигистаминных препаратов. Существенное место в терапии шока занимает коррекция кислотно-щелочного равновесия. Ацидоз типичен для травматического шока. Его развитие определяется как метаболическими нарушениями, так и накоплением углекислоты. Развитию ацидоза способствует и нарушение выделительных процессов. Для уменьшения ацидоза рекомендуется введение бикарбоната натрия, некоторые считают лучшим применение лактата натрия или трис-буффера.

Список использованной литературы

1. Литвицкий П.Ф. Патофизиология: учебик в 2 т.; Москва, «ГЭОТАР-МЕД», 2003.

2. Черешнев В.А., Юшков Б.Г. Патофизиология: учебник; Москва, «ВЕЧЕ», 2001.

3. Адо А.Д., Новицкий В.В. Патологическая физиология, учебник; Томск, «ТГУ» 1997.

Размещено на Allbest.ru

...

Подобные документы

    Определение и патогенез ожогового шока. Критерии диагностики. Клиника ожогового шока и лечение. Мониторинг инфузионной терапии при шоке. Транспортабельность больных. Алгоритм основных лечебных мероприятий при ожоговом шоке и основные направления терапии.

    реферат , добавлен 29.12.2008

    Понятие и причины шока, механизм его протекания, клинические симптомы. Классификация шокового состояния. Определение степени его тяжести по индексу Альговера. Фазы и критерии шока. Его дифференциальная диагностика. Алгоритм оказания медицинской помощи.

    презентация , добавлен 29.11.2014

    Стадии развития и степени тяжести геморрагического шока, его клиническая картина и патогенез. Причины острой кровопотери: различные травмы и заболевания. Компенсаторные реакции функциональных систем организма. Диагностика и лечение геморрагического шока.

    реферат , добавлен 17.10.2013

    Причины и механизмы развития травматического шока - тяжёлого, угрожающего жизни больного, патологического состояния, возникающего при тяжёлых травмах. Симптомы шока: эректильная и торпидная фазы. Патогенез, клиническая картина и лечение ожогового шока.

    презентация , добавлен 19.07.2014

    Причины развития кардиогенного шока. Особенности выявления клинического развития кардиогенного шока при инфаркте миокарда. Лечения кардиогенного шока некоронарного генеза. Развитие отека легких при различных патологических состояниях. Стадии отека легких.

    реферат , добавлен 30.11.2009

    Основные патогенетические механизмы, выделяемые в развитии ожогового шока. Клиническая картина степеней ожогового шока. Расчет инфузионной терапии (формула Паркланда) и обезболивание. Первичный туалет ожоговой поверхности. Критерии выхода из шока.

    презентация , добавлен 14.12.2016

    Основные проявления патофизиологических расстройств, направления терапии, степени тяжести и лечение ожогового шока. Критерии выхода пострадавшего из шока. Состояние организма, пораженного ожоговым шоком, реанимационные действия при спасении.

    презентация , добавлен 27.03.2011

    Особенности оказания помощи пострадавшим с шокогенными механическими повреждениями (политравмами). Причины возникновения травматического шока. Диагностика травматического шока. Лечебные мероприятия на догоспитальном этапе. Правила "золотого часа".

    реферат , добавлен 19.11.2010

    Основные патогенетические механизмы шоковых состояний при травмах. Клиническая картина травматического шока. Диагностика величины кровопотери по индексу Альговера. Неотложная помощь на месте происшествия, мероприятия при транспортировке и в стационаре.

    контрольная работа , добавлен 27.02.2010

    Патогенетическая классификация течения травматической болезни. Синдром взаимного отягощения. Оказание медицинской помощи пострадавшему на месте происшествия. Симптомы травматического шока и присущие ему клинические признаки. Алгоритм лечения шока.

Поскольку главным патогенетическим механизмом шокового состояния является снижение перфузии органов и тканей, можно ожидать примерно одинаковое развитие патофизиологических реакций при различных вариантах шока. Частные компоненты этой реакции в отдельных случаях могут несущественно разли­чаться, однако общая направленность их бывает обычно при­мерно одинаковой.

Нейроэндокринные реакции. Комплекс нейроэндокринных изменений при шоке может рассматриваться двояко: с одной стороны, это механизм запуска всех последующих ответов ор­ганизма на патологический инцидент, вызывающий снижение минутного объема кровообращения, с другой - это приспособ­ление организма к новым условиям существования, вызванным снижением тканевой перфузии .

Феномен снижения объема перфузии в организме улавли­вается рецепторами низкого давления, локализующимися в пра­вом предсердии, и барорецепторами высокого давления в аорте и в зоне каротидного синуса. Это является пусковым механиз­мом увеличения секреции АКТГ, АДГ и гормона роста, проду­цируемых гипофизом. Одновременно происходит активация надпочечникового секреторного аппарата через периферические симпатические пути, в результате которой в кровь выделяется большое количество адреналина и норадреналина. Увеличение продукции АКТГ и ишемическая активация ренин-ангиотензиновой системы стимулирует освобождение надпочечниками кортизола и альдостерона. Центральным «пультом», воспринимаю­щим патологическую периферическую шоковую- афферентацию, является, по-видимому, гипоталамус, откуда эфферентная ком­пенсирующая импульсация распространяется через ретикуляр­ную формацию ствола мозга, вентролатеральные и вентромедиальные ядра и гипофиз.

В целом нейроэндокринные ответы на остро возникшее шо­ковое состояние можно разделить на немедленные и отсрочен­ные. Высвобождение катехоламинов из адреналовой системы и симпатических нервных ганглиев, которое обеспечивает оптими­зацию гемодинамики, а также последующее освобождение АДГ, альдостерона и кортизола, приводящие к задержке Na + и воды и обеспечивающие поддержание волемии, являются выражени­ем такой немедленной компенсации. Происходит также актива­ция гликогенового пула в связи с дефицитом О 2 и усилением анаэробного метаболизма. Гипергликемия, частично обуслов­ленная катехоламинемией, высвобождением глюкагона, корти­зола и гормона роста, связана главным образом с угнетением секреции инсулина. Хотя катаболический характер метаболизма не выгоден для организма, он позволяет кратковременно улуч­шить условия гемодинамики и оптимизировать метаболизм углеводов в миокарде.


Отсроченный ответ на шоковое состояние реализуется уве­личением секреции тироксина, а также усилением антагонизма между андрогенами и катехоламинами, что позволяет сберечь быстро истощающиеся источники глюкозы.

Нейроэндокринная стимуляция лимбической системы вызывает беспокойство и возбуждение больного. Иногда возникает страх смерти. Особенно выражен он при развитии острого ин­фаркта миокарда, сопровождающегося болевым синдромом и гипотензией, а также при острой кровопотере. Проявлению нейроэндокринных реакций при шоке способствуют также снижение температуры тела и общее охлаждение. Дополнитель­ным фактором в развитии нейроэндокринной реакции на шок является активация хеморецепторных механизмов аорты и каротидного синуса, которые реагируют на снижение концентра­ции Рао 2 изменения Ра СО2 и рН. Таким образом, конечным эффектом гормональных пертурбаций является повышение тонуса периферических сосудов, т. е. повышение периферического сосудистого сопротивления, перераспределение общего кровото­ка, увеличение работы миокарда, задержка воды и солей поч­ками и повышение уровня глюкозы в крови.

Системное кровообращение. На первоначальных этапах раз­вития каждый из вариантов шока имеет собственную гемодинамическую характеристику. Так, гиповолемический шок ха­рактеризуется низкой преднагрузкой, которая и обусловливает синдром малого выброса. При кардиогенном шоке синдром ма­лого выброса возникает вследствие миокардиальной несостоя­тельности при достаточной преднагрузке. При септическом шоке даже на ранних стадиях его развития могут иметь место сни­жение преднагрузки, постнагрузки и угнетение сократительной функции миокарда. В поздних стадиях развития практически всех вариантов шоковых состояний наблюдаются многообраз­ные сочетающиеся формы поражения кровообращения, обуслов­ленные периферическим сосудистым параличом, потерей жидко­сти в интерстициальное пространство, наконец, токсической де­прессией миокарда. Рассмотрим эти факторы более подробно.

Гиповолемия . При потере объема крови из замкнутого сосудистого пространства компенсация возможна двумя путя­ми: укорочением времени кругооборота крови благодаря тахи­кардии с сохранением сердечного выброса, близкого к норме, и мобилизацией всей депонированной крови. Острая гиповолемия, возникшая в результате кровопотери, ведет к снижению венозного возврата. Поскольку снижение ударного объема, сердечного выброса и артериальная гипотензия уменьшают ба-рорецепторную стимуляцию, вазомоторный центр отвечает на это мобилизацией адренергического компонента. В результате частота сердечных сокращений и сократимость миокарда уве­личиваются, более экономно (в пользу жизненно важных орга­нов) начинает распределяться ОЦК. Одним из важнейших элементов компенсации потерянного ОЦК является перемещение жидкости из интерстициального пространства в капиллярное. Этому способствует снижение капиллярного гидростатического давления. В острой фазе, т. е. немедленно после кровопотери, прирост ОЦК за счет интерстициальной жидкости может соста­вить 1 л/ч. В результате гемодилюции снижается также кон­центрация белка в плазме.

Сердечный выброс, который является принципиальной детерминантой адекватного периферического кровообращения, зависит от венозного возврата . Компенсаторный механизм, который приводит к увеличению венозного возврата при шоке и обеспечивает необходимое увеличение преднагрузки, может быть реализован при шоке снижением емкости венозного русла. На первых по­рах этот механизм способен поддерживать адекватное крово­обращение. Периферическая вазоконстрикция, венозная и арте­риальная, обеспечивается комплексом возникающих при шоке реакций. Главными из них являются симпатическая активация, циркуляция в крови катехоламинов, ангиотензина-II, появляю­щегося в результате активации ренин-ангиотензиновой системы и секреции вазопрессина (АДГ).

В описываемых условиях всеобщей периферической вазоконстрикции, включая и венозные емкостные сосуды, как правило, наблюдается дилатация сосудов сердца, мозга, надпочечников и гипофиза. Кровообращение в коже, скелетных мышцах, со­судах органов брюшной полости резко снижается. Этот фено­мен перераспределения кровотока, получивший название «централизация кровообращения», в меньшей степени выражен в сосудах печени и почек. В этих органах он зависит от абсо­лютного объема кровопотери: при массивном кровотечении вместе с уменьшением общего спланхнического кровообращения и, следовательно, с уменьшением портального кровообращения об­щий кровоток в печени также уменьшается.

Однако при большой кровопотере механизмы поддержания адекватного кровообращения в сердце и мозге постепенно исто­щаются и наступает также обеднение кровотока в этих ор­ганах.

Артериальный тонус. Повышение системного арте­риального сопротивления является следствием артериолярной констрикции и реализуется также путем симпатической акти­вации, через повышение циркулирующих катехоламинов, ангио­тензина-II и вазопрессина. Возникающее вследствие этого по­вышение постнагрузки приводит к снижению сердечного вы­броса. Однако кровообращение в сердце и легких в силу механизмов централизации кровообращения, описанных выше, длительно остается достаточно высоким. Компенсаторная вазо­констрикция наиболее характерна для острой массивной крово­потери. Но она может наблюдаться также при кардиогенном шоке и в гиподинамической фазе септического шока.

В ранних фазах развития септического шока, характеризующихся циркуляторной гипердинамией, как правило, имеет место снижение периферического сосудистого сопротивления. Возмож­но, это связано с прямым влиянием быстро накапливающейся бактериальной флоры и эндотоксинов на сердечно-сосудистую систему и клеточный метаболизм . Клинические различия во влия­нии грамположительной и грамотрицательной флоры на пери­ферический сосудистый тонус установить невозможно . Непосредственной причиной снижения периферической сосудистой резистентности являются открытие низкорезистент­ных артериовенозных шунтов и непосредственный сброс крови через них. Неизбежным следствием этого является развиваю­щаяся тканевая гипоксия. У больных в связи со сниженной экс­тракцией О 2 тканями артериовенозная разность по О 2 уменьша­ется. В ряде случаев коэффициент экстракции О 2 [ДЭО 2 = = (С ао -C vo)/Са 0 ] составляет 0,1-0,15, что в 1,5-2 раза ниже нормы . Для поддержания достаточ­ного уровня тканевой оксигенации в подобных условиях необ­ходимо увеличение объемного кровотока в 2-3 раза. В позд­них фазах развития шока, несмотря на продолжительную вазо-констрикцию и перераспределение крови на периферии, наблю­дается снижение преднагрузки, объясняемое опустошением капиллярного функционирующего русла и, главное, жидкостной экстравазацией. Этим и определяется вторичный гиповолемический синдром при септическом шоке. Вместе с миокардиодепрессией гиповолемия формирует синдром малого выброса .

Сердечный выброс. Важнейшими составляющими эле­ментами СВ являются сократимость миокарда и частота сердеч­ных сокращений. Усиление этих функций как вместе, так и раз­дельно приводит к увеличению СВ. Однако усиливающие ре­зервы этих механизмов ограничены. При тахикардии, близкой к 170-180 мин -1 , наступает обратный эффект - снижение СВ, поскольку уменьшается время диастолического наполнения сердца. Оба эффекта могут быть обусловлены симпатической стимуляцией и циркуляцией катехоламинов.

В качестве активаторов кровообращения при шоке могут рассматриваться также кинины, серотонин, гистамин, энкефалины, эндорфины и метаболиты арахидоновой кислоты. Однако физиологическое значение всех этих субстанций, их роль в генезе компенсаторных и патологических реакций при шоковых состояниях окончательно не ясны.

Снижение постнагрузки, различные компенсирующие изме­нения преднагрузки довольно долго компенсируют нарастаю­щую депрессию миокарда, и СВ длительно остается удовлетво­рительным для обеспечения жизненно важных органов. Относительно значения изменений СВ у больных в шоковых состояниях имеются различные точки зрения. Однако преобладает мнение, что высокий СВ является достаточно благоприятным прогностическим признаком . По общим оценкам, сердечный индекс более 3,1 л/(мин-м 2) при шоке кор­релирует с выживанием больных (r=0,86). L. D. McLean и соавт. (1967) при наблюдении за 28 больными в состоянии септи­ческого шока установили, что способность организма повы­шать сердечный индекс на 1 л/(мин-м 2) при соответствующей инфузионной терапии свидетельствует о высокой вероятности выживания.

В отсутствие каких-либо причин, например действия миокардиальных депрессантов, снижение сократительной функции миокарда (его инотропизма) зависит от снабжения сердца кислородом. Следует отметить, что в норме экстракция О 2 сердцем из крови весьма высока в отличие от остальных тканей и составляет около 0,65. Повышение экстракции до 0,75-0,8 свидетельствует о гипоксии миокарда . Таким образом, снабжение сердца кислородом зависит от сте­пени кровоснабжения миокарда. Снижение коронарного крово­обращения, развивающееся при любом варианте шока, сущест­венно ухудшает сократительную функцию миокарда. Гипоксическое поражение метаболизма миокарда у больных в состоянии шока является одним из важнейших факторов формирования необратимого шока.

Вторичное повышение постнагрузки в ответ на снижение сердечного выброса при септическом шоке в настоящее время не доказано. Первичные изменения периферических сосудистых реакций и, следовательно, изменения преднагрузки и постна­грузки происходят при септическом шоке обычно в связи с интоксикацией. Депрессия миокарда, возникающая, как прави­ло, в ранних стадиях септического шока, но мало заметная, связана со снижением чувствительности адренергических ре­цепторов к катехоламинам (норадреналину и адреналину).

Физиологическая компенсация дефицита внутрисосудистого объема. Физиологическая компенсация может быть удовлетво­рительной даже при 50% снижении сердечного выброса и поте­ре 35% ОЦК. С клинических позиций важно отметить, что уменьшение ОЦК на 25% может протекать без гипотензии . Тем не менее поддержание адекват­ного объема плазмы является одним из важнейших условий обеспечения удовлетворительного кровообращения и предупреждения циркуляторной гипоксии. Длительная физиологиче­ская ишемия всегда опасна развитием необратимости микроциркуляторных расстройств и необратимости критического со­стояния в целом.

Компенсаторные реакции в условиях массивной кровопотери могут быть эффективными лишь в случае достаточно скорого восстановления ОЦК. Компенсаторное восстановление потерян­ного объема крови имеет две фазы: сначала восстанавливается водная часть плазмы, позже происходит восстановление про­теинов . В первой фазе сни-

жение гидростатического давления в капиллярах, возникающее в результате прекапиллярного спазма, способствует быстрому перемещению жидкости из интерстициального пространства в капиллярное русло. Подобные внеклеточные перемещения жидкостей способствуют восстановлению до 50% объема по­терянной крови. При этом развивается компенсаторная гемодилюция со снижением гематокрита.

Вторая фаза восстановления объема потерянной плазмы начинается с повышения ее осмоляльности, преимущественно за счет глюкозы.

Повышение осмоляльности плазмы происходит пропорцио­нально степени кровопотери и вскоре ведет к гипертоничности интерстициального пространства. В результате образуются осмо­тические градиенты между клеточным и внеклеточным прост­ранством, которые приводят к перемещению жидкости из клеток в интерстициальное пространство. В свою очередь повышение водного объема интерстициального пространства вызывает транскапиллярное перемещение альбумина из внеклеточного в сосудистое пространство. Полное восстановление потерянного объема крови зависит не только от описанного процесса воз­мещения объема плазмы, но и от скорости репарации эритро­цитов и других клеточных компонентов крови.

Расстройства микроциркуляции. Как ни странно, расстрой­ства микроциркуляции оказались наиболее трудно изучаемой частью проблемы шока. Это связано с тем, что при шоке изме­нения микроциркуляции в различных частях организма, его тка­нях и органах неодинаковы и неоднозначны.

Поскольку все нейрогуморальные реакции при шоке вызы­вают изменения различных гемодинамических параметров (та­хикардия, изменения периферического сосудистого сопротивле­ния и др.), которые потенциально опасны для одних органов (например, для почек и кишечника) и играют охранительную роль для других (сердце и мозг), соответствующие расстройства микроциркуляции тоже могут быть протективными для одних органов и разрушающими для других. Катехоламины, напри­мер, суживают сосуды почек и кишечника и, следовательно, ухудшают кровообращение в них, но расширяют сосуды сердца и мозга, увеличивая тем самым объемное кровообращение в этих органах.

Состояние микроциркуляции зависит от характера работы и чувствительности гладкой мускулатуры сосудов, контролирую­щей их способность к дилатации и констрикции. В ранних фа­зах кардиогенного и гиповолемического шока имеет место высо­кий симпатический тонус. Развитие в этом периоде ишемии, приводящей к образованию большого количества побочных про­дуктов метаболизма, приводит к преобладанию артериального тонуса, его доминированию и компенсаторному открытию ка­пиллярной сосудистой сети . Кровоток становится пассивным, зависящим от абсолютного системного давления. Однако сосудистая ауторегуляция сохраняется лишь в ранних стадиях шока, а с наступлением характерной для любого шока фазы токсичности артериолярный тонус исчезает и тканевой кровоток становится практически неуправляемым. Весьма уязвимым оказывается мозговое кровообращение, осо­бенно у людей пожилого возраста .

В ранних и обратимых стадиях шока, когда работают ком­пенсаторные механизмы и поддержание волемии обеспечивает­ся инфузионной терапией, кровоснабжение тканей и органов остается удовлетворительным. Необратимость начинается с то­го момента, когда кровеносные сосуды, включая капиллярную сеть, прекращают реагировать на к.онстрикторные факторы и постоянно остаются открытыми. Переполнение капиллярного сосудистого русла приводит к уменьшению венозного возврата, что впоследствии способствует формированию малого выброса. Возникновение гиперкоагуляции и присоединение ДВС-синдрома содействуют аккумуляции значительных количеств крови и плазмы в периферических сосудах. В результате симпатической вазоконстрикции, проявляющейся первоначально как ответ на гипотензию, нарушаются функции прекапиллярных артериол. В меньшей степени подобные функциональные расстройства ка­саются посткапиллярных венул. В результате гидростатическое давление в капилляре повышается. В условиях повышенной капиллярной проницаемости это способствует переходу значи­тельной части плазмы в периваскулярное пространство; так раз­вивается интерстициальный отек.

Сосудистые медиаторы, освобождающиеся при шоке, такие как ангиотензин-II, метаболиты арахидоновой кислоты и кинины, оказывают селективное воздействие на систему афферент­ных артериол и систему эфферентных венул. В частности, эти вещества могут вызывать образование артериовенозных шунтов при сопутствующей окклюзии капиллярного русла и тем самым менять взаимоотношения между давлением и потоком в капиллярной системе. Это в конечном счете извращает перифе­рическую микроциркуляцию, снижает эффективную, доставку О 2 тканям и отрицательно влияет на потребление тканями кис­лорода. Одновременно описанные микрососудистые аберрации способствуют агрегации тромбоцитов и микрососудистому тромбированию. Образовавшиеся внутрикапиллярные сгустки высво­бождают в последующем вазоактивные субстанции (простаноиды и серотонин), которые в комплексе с непосредственным гипоксическим фактором оказывают повреждающее влияние на сосудистый эндотелий, вызывая повышение капиллярной проницаемости. Конечным физиологическим результатом рас­стройств микроциркуляции являются образование интерстици­ального отека, дальнейшее перераспределение кровотока и до­полнительная потеря ОЦК.

Хотя окончательно не ясно, какие из описанных элементов сосудистых расстройств наиболее важны в патогенезе шокового состояния, известно, что гипоксия играет главную роль в генезе расстройств капиллярной проницаемости . Подобно другим клеткам, капиллярный эндотелий и его функция в значительной степени зависят от кислород­ного снабжения, и его проницаемость резко увеличивается в условиях гипоксии. При накоплении жидкости в интерстициальном пространстве увеличиваются межклеточные расстояния, что отрицательно сказывается на ходе клеточных метаболиче­ских процессов. Описанные изменения микроциркуляции ха­рактерны практически для всех органов, но особенно отчетливо выражены в капиллярах легких при септическом шоке. Именно вследствие подобного процесса формируется так называемый синдром капиллярного просачивания, в значительной степени зависящий от этиологии шока .

Однако окончательно вопрос о генезе синдрома капиллярно­го просачивания пока не решен. Имеются сведения о том, что сама по себе гипоксия не усиливает капиллярное просачивание. Этот процесс скорее может быть связан с высвобождением кислородобусловленных свободных радикалов, возникающим в ре­зультате быстрого возмещения объема потерянной плазмы, а также использования высоких концентраций О 2 во вдыхаемой смеси во время первичных восстановительных мероприятий в ходе лечения шока. Известно, например, что перекисный анион, являющийся главным компонентом системы кислородного ра­дикала, оказывает непосредственное повреждающее влияние на клетки и клеточные мембраны . Пока неясно, как можно избежать влияния этих токсических анионов на микроциркуляцию в организме, при шоке и, в частности, на микроциркуляцию в легких.

Расстройства метаболизма. Развивающаяся в результате гипоперфузии тканевая гипоксия приводит к усилению анаэроб­ного гликолиза в ходе метаболических процессов. Вместо вклю­чения в цикл лимонной кислоты через СоА пируват превраща­ется в лактат (L -). Повышение концентрации l- в крови пред­ставляет собой явление, наиболее характерное для шоковых состояний. Каждый миллимоль L - высвобождает 1 ммоль Н + , что снижает буферную емкость и приводит к системному аци­дозу. Если ацидоз глубокий, то он существенно изменяет все сосудистые реакции организма, ухудшает кровообращение и может вести к необратимости шока и смерти.

Нормальной реакцией на развитие шокового состояния явля­ется также гипергликемия. При шоке, как уже указывалось, имеет место также повышение продукции инсулина [Гельфанд Б. Р. и др., 1988]. Однако эта нормальная реакция, на­правленная на поддержание анаболического компонента мета­болизма, не в состоянии противостоять катаболической направ­ленности, вызванной гиперпродукцией катехоламинов, кортизола и глюкагона , и у больного развивается ги­пергликемия. Бесспорно, что биологическое значение гипергликемии при шоке сугубо положительно, так как она поддержи­вает возможность покрытия высокого метаболизма миокарда и мозга.

Основными источниками глюкозы в этих ситуациях явля­ются мобилизация гликогена преимущественно из печени, а так­же из мышц и стимуляция глюконеогенеза с образованием зна­чительного количества глюкозы при распаде мышечных белков с последующим их метаболизмом в печени до образования свободной глюкозы.

Высокий уровень катехоламинов способен селективно ингибировать секрецию инсулина, что также приводит к гипергли­кемии. Описанный метаболический ответ способствует поддер­жанию метаболизма мозга, поскольку утилизация глюкозы в нем осуществляется с минимальным участием инсулина. Таким образом, перестройка метаболизма углеводов при шоке осу­ществляется в ущерб периферическим тканям, но в пользу це­ребрального и частичного миокардиального метаболизма. Сни­жение интенсивности использования глюкозы в периферических тканях также способствует поддержанию высокого уровня гли­кемии.

При шоке повышается концентрация триглицеридов и жир­ных кислот в крови [Гельфанд Б.Р. и др., 1988], образование которых стимулируется катаболическими гормонами . Этот липолитический эффект, антагонистичный действию инсулина, также направлен на поддержание достаточного энер­гетического пула организма для покрытия резко возросших, но не обеспеченных метаболических потребностей.

Высвобождается также большое количество других метабо­лически и гемодинамически активных факторов. В крови можно обнаружить повышенный уровень эндорфинов и других опиатоподобных факторов, которые могут способствовать гипотензии и депрессии миокарда, особенно при тех формах шока, когда гиповолемия не является основным этиологическим фактором .

В последние годы обращают особое внимание на повыше­ние уровня метаболитов арахидоновой кислоты при шоке, глав­ным образом на, тромбоксан А 2 и простациклин, которые спо­собствуют усилению сердечно-легочной недостаточности . Эти субстанции, являющиеся антагонистами по физиологическому эффекту (тромбоксан А 2 вызывает агре­гацию тромбоцитов и является вазоконстриктором, а простацик­лин ингибирует агрегацию тромбоцитов и приводит к вазодила-тации), в значительной степени определяют «качество» шока в зависимости от того, какой из них преобладает по концент­рации.

В метаболических пертурбациях при шоке существенную роль играют также гормоны щитовидной и паращитовидной желез. Поскольку тироксин участвует в регуляции потребления кислорода, его дефицит, развивающийся при снижении базального кровоснабжения щитовидной железы, сам по себе ухудша­ет тканевый метаболизм при шоке. Нарушения кальциевого метаболизма, развивающиеся вследствие изменений синтеза или высвобождения паратгормона или тирокальцитонина, играют важную роль в изменениях клеточных функций.

Суммируя метаболические расстройства, развивающиеся при шоке, следует выделить важнейшие из них: 1) гипергликемию; 2) мобилизацию жиров, выражающуюся в повышении в крови уровня свободных жирных кислот; 3) катаболизм белков с по­вышением синтеза мочевины и ароматических аминокислот, яв­ляющихся «сырьем» для нейромедиаторов (в том числе лож­ных), в частности адреналина, норадреналина, серотонина, до­фамина и др.; 4) повышение внеклеточной осмоляльности.

Гипоксия клеток. Важнейшим для функционирования клеток является полноценное снабжение их кислородом. Аэробный метаболизм наиболее эффективно восстанавливает высокоэнер­гетические фосфаты, необходимые для нормального хода мета­болических процессов. В условиях дефицита кислородного снаб­жения клеточный метаболизм частично или полностью перехо­дит на анаэробный путь. Большая часть высокоэнергетических связей нарушается, эффективность клеточной деятельности сни­жается. Нарастающий внутриклеточный ацидоз отрицательно влияет на кинетику ферментов .

Преходящая гипоксия клеток - нормальное явление в ор­ганизме. Примером является гипоксия мышц в процессе рабо­ты или после нее. Сама по себе гипоксия побуждает организм к усилению кровоснабженя зоны напряженной работы. Однако если такого усиления кровоснабжения не происходит, в част­ности при шоке, то гипоксия приобретает патологический, по­вреждающий характер. Чувствительность различных органов и тканей к повреждающему воздействию гипоксии неодинакова. Астроциты, например, переносят гипоксию без серьезных по­следствий не более 15 с, но печень может нормально функцио­нировать в условиях гипоксии (практически в анаэробных усло­виях) более 1 ч . Лишь скелетные мышцы имеют некоторый запас О 2 (в виде соединения с миогемоглобином) для «экстренных нужд» и могут переносить гипоксию около 30 мин . В целом резистентность к гипоксии зависит от снабжения органа О 2 и со­держания гликогена в клетке.

В условиях гипоксии повышается проницаемость клеточной мембраны для глюкозы и начинаются катехоламинобусловленные процессы анаэробного гликолиза, обеспечивающие минимум энергетических субстратов для продолжения жизни клетки и поддержания ее специфической функции. В нормальных усло­виях анаэробный гликолиз способствует усилению кровоснабже­ния и кислородного обеспечения заинтересованной зоны (или организма в целом). При гиповолемии или ухудшении насосной функции сердца, т. е. в условиях шока, этот механизм компен­сации гипоксии становится невозможным.

Сущность гипоксического повреждения клетки заключается в прекращении высокоэнергетических реакций в связи со сни­жением содержания АТФ. На экспериментальных моделях шо­ковых состояний показано, что перфузия организма растворама дтф-MgCl 2 снижала смертность животных со 100 до 27% . Основную протективную роль в клетке играет ее билипидная мембрана , которая хорошо прони­цаема для К+ и плохо проницаема для Na+. Недостаточная про-тективная функция мембраны в конце концов приводит к ги­бели клетки.

В результате гипоксии нарушается деятельность внутрикле­точного натриевого насоса, возникает внутриклеточный отек, который поражает внутриклеточные органеллы, главным обра­зом митохондрии и лизосомы. Из-за ускоренной диссоциации АТФ на АДФ и фосфат кальций покидает органеллы. Внутри­клеточное дыхание определяет запасы кальция в клетке. Пере­мещению кальция из органелл во внутриклеточное пространство-способствует снижение проницаемости мембран. Таким обра­зом, кальций накапливается в клетке. Это имеет некоторое по­ложительное значение, так как внутриклеточный кальций (Ca i)-тормозит действие АТФ-транслоказы.

Центральная роль, которую играет кальций в обмене мио­карда, в настоящее время достаточно точно документирована. Кальций принимает участие как в процессах возбуждения сердечной мышцы, так и в процессах сокращения. Оно заклю­чается в постоянном медленном движении Са 2+ через каналы а сарколемме, обеспечивающем сердечный потенциал действия. стоянно высокая концентрация Са 2+ в клетке приводит к уко­рочению периода мышечной релаксации; при этом возможна остановка сердца в систоле. Циклические АМФ и АТФ прини­мают участие в осуществлении медленных передвижений Са 2 + по каналам путем фосфорилирования связанных с мембранам» белков, которые облегчают продвижение кальция в обоих на­правлениях .

Циклический АМФ (цАМФ), возможно, играет особую роль в общих путях регуляции кальция. Высказано предположение, что контроль за энергетическими функциями клетки (возбуждение, сократимость) может осуществляться с помощью АТФ, концентрация которого всегда определяет число открытых каль­циевых каналов, а следовательно, сократимость клетки и рас­ходование энергии .

В условиях гипоксии наряду со снижением концентрации внутриклеточного цАМФ происходит снижение чувствительно­сти клеток бета-адренергической стимуляции. Как известно, регио­нальная ишемия может снизить рН до 6,8; полная блокада (инактивация) медленных кальциевых каналов наступает при рН 6,4 . Установлено, что отрицательный инотропизм и периферическая вазодилатация, развивающаяся под влиянием некоторых эндотоксинов, возни­кают в результате значительного и непосредственного повреж­дения АТФазы, зависящей от потребления Са 2 + саркопластическим ретикулумом. Положительный инотропизм, возникающий при инфузии Са 2 + (а также дексаметазона), обусловлен повы­шением скорости перемещения Са 2 + и АТФ в митохондрии .

При сепсисе, кроме непосредственного влияния гипоксии, имеет значение первичное нарушение клеточного метаболическо­го процесса, например изменений метаболизма аминокислот, жиров и углеводов. Окончательно механизмы этих нарушений метаболизма не ясны, хотя известно, что основное проявление этих сдвигов заключается в повышении концентрации пирувата .

Помимо гипоксии, целость и функция клеточной мембраны могут нарушаться под влиянием эндотоксинов и других, воз­можно, неидентифицированных факторов, которые могут накап­ливаться в организме при шоке.

Нарушения водно-электролитных взаимоотношений, влияю­щие на интегрированную деятельность самой клетки и ее мем­браны, изменяют также характер ответа клетки на воздействие дополнительных субстанций, появляющихся в ходе шока, таких как катехоламины, кортизол, глюкагон и инсулин. Реакция клетки на эти субстанции может стать ослабленной или усилен­ной в зависимости от состояния внутриклеточной энзимной активности и выраженности шока.

Следует подчеркнуть, что все расстройства клеточного ме­таболизма, нарушения функции клеточной мембраны и рас­стройства ответа клетки на нормальные медиаторные факторы при шоке являются вторичными по отношению к расстройствам микроциркуляции и находятся в пропорциональной зависимости от них.

Эндотоксемия. В условиях тканевой ишемии (гипоксии) об­разуется значительное количество различных вазоактивных веществ. Наиболее известные из них - лизосомные ферменты - в избытке образуются в печени, почках, селезенке, других орга­нах. Стимулом к их высвобождению являются ишемия, гипо­ксия, ацидоз и сепсис . Их концентрация в крови повышается с увеличением длительности шока, а дейст­вие может быть несколько уменьшено применением ингибиторов лротеаз- трасилола или контрикала. Лизосомные ферменты, помимо того, что дают прямой цитотоксический эффект, небла­гоприятно влияют на сократимость миокарда и вызывают коро­нарную вазоконстрикцию. Лизосомные ферменты разрушают эндогенные протеины, главным образом а 2 -глобулины, и способ­ствуют превращению кининогена в кинин.

Известно множество различных кининов, сходных по эффекту с брадикинином. Их объединяют главным образом четы­ре общих эффекта: способность вызывать глубокую вазодилатацию, повышать капиллярную проницаемость, угнетать сокра­тимость миокарда, тесно взаимодействовать с фактором XII (Хагемана) и таким образом активировать процесс превраще­ния протромбина в тромбин, т. е. активировать систему сверты­вания крови . Особенно велика роль кини­нов в механизмах развития эндотоксинового шока в тех случа­ях, когда преимущественный путь возникновения его связан с кишечником .

Легкие во время шока также могут быть вовлечены в кининовую активность организма. Известно, что они могут быть как местом образования кининов, так и местом их инактивации . Роль кининов в генезе эндотоксинового шока до конца не ясна. Возможно, существуют еще не изученные кинины и кининоподобные факторы, прини­мающие участие в формировании шока . Роль гистамина как «соучастника» инициации гемодинамических расстройств, особенно в ранних (гипотензив­ных) стадиях шока, известна довольно давно и подтверждена в более позднее время .

Важное значение в качестве вазоактивных субстанций, опре­деляющих характер и направленность микро- и макрососудистых сдвигов при шоке, имеет разнородная группа карбоксиловых кислот под общим названием «простагландины». Среди них наиболее изучены простациклин (PGI 2) и тромбоксан А 2 (PGAs). Спектр действия простагландинов выражен вазоконстрикторным (PGA 2 и PGF 2 a), вазодилатирующим (PGE 2 и PGI 2) эффектом, усилением мембранной проницаемости (PGD 2 и PGE 2), усилением агрегационных свойств тромбоцитов (PGA 2 и PGE 2) и торможением их агрегации (PGD 2 , PGE, и PGI 2). Группы простагландинов Е и F дают противоположно направ­ленные вазомоторные эффекты. При общей оценке вазомотор­ных реакций организма в условиях септического шока имеют значения количественные взаимоотношения этих субстратов. Простагландины могут быть обнаружены в очень малых коли­чествах в артериальной крови, так как метаболизируются пре­имущественно в легких (хотя возможен и обычный - печеноч­ный - путь их метаболизма) . При экспериментальном эндотоксиновом шоке отмечен высокий уровень простагландинов в крови. Простагландин PGF 2 cc в зна­чительной степени обусловливает раннюю легочную гипертен-зию при эндотоксиновом шоке .

Важнейшим фактором, от которого зависит течение эндоток­синового шока, является непосредственное влияние токсинов. Главным объектом их воздействия является также микроцирку­ляция. Различия в эффектах между грамположительной и грамотрицательной флорой в настоящее время во внимание не при­нимаются, и рассматриваются как архаизм . Обе группы микроорганизмов продуцируют токсины. Стафилококки, например, в дополнение к локальной коагулазе выделяют альфа-токсин, который является вазоконстриктором. Однако он же вызывает повреждение эндотелия, усиливает агрегацию тромбоцитов, повышает мембранную про­ницаемость, ведет к разобщению окислительного фосфорилиро-вания . Классическим эндотоксином, высво­бождающимся при распаде грамотрицательных бактерий, явля­ется липид А. Эндотоксины дают множество различных эффектов, главными из которых являются их влияние на сосудистый то­нус и непосредственное повреждение клеток.

При септическом шоке под влиянием эндотоксинов (при уча­стии катехоламинов) снижается периферическая сосудистая резистентность и уменьшается среднее время циркуляции: в кро­вообращение включаются артериовенозные шунты, через кото­рые идет сброс оксигенированной крови непосредственно в венозную систему.

Как уже указывалось, эндотоксин обладает выраженными цитотоксическими свойствами. Главными мишенями являются митохондриальные и клеточные мембраны, в которые оказыва­ется «встроенным» липид А. Возможно, в этом заключается суть механизма разобщения окислительного фосфорилирования .

Эндотоксины оказывают также непосредственное влияние на сосудистый эндотелий и ретикулоэндотелиальную систему, раз­рушая ее и высвобождая при этом нейтрофильные прокоагулянты и тромбогенные фибриногеновые комплексы. Существенно снижается под влиянием эндотоксинов функция фагоцитоза.

Травматический шок является самым ранним тяжелым осложне­нием механической травмы. Это состояние возникает и развивается как общая реакция организма на повреждение и относится к разряду критических состояний. Травматический шок можно определить как опасное для жизни осложнение тяжелых поврежде­ний, при котором нарушается, а затем неуклонно ухудшается регуляция функций жизненно важных систем и органов, в связи с чем развиваются расстройства кровообращения, нарушается микро-циркуляция, в результате чего возникает гипоксия тканей и органов.

Нарушение микроциркуляции в органах и тканях заключается в том, что уменьшается градиент между артериолами и венулами с ограничением кровотока, падением скорости кровотока в капиллярах и посткапиллярных венулах, снижением капиллярного кровотока вплоть до стаза, уменьшением поверхности функционирующих капилляров и ограничением транскапиллярного транспорта, повы­шением вязкости крови и возникновением агрегации эритроцитов. Это приводит к критическому снижению кровотока в тканях, глубоким обменным нарушениям, среди которых главными явля­ются гипоксия тканей и органов, а также метаболические нарушения. В клинической картине преобладает в основном острая сердечно­сосудистая и дыхательная недостаточность.

Термин «травматический » должен относиться лишь к опреде­ленной группе реакций организма, развивающихся однотипно и имеющих единый патогенез, а не быть собирательным понятием, объединяющим разнородные тяжелые критические состояния орга­низма (острая кровопотеря, тяжелая черепно-мозговая травма, расстройства сердечно-сосудистой и дыхательной деятельности и др.), на основании вторичных признаков гипотонии и тахикардии. Частота травматического шока у больных, госпитализированных с различными характером и локализацией механических повреждений, составляет по сборной статистике 2,5%.

Патогенез травматического шока

Патогенез травматического шока очень сложен. Все патогенетические звенья связывает воедино нейрорефлекторная теория шока. Согласно этой теории, «стартером» травматического шока является болевая, импульсация, возникающая при травме. В ответ на сверхсильные раздражения, поступающие в центральную нервную систему, усиливается функция симпатико-адреналовой системы, что приводит -сначала к рефлекторному спазму, а затем к атонии периферических сосудов, уменьшению скорости кровотока в капиллярах, вследствие чего развивается повышенная проницаемость стенок капилляров, происходит плазмопотеря, уменьшается объем циркулирующей крови и возникает гиповолемия. В сердце не поступает достаточного количества крови, ударный и минутный объем крови снижается. Возникают универсальные стереотипные симптомы шока, гипотония и тахикардия. Длительная гипотония приводит к циркуляторной гипоксии, что затрагивает функции жизненно важных органов: мозга, печени, почек. Состояние циркуляторной гипоксии приводит к нарушению всех видов обмена, в крови появляются сосудопарализующие вещества и другие метабо­литы, что обусловливает токсическую гипоксию. При прогрессировании расстройств метаболизма и нарастании гипотонии, доходящей до критического уровня, происходит угнетение всех жизненных функций организма - возникает терминальное состояние.

Усугубляет течение шока и его исход кровопотеря, она является важным патогенетическим звеном, так как сама по себе создает гиповолемию, анемическую гипоксию. Однако кровопотеря не является первопричиной возникновения шока. В развитии шока и его течении определенное значение придают всасыванию продуктов распада поврежденных тканей и бактериальных токсинов. Важным патогенетическим звеном травматического шока являются эндокрин­ные расстройства. Установлено, что при развитии шока вначале происходит усиление функции надпочечников (гиперадреналинемия) и затем быстрое их истощение. В нарушении функции внутренних органов и обмена веществ при травматическом шоке большую роль играют ацидоз, азотемия, гистаминемия, нарушение соотношения электролитов, в частности калия и кальция. Таким образом, при травматическом шоке имеет место развитие циркуляторной, анемической, токсической и респираторной гипоксии в сочетании с метаболическими расстройствами и при отсутствии или несвоевре­менной соответствующей терапии приводит к постепенному угаса­нию всех жизненных функций организма и при определенных неблагоприятных условиях к смерти пострадавшего. Возникновение и тяжесть шока зависят от тяжести и локализации повреждения, предрасполагающих факторов, эффективности профилактических мероприятий, а также сроков и интенсивности лечения.

Чаще шок возникает при повреждениях живота, таза, груди, позвоночника, бедра.

Для возникновения шока и его развития имеют большое значение предрасполагающие факторы: кровопотеря, психическое состояние, переохлаждение и перегревание, голодание.

Фазы травматического шока

В течении шока различают две фазы - эректильную и торпидную. Эректильную фазу в практике удается наблюдать неча­сто, всего лишь у каждого десятого больного, поступающего в лечебное учреждение в состоянии шока. Это объясняется тем, что она быстротечна, длится считанные минуты, нередко не диагностируется и не дифференцируется с возбуждением в результате испуга, алкогольного опьянения, отравления, расстройства психики.

В эректильной фазе больной находится в сознании, лицо бледное, взгляд беспокойный. Наблюдается двигательное и речевое возбуждение. Он жалуется на боль, нередко кричит, эйфоричен и не отдает от­чета в тяжести своего состояния. Он может вскочить с носилок, ка­талки. Удержать его трудно, так как он оказывает большое сопротивление. Мускулатура напряжена. Отмечается общая гипере­стезия, кожные и сухожильные рефлексы повышены. Дыхание учащено, неравномерное. Пульс напряженный, артериальное давле­ние периодически повышается, что обусловлено выбросом «гормона чрезвычайных обстоятельств» - адреналина. Отмечено, что чем резче выражена эректильная фаза шока, тем обычно тяжелее протекает торпидная фаза я тем хуже прогноз. Вслед за эректильной фазой шока относительно быстро развивается фаза глубокого угнетения деятельности регуляторных и исполнительных систем организма - торпидная фаза шока.

Торпидная фаза шока клинически проявляется в угнетении психики, безучастном отношении к окружающей обстановке, резком снижении реакции на боль при сохраненном, как правило, сознании. Отмечается падение артериального и венозного давления. Пульс учащен, слабого наполнения. Температура тела понижена. Дыхание частое, поверхностное. Кожа холодная, в тяжелых степенях шока покрыта холодным потом. Наблюдается жажда, иногда возникает рвота, которая является плохим прогностическим признаком.

Клинические признаки травматического шока

Главными клиническими признаками, на основании которых диагностируется шок и определяется степень его тяжес­ти, являются гемодинамические показатели: артериальное давление, частота наполнения и напряжение пульса, частота дыхания и объем циркулирующей крови. Ценность этих показателей заключается в простоте их получения и легкости трактовки. С определенной долей вероятности по уровню артериального давления можно косвенно судить о массе циркулирующей крови. Так, падение артериального давления до 90 мм рт. ст. свидетельствует об уменьшении массы циркулирующей крови вдвое, а до 60 мм рт. ст. - втрое. Кроме того, уровень артериального давления и характер пульса являются объективными критериями эффективности проводимой терапии.

Торпидная фаза шока по тяжести и глубине симптомов условно делится на четыре степени: I, П, III и IV (терминальное состояние). Эта классификация необходима для выбора лечебной тактики и определения прогноза.

Степени торпидной фазы травматического шока

Шок I степени (легкий). Проявляется в нерезко выраженной бладности кожи и небольшом нарушении гемодинамики и дыхания. Общее состояние удовлетворительное, сознание ясное. Зрачки хорошо реагируют на свет. Артериальное давление удержива­ется на уровне 100 мм рт. ст. Пульс ритмичен, удовлетворительного наполнения, до 100 в 1 мин. Температура тела нормальная либо незначительно снижена. Масса циркулирующей крови уменьшается в пределах 30%. Дыхание ровное, до 20-22 в 1 мин. Прогноз благоприятный. Шок легкой степени не вызывает опасения за жизнь пострадавшего. Покой, иммобилизация и обезболивание оказыва­ются достаточными для восстановления функций организма.

Шок II степени (средней тяжести). Характеризу­ется более выраженным угнетением психики пострадавшего, отчетливо выражены заторможенность, бледность кожи. Сознание сохранено. Зрачки вяло реагируют на свет. Максимальное артери­альное давление 80-90 мм рт. ст., минимальное 50-60 мм рт. ст. Пульс 120 в 1 мин, слабого наполнения. Объем циркулирующей крови уменьшается на 35%. Дыхание учащено, поверхностное. Выраженная гипорефлексия, гипотермия. Прогноз серьезный. Бла­гоприятный и неблагоприятный исход одинаково вероятен. Спасение жизни пострадавшего возможно только при безотлага­тельном, энергичном проведении длительной комплексной терапии. При несостоятельности компенсаторных механизмов, а также нераспознанных тяжелых повреждениях возможен переход средней степени шока в тяжелую.

Шок III степени (тяжелый). Общее состояние пострадавшего тяжелое. Максимальное артериальное давление ниже критического уровня - 75 мм рт. ст. Пульс резко учащен, 130 в 1 мин и более, нитевидный, трудно сосчитывается. Объем циркули­рующей крови уменьшается на 45% и более. Дыхание поверхностное и резко учащенное. Прогноз очень серьезный. При запоздалой помощи развиваются необратимые формы шока, при которых самая энергичная терапия становится неэффективной. Необратимость шока можно констатировать у -пострадавших, когда при отсутствии продолжающегося кровотечения длительное проведение полного комплекса противошоковых мероприятий не обеспечивает подъема артериального давления выше критического уровня. Тяжелая степень шока может перейти в IV степень - терминальное состояние , которое представляет крайнюю степень угнетения жизненных функций организма, переходящую в клиниче­скую смерть.

Терминальное состояние условно подразделяется на три стадии.

1.Прея атональное состояние характеризуется резкой бледностью с выраженным цианозом, отсутствием пульса на лучевой артерии при наличии его на сонных и бедренных артериях и не определяющимся артериальным давлением. Дыхание поверхно­стное, редкое. Сознание спутанное или отсутствует. Рефлексы и тонус скелетной мускулатуры резко ослаблены.

2.Атональное состояние имеет те же гемодинамиче­ские изменения, что и предагональное, но проявляется более резкими нарушениями дыхания (аритмичное, Чейна - Стокса), с выра­женным цианозом. Сознание и рефлексы отсутствуют, мышечный тонус резко ослаблен, реакции больного на внешние воздействия нет.

3. Клиническая смерть начинается с момента последнего вдоха. Пульс отсутствует на сонных и бедренных артериях. Тоны сердца не прослушиваются. Зрачки расширены, на свет не реагируют. Роговичный рефлекс отсутствует.

Шок III и IV степени, если лечение проводится несвоевременно или недостаточно полно, может закончиться клинической, а затем и биологической смертью, характеризующейся полным прекращением всех жизненных функций организма.

Индекс шока

Определить степень тяжести шока и в какой-то степени прогноз можно по его индексу. Под этим понятием подразумевается отношение частоты пульса к систолическому давлению. Если индекс меньше единицы, т. е. частота пульса меньше, чем цифра максимального артериального давления (например, пульс 80 в 1 мин, максимальное артериальное давление 100 мм рт. ст.), «шок легкой степени, состояние раненого удовлетворительное - прогноз бла­гоприятный. При индексе шока, равном единице (например, пульс 100 в 1 мин и артериальное давление 100 мм рт. ст.), шок средней тяжести. При индексе шока, больше единицы (например, пульс 120 в 1 мин, артериальное давление 70 мм рт. ст.), шок тяжелый, прогноз угрожающий. Систолическое давление - надежный диагностический и прогностический показатель при условии учета степени снижения его фактических и средневозрастных цифр.

Практическое значение при шоке имеет уровень диастолического давления, представляющий ценность как в диагностическом, так и в прогностическом отношении. Диастолическое давление при шоке, как и систолическое, имеет определенную критическую границу - 30-40 мм рт. ст. Если оно ниже 30 мм рт. ст. и отсутствует тенденция к повышению после проведения противошоковых ме­роприятий, прогноз вероятнее всего неблагоприятный.

Самым доступным и широко распространенным показателем состояния кровообращения является частота и наполнение пульса на периферических артериях. Очень частый, трудно сосчитываемый или неопределяемый пульс, не имеющий тенденции к урежению и лучше­му наполнению, - плохой прогностический признак. Кроме пере­численных прогностических тестов: индекс шока, уровень систоличе­ского и диастолического давления, частота и наполнение пульса, предлагается проведение биологической пробы на обратимость и необратимость шока. Эта проба заключается в том, что больному внутривенно вводят смесь, включающую 40 мл 40% раствора глюкозы, 2-3 ЕД инсулина, витамины В1-6%, В6-5%, РР-1%о по 1 мл, витамин С 1%-5 мл и кордиамин 2 мл. Если нет реакции на введение этой смеси (повышение артериального давления, снижение индекса шока, урежение и наполнение пульса), прогноз неблагопри­ятный. Определение венозного давления при шоке диагностического и прогностического значения не имеет. Знание уровня венозного давления нужно только для выяснения необходимости и возможно­сти проведения внутривенных переливаний, так как известно, что венозная гипертония является прямым противопоказанием к гемотрансфузиям.

Травматология и ортопедия. Юмашев Г.С., 1983г.

В течение жизни человек подвергается влиянию различных экзогенных и эндогенных факторов чрезвычайной силы, продолжительности или необычного, непривычного характера. Действие экстремальных факторов приводит к развитию либо адаптации к данному фактору, либо - экстремального (критического, неотложного) состояния.

Экстремальные состояния - общие тяжёлые состояния организма, которые развиваются под действием экстремальных факторов и характеризуются значительными расстройствами жизнедеятельности организма, чреватыми смертью.

К наиболее частым и клинически значимым экстремальным состояниям относят коллапс, шок и кому.

Иногда к экстремальным состояниям относят отравления. Однако, как правило, отравления, особенно при их тяжёлом течении, являются причиной того или иного экстремального состояния (токсогенные варианты коллапса, шока, комы).

Терминальные состояния - крайне тяжёлые общие состояния организма, которые при отсутствии специализированной врачебной помощи приводят к летальному исходу.

Терминальные состояния являются следствием неблагоприятного течения экстремальных состояний. К терминальным состояниям относят все стадии умирания - преагонию, агонию, клиническую смерть, а также начальный этап состояния после успешной реанимации.

Сравнительная характеристика экстремальных и терминальных состояний

Экстремальные и терминальные состояния имеют ряд общих признаков: общие причины, сходные ключевые звенья патогенеза, пограничное положение между жизнью и смертью, чреваты гибелью организма, требуют неотложной врачебной помощи.

Вместе с тем, экстремальные и терминальные состояния имеют ряд существенных отличий (табл. 20-1). В основе терминальных состояний лежат тяжёлые, а, следовательно - прогностически неблагоприятные процессы. В отличие от этого, при некоторых экстремальных состояниях возможна активация процессов адаптации и «выход» организма из этих состояний.

Таблица 20-1. Отличия экстремальных и терминальных состояний

Общая этиология экстремальных состояний

Экстремальные факторы подразделяют на экзогенные и эндогенные.

Экзогенные экстремальные факторы характеризуются высокой (разрушительной) интенсивностью или чрезмерной длительностью воздействия.

Эндогенные (неблагоприятное, тяжёлое течение болезней и болезненных состояний):

♦ недостаточность функций органов и физиологических систем;

♦ значительная кровопотеря;

♦ избыток продуктов иммунных или аллергических реакций;

♦ существенный дефицит или избыток БАВ либо их эффектов;

♦ психические травмы и перенапряжения.

Условия, способствующие возникновению экстремальных состояний

Факторы, потенцирующие эффекты экстремальных агентов. Например, последствия кровопотери усугубляются в условиях повышенной температуры воздуха; сердечная недостаточность при выполнении чрезмерной физической нагрузки может привести к кардиогенному шоку и т.д.

Реактивность организма. Гиперили гипоергическое состояние организма (в отличие от нормергического) существенно облегчает возникновение, усугубляет течение и исходы экстремального состояния.

Патогенез и проявления экстремальных состояний

В динамике экстремальных состояний выделяют три стадии: активации адаптивных механизмов, истощения и недостаточности их, экстремального регулирования организма.

СТАДИЯ АКТИВАЦИИ АДАПТИВНЫХ МЕХАНИЗМОВ

ОРГАНИЗМА

Эта стадия характеризуется закономерной генерализованной активацией функций тканей, органов и их систем. Это лежит в основе развития адаптивных реакций разной степени выраженности и специфичности. Принципиально все эти реакции можно подразделить на две категории.

Обеспечивающие специфическую адаптацию к данному конкретному экстремальному фактору (см. раздел «Адаптация», глава 19).

Реализующие неспецифические, стандартные процессы, развивающиеся при действии любого экстремального воздействия, т.е. стресс (см. «Стресс», глава 19).

СТАДИЯ НЕДОСТАТОЧНОСТИ АДАПТИВНЫХ МЕХАНИЗМОВ

Причины: недостаточная эффективность адаптивных реакций и нарастание повреждающего действия экстремального агента.

Звенья патогенеза:

♦ Прогрессирующее снижение эффективности реакций приспособления, компенсации, защиты и репарации.

♦ Нарастающее расстройство физиологических функций и распад функциональных систем организма.

♦ Нарушение обмена веществ и физико-химических процессов.

♦ Повреждение субклеточных структур, клеток и нарушение межклеточного взаимодействия.

Порочные круги могут формироваться при всех экстремальных состояниях, хотя и с разной частотой.

♦ При коллапсе, шоке и коме наблюдается перераспределение кровотока. Большое количество крови скапливается в расширенных венозных и артериальных сосудах брюшной полости, лёгких, подкожной клетчатки. Это значительно уменьшает МОК и, следовательно, приток крови к сердцу. Обусловленное этим снижение сердечного выброса крови приводит к ещё большему уменьшению МОК и усугублению состояния пациента.

♦ Феномен активации СПОЛ. Гипоксия, развивающаяся при всех экстремальных состояниях, обусловливает подавление активности систем антиоксидантной защиты тканей. Это ведёт к интенсификации образования в них активных форм кислорода и продуктов СПОЛ, которые повреждают ферменты тканевого дыхания, гликолиза, пентозофосфатного цикла. В итоге гипоксия усугубляется и порочный круг замыкается.

Проявления стадии недостаточности механизмов адаптации.

♦ Расстройства функций нервной системы. Характеризуются нарушениями чувствительности, контроля движений, интеграции деятельности органов, тканей и их систем, ВНД.

♦ Нарушение деятельности ССС. Проявляется аритмиями, признаками коронарной и сердечной недостаточности, расстройствами центральной, органной и микрогемоциркуляции.

♦ Отклонения в системе крови и гемостаза. Обусловливают нарушения объёма, вязкости и текучести крови; формирование агрегатов её форменных элементов, феномена сладжа, тромбов; развитие ДВС-синдрома, нередко приводящего к гибели пациента.

♦ Расстройства системы внешнего дыхания. Как правило, развиваются периодические формы дыхания (Биота, Чейна-Стокса, Куссмауля), а при тяжёлом течении - его полное прекращение (апноэ).

♦ Недостаточность функций почек. Проявляется олигоили анурией, нарушением фильтрации, экскреции, секреции и других процессов в них.

♦ Расстройство функций других органов и физиологических систем: печени, ЖКТ, эндокринных желёз и др.

♦ Значительные отклонения от нормы показателей гомеостаза, в том числе жизненно важных, критических. Являются закономерным проявлением недостаточности функций органов и их систем.

СТАДИЯ ЭКСТРЕМАЛЬНОГО РЕГУЛИРОВАНИЯ ЖИЗНЕДЕЯТЕЛЬНОСТИ ОРГАНИЗМА

Причины: нарастание степени и масштаба первичной и вторичной альтерации организма, прогрессирующая недостаточность механизмов адаптации.

Ключевые звенья патогенеза:

♦ Нарастающая гипо- и деафферентация центральных и периферических нервных структур, выход из-под нервных влияний исполнительных органов и тканей.

♦ Распад функциональных систем, обеспечивавших поддержание жизненноважных параметров организма.

♦ Переход на элементарный - метаболический уровень регуляции органов и тканей.

При нарастании указанных изменений развивается терминальное состояние и наступает смерть. Однако, проведение эффективного лечения позволяет блокировать прогрессирование расстройств, восстановить и даже нормализовать состояние пострадавшего.

Принципы терапии экстремальных состояний

Неотложные лечебные мероприятия при экстремальных состояниях базируются на реализации четырёх основных принципов: этиотропного, патогенетического, саногенетического и симптоматического. Этиотропное лечение направлено на прекращение или снижение силы и масштаба патогенного действия экстремального агента. Это достигается разными методами, зависящими от типа неотложного состояния (остановка кровотечения, прекращение действия низкой или высокой температуры, нормализация содержания кислорода во вдыхаемом воздухе и пр.).

Патогенетический принцип имеет целью блокирование механизмов развития экстремальных состояний путём воздействия на ключевые звенья патогенеза (расстройства кровообращения, дыхания, гипоксию, сдвиги КЩР, дисбаланс ионов, активацию процессов липопероксидации и др.).

Саногенетическая терапия имеет целью активацию или потенцирование механизмов защиты, компенсации, приспособления и возмещения повреждённых или утраченных структур и функций организма. Обеспечивается путём стимуляции функций сердца, дыхания, почек, печени и других органов и тканей; активации процессов репарации, систем дезинтоксикации, ликвидации избытка кислородных и липидных радикалов; потенцированием пластических реакций и других. Симптоматический принцип подразумевает устранение неприятных, тягостных, усугубляющих состояние пациентов симптомов и ощущений: головной боли, чувства страха смерти, каузалгий, гипоили гипертензивных реакций и других.

КОЛЛАПС

Коллапс - острое общее патологическое состояние, возникающее в результате значительного несоответствия ОЦК ёмкости сосудистого русла.

Характеризуется недостаточностью кровообращения, низким артериальным давлением, первично циркуляторной гипоксией, расстройством функций тканей, органов и их систем.

ЭТИОЛОГИЯ

Причины коллапса

Непосредственная причина коллапса - быстро развивающееся значительное превышение ёмкости сосудистого русла по сравнению с ОЦК. В зависимости от причин, нарушающих это соответствие, выделяют несколько разновидностей коллапса: кардиогенный, гиповолемический, вазодилатационный, постгеморрагический, инфекционный, токсический, ортостатический и др.

При снижении величины сердечного выброса развивается кардиогенный коллапс. Это наблюдается при острой сердечной недостаточности; состояниях, затрудняющих приток крови к сердцу (при стенозах клапанных отверстий, эмболии или стенозе сосудов системы лёгочной артерии).

При уменьшении ОЦК развивается гиповолемический коллапс. К этому приводят острое массивное кровотечение, быстрое и значительное обезвоживание организма, потеря большого объёма плазмы крови (например, при обширных ожогах).

При снижении ОПСС развивается вазодилатационный коллапс. Это может произойти при тяжёлых инфекциях, интоксикациях, гипертермии, эндокринопатиях (при гипотиреоидных состояниях, надпочечниковой недостаточности), передозировке сосудорасширяющих ЛС, гипокапнии, глубокой гипоксии и ряде других состояний.

Факторы риска. На развитие коллапса в значительной мере оказывают влияние физические характеристики окружающей среды (низкая или высокая температура, уровень барометрического давления, влажности), состояние организма (наличие или отсутствие какой-либо болезни, патологического процесса, психоэмоциональный статус и др.).

ПАТОГЕНЕЗ И ПРОЯВЛЕНИЯ КОЛЛАПСА

Несмотря на сходство патогенеза и проявлений различных видов коллапса (см. раздел «Патогенез и проявления экстремальных состояний» выше), некоторые из них имеют существенные различия. Постгеморрагический коллапс. Инициальный патогенетический фактор - быстрое и значительное уменьшение ОЦК (гиповолемия). Возрастание в связи с этим тонуса сосудов не устраняет несоответствия их ёмкости существенно снизившемуся ОЦК. В результате развивается гипоперфузия органов и тканей. Это приводит к нарастающей вначале циркуляторной, а затем (с присоединением гемической и тканевой) - смешанной гипоксии.

Ортостатический коллапс. Инициальное звено патогенеза ортостатического коллапса (обморока) - системная вазодилатация в результате быстрого снижения тонуса стенок артериол, а также ёмкостных сосу-

дов. Наблюдается при резком переходе тела в вертикальное положение из положения лёжа или сидя, особенно после длительной гиподинамии. При этом доминируют холинергические влияния на стенки сосудов (в связи с раздражением нейронов вестибулярных центров). Важный фактор риска - снижение реактивных свойств стенок резистивных сосудов к вазопрессорным веществам: катехоламинам, ангиотензину и другим.

МЕТОДЫ ЛЕЧЕНИЯ КОЛЛАПСА

Терапия коллапсов базируется на реализации этиотропного, патогенетического, саногенетического и симптоматического принципов. Этиотропное лечение направлено на прекращение действия экстремального фактора или снижение степени его повреждающего влияния: останавливают кровотечение, вводят антитоксины, антидоты, антимикробные ЛС.

Патогенетический принцип реализуется путём устранения или снижения степени последствий несоответствия ёмкости сосудистого русла и ОЦК. С этой целью пациентам вливают препараты крови, кровеили плазмозаменители, буферные растворы; вводят ЛС, повышающие тонус стенок резистивных и ёмкостных сосудов, активирующие функцию сердца и дыхательного центра; проводят оксигенотерапию; при наличии признаков надпочечниковой недостаточности используют кортикостероиды.

Саногенетическая терапия подразумевает стимуляцию механизмов адаптации: активацию гемопоэза, системы ИБН, детоксицирующей и других функций печени, экскреторной способности почек. Симптоматическое лечение включает мероприятия по устранению тягостных, неприятных и усугубляющих состояние пациента проявлений коллапса: болевого синдрома, чувства страха смерти, подавленности, тревоги и др. В зависимости от конкретной ситуации применяют антидепрессанты, нейролептики, седативные и болеутоляющие средства, психостимуляторы, транквилизаторы.

Шок - общее, крайне тяжёлое экстремальное состояние. Возникает под действием сверхсильных, разрушительных факторов и характеризуется стадийным прогрессирующим расстройством жизнедеятельности организма вследствие нарушения функций жизненно важных систем.

Этиология шока

Основные причины

♦ Различные варианты травм (механическое повреждение - разрушение, разрывы, отрывы, раздавливание тканей; обширные ожоги, воздействие электрического тока и др.).

♦ Массивная кровопотеря.

♦ Переливание большого объёма несовместимой крови.

♦ Анафилактические реакции.

♦ Острая недостаточность жизненно важных органов (сердца, почек, печени, головного мозга).

♦ Экзо- и эндогенные интоксикации.

Факторы риска

♦ Переохлаждение и перегревание организма.

♦ Длительное голодание.

♦ Нервное или психическое перевозбуждение.

♦ Значительная физическая усталость.

♦ Тяжёлые хронические заболевания.

♦ Нарушения реактивности организма.

Виды шока

Единой классификации шока нет. В качестве критерия для дифференцировки шоковых состояний служат, главным образом, их причина и тяжесть течения.

В зависимости от причины различают шок травматический (раневой), геморрагический, ожоговый, посттрансфузионный, аллергический (анафилактический), электрический, кардиогенный, токсический, психогенный (психический) и др.

В зависимости от тяжести течения выделяют: шок I степени (лёг- кий), шок II степени (средней тяжести), шок III степени (тяжё- лый).

Общий патогенез и проявления шока

Независимо от причины и тяжести клинических проявлений, различают две последовательных стадии шока.

Сначала возникает активация специфических и неспецифических адаптивных реакций. Эту стадию ранее называли стадией генерализованного возбуждения, или эректильной. В последние годы её называют стадией адаптации, или компенсации.

Если процессы адаптации недостаточны, развивается вторая стадия шока. Ранее её называли стадией общего торможения или торпид-

ной (от лат. torpidus - вялый). В настоящее время её называют стадией дезадаптации, или декомпенсации.

СТАДИЯ АДАПТАЦИИ

Стадия адаптации (компенсации, непрогрессирующая, эректильная) характеризуется мобилизацией и максимальным напряжением адаптивных механизмов организма, перераспределением пластических и энергетических ресурсов в пользу жизненно важных органов, что сопровождается значительными изменениями их функций. На стадии компенсации основное значение имеют нейроэндокринное, гемодинамическое, гипоксическое, токсемическое и метаболическое звенья патогенеза.

Нейроэндокринное звено

Вследствие гиперафферентации значительно усиливается выброс в кровь гормонов симпатикоадреналовой и гипоталамо-гипофизарно-надпочечниковой систем, а также щитовидной, поджелудочной и других эндокринных желёз. Эффекты:

Гиперфункция ССС и дыхательной системы, почек, печени, других органов и тканей. Это проявляется гипертензивными реакциями, тахикардией, учащением и углублением дыхания, перераспределением кровотока в разных регионах сосудистого русла, выбросом крови из депо.

По мере нарастания степени повреждения эти реакции принимают избыточный, неадекватный и некоординированный характер, что в значительной мере снижает их эффективность. Это и определяет в значительной мере тяжёлое или даже необратимое самоусугубляющееся течение шоковых состояний.

Сознание при шоке не утрачивается. В эту стадию обычно возникает нервное, психическое и двигательное возбуждение, проявляющееся излишней суетливостью, ажитированной речью, гиперрефлексией.

Гемодинамическое звено

Нарушение гемодинамики при шоке является результатом расстройств деятельности сердца, изменения тонуса резистивных и ёмкостных сосудов, уменьшения ОЦК, изменения вязкости крови, а также активности факторов системы гемостаза.

Расстройства сердечной деятельности.

♦ Причины: прямое действие на сердце экстремального фактора; кардиотоксический эффект высокого уровня в крови катехоламинов, гормонов коры надпочечников и щитовидной железы.

♦ Проявления: значительная тахикардия, различные нарушения ритма сердца, снижение ударного и сердечного выбросов, нару-

шения центральной, органно-тканевой и микрогемоциркуляции, системный застой венозной крови, замедление тока крови в сосудах микроциркуляторного русла.

Изменение тонуса резистивных и ёмкостных сосудов.

♦ Вначале тонус сосудов, как правило, возрастает вследствие гиперкатехоламинемии. В течение какого-то времени повышенный тонус стенок резистивных сосудов (артериол) способствует поддержанию системного АД, а ёмкостных сосудов (венул) - адекватного притока крови к сердцу.

♦ Позднее накапливается избыточное количество БАВ, снижающих тонус стенок сосудов (таких как аденозин, биогенные амины, гистамин, NO, ПгЕ, I 2).

Перераспределение кровотока. Происходит увеличение кровотока в артериях сердца и мозга при одновременном его уменьшении в сосудах кожи, мышц, органов брюшной полости, почек. Этот феномен получил название централизации кровотока.

♦ Причины феномена: неравномерное содержание адренорецепторов и рецепторов к другим биологически активным веществам в разных сосудистых регионах (наибольшее их число выявлено в стенках сосудов мышц, кожи, органов брюшной полости, почек и значительно меньшее - в сосудах сердца и головного мозга), образование в ткани миокарда и мозга большого количества сосудорасширяющих БАВ.

♦ Значение феномена: адаптивное (кровоснабжение сердца и мозга в таких условиях способствует поддержанию жизнедеятельности организма в целом); патогенное (нарушение функций гипоперфузируемых органов, изменение реологических свойств крови в сосудах вследствие стаза и выхода жидкой части крови в ткани).

Уменьшение ОЦК, изменение вязкости крови и активности факторов системы гемостаза выявляются уже на раннем этапе шоковых состояний.

Гипоксическое звено

Гипоксическое звено - один из главных и закономерных компонентов патогенеза шока.

Причины. Первоначально гипоксия обычно является следствием расстройств гемодинамики и носит циркуляторный характер. По мере усугубления состояния гипоксия становится смешанной. Это является результатом прогрессирующих расстройств дыхания, изменений в системе крови и тканевого метаболизма.

Последствия. Снижение эффективности биологического окисления потенцирует нарушение функций тканей и органов, а также - обмена веществ в них. Накопление избытка активных форм кислоро-

да является одной из причин недостаточности системы антиоксидантной защиты тканей и активации перекисных реакций.

Токсемическое звено

Причины:

♦ Сам экстремальный фактор может являться токсином (например, при токсическом, токсико-инфекционном шоке).

♦ Повреждение экстремальным фактором клеток и высвобождение из них избытка БАВ, продуктов нормального и нарушенного метаболизма, ионов, денатурированных соединений.

♦ Нарушение инактивации или экскреции токсичных соединений печенью, почками, другими органами и тканями.

Последствия: нарастание интоксикации потенцирует гипоксию, нарушения гемодинамики и полиорганную недостаточность.

Метаболическое звено

Причины: чрезмерное усиление нервных и гуморальных влияний на ткани и органы, расстройство гемодинамики в тканях и органах, гипоксия, токсемия.

Последствия. В целом изменения метаболизма характеризуются преобладанием процессов катаболизма: протеолиза, липолиза и СПОЛ, гликогенолиза и других. Содержание макроэргических соединений уменьшается, а уровень ионов и жидкости в тканях возрастает.

При неэффективности адаптивных механизмов и усугублении описанного выше комплекса расстройств развивается стадия декомпенсации шока.

СТАДИЯ ДЕКОМПЕНСАЦИИ

На стадии компенсации основное значение имеют те же звенья патогенеза, однако изменения в них носят неадаптивный, патогенный характер.

Нейроэндокринное звено. Сознание на стадии декомпенсации также не утрачивается, но отмечаются признаки заторможенности и спутанности сознания, развивается гипорефлексия. Эффекты нервных и гормональных влияний прогрессирующе уменьшаются вплоть до отсутствия.

Гемодинамическое звено

На стадии декомпенсации гемодинамическое звено патогенеза шока приобретает ключевое значение.

Причины:

♦ Прогрессирующее нарушение функции сердца и развитие сердечной недостаточности.

♦ Тотальное снижение тонуса резистивных и ёмкостных сосудов. Это устраняет адаптивный феномен централизации кровообращения. Снижение систолического АД до 60-40 мм рт.ст. чревато прекращением процесса фильтрации в клубочках почек и развитием острой почечной недостаточности.

♦ Дальнейшее снижение ОЦК и повышение её вязкости в связи с выходом жидкой части крови в межклеточное пространство.

Проявления: тотальная гипоперфузия органов и тканей, существенное расстройство микроциркуляции, капилляро-трофическая недостаточность.

Система гемостаза. Изменения в системе гемостаза заключаются в развитии дисбаланса концентрации или активности факторов свёр- тывающей, противосвёртывающей и фибринолитической систем. Последствия: развитие ДВС-синдрома, ишемии и некроза тканей, геморрагий в них.

Гипоксическое звено. Развивается выраженная гипоксия смешанного типа и некомпенсированный ацидоз вследствие системных расстройств гемодинамики, гиповентиляции лёгких, уменьшения ОЦК, почечной недостаточности, расстройства обмена веществ. Токсемическое звено характеризуется увеличением содержания в крови и других биологических жидкостях продуктов нормального и нарушенного метаболизма; накоплением в крови соединений, высвобождающихся из повреждённых и разрушенных клеток (ферментов, денатурированных белков, ионов, различных включений); БАВ и других. Указанные вещества значительно усугубляют повреждение органов. Метаболическое звено шока на стадии декомпенсации проявляется доминированием процессов катаболизма белков, липидов, углеводов, минимизацией пластических процессов в клетках, гипергидратацией клеток, накоплением в биологических жидкостях недоокисленных веществ, увеличением в тканях уровня продуктов липопероксидации. Клеточное звено патогенеза шока на стадии декомпенсации характеризуется нарастающим подавлением активности ферментов и жизнедеятельности клеток, повреждением и разрушением клеточных мембран, нарушениями межклеточных взаимодействий.

Особенности патогенеза некоторых видов шока

Особенности различных видов шока определяются главным образом их причиной и характером реагирования на неё организма.

ОЖОГОВЫЙ ШОК

Причина: обширные глубокие ожоги кожи (как правило, более 25% её поверхности). У детей и людей пожилого возраста развитие шока возникает при ожоге уже около 10% поверхности кожи.

Основные особенности ожогового шока

♦ Сильная болевая афферентация от зоны поражения.

♦ Выраженная токсемия.

♦ Обычно длительная адаптивная стадия, тяжёлое течение торпидной.

♦ Частое инфицирование ожоговой поверхности и развитие сепсиса.

♦ Значительная дегидратация вследствие испарения с ожоговой поверхности.

♦ Частое развитие «шоковых почек».

ТРАВМАТИЧЕСКИЙ ШОК

Причина травматического шока: массированное повреждение органов, мягких тканей и костей под влиянием механических факторов (например, разрыв или раздавливание тканей и органов, отрыв конечностей, перелом костей и др.).

Основное звено в патогенезе травматического шока - значительная болевая афферентация. Как правило, механическая травма сочетается с большей или меньшей степенью кровопотери и инфицированием раны.

Методы лечения шока

Чем раньше после воздействия экстремального фактора начато лечение шоковых состояний, тем выше его эффективность и благоприятнее прогноз.

Этиотропное лечение проводят путём устранения или ослабления действия шокогенного фактора, предотвращения или снижения выраженности избыточной патогенной афферентации от болевых и других экстеро-, интеро- и проприорецепторов.

Патогенетическое лечение направлено на разрыв ключевых звеньев механизма развития шока, а также на стимуляцию адаптивных реакций и процессов.

Устранение расстройств центральной, органно-тканевой и микрогемоциркуляции.

♦ Пациентам вливают кровь, плазму или плазмозаменители (последние включают высокомолекулярные коллоиды, препятствующие выходу жидкости во внесосудистое русло).

♦ Применяют вазоактивные и кардиотропные препараты, позволяющие нормализовать сократительную функцию миокарда, тонус сосудов и устранить сердечную недостаточность.

♦ Используют средства, уменьшающие проницаемость стенки сосудов: препараты кальция и кортикостероиды.

Ликвидация или уменьшение степени расстройств кровоснабжения органов и тканей.

Устранение (или уменьшение степени) недостаточности внешнего дыхания. Реализуется с помощью ИВЛ, использованием газовых смесей с повышенным содержанием кислорода и гипербарической оксигенации, применением дыхательных аналептиков.

Улучшение кровоснабжения почек, а в тяжёлых случаях - использование аппарата «искусственная почка» (при наличии признаков почечной недостаточности).

Коррекция отклонений КЩР и ионного баланса. Достигается, как правило, в результате нормализации кровообращения, дыхания, функций почек и других органов. Также используют растворы гидрокарбоната натрия и хлорида калия для нормализации КЩР, а также жидкости, содержащие различные ионы, для устранения их дисбаланса.

Уменьшение степени токсемии. С этой целью проводят гемосорбцию и плазмафарез, введение антидотов и антитоксинов, инъекции коллоидных растворов (адсорбирующих токсичные вещества), плазмы и плазмозаменителей, мочегонных препаратов.

Симптоматическая терапия направлена на уменьшение тягостных и неприятных ощущений, чувства страха, тревоги и беспокойства, обычно сопровождающие шоковые состояния. Для этого используют, например, различные психотропные средства.

КОМА

Кома (греч. koma - глубокий сон) - экстремальное состояние, характеризующееся потерей сознания, недостаточностью функций органов и физиологических систем организма.

ВИДЫ КОМАТОЗНЫХ СОСТОЯНИЙ

Коматозные состояния, возникающие при различных патологических процессах, можно разделить на следующие группы.

Обусловленные первичным поражением ЦНС (нейрогенные). К этой группе относят кому, развивающуюся при инсультах, черепно-мозговой травме, эпилепсии, воспалениях и опухолях головного мозга или его оболочек.

Развивающиеся при нарушениях газообмена.

♦ Гипоксические. Связаны с недостаточным поступлением кислорода извне (удушение) или нарушением транспорта кислорода при тяжёлых острых расстройствах кровообращения и анемиях.

Респираторные. Обусловлены гипоксией, гиперкапнией и ацидозом вследствие значительных нарушений лёгочного газообмена при дыхательной недостаточности.

Обусловленные нарушением метаболизма при недостаточной или избыточной продукции гормонов (диабетическая, гипотиреоидная, гипокортикоидная, гипопитуитарная кома), передозировке гормональных препаратов (тиреотоксическая, гипогликемическая кома).

Токсогенные комы, связанные с эндогенной интоксикацией при токсикоинфекциях, недостаточности печени и почек (печёночная, уремическая кома), панкреатите; а также с воздействием экзогенных ядов (кома при отравлениях, в том числе алкоголем).

Обусловленные потерей воды и электролитов (гипонатриемическая кома при синдроме неадекватной продукции АДГ; хлоргидропеническая, развивающаяся у больных с упорной рвотой; алиментарнодистрофическая, или голодная кома).

НАРУШЕНИЯ СОЗНАНИЯ

Степень нарушений сознания нередко играет определяющую роль в исходе многих заболеваний и патологических процессов. Поэтому определение состояния сознания - один из основных моментов при обследовании больного, особенно в экстренных ситуациях. Нарушения сознания принято подразделять на изменения сознания и на угнетение сознания.

Изменения сознания - продуктивные формы нарушения сознания, развивающиеся на фоне бодрствования. Они характеризуются расстройством психических функций, изменённым восприятием окружающей среды и собственной личности. К ним относят делирий, аменцию и сумеречные расстройства сознания.

Угнетения сознания - непродуктивные формы нарушения сознания, характеризующиеся дефицитом психической активности со снижением уровня бодрствования, угнетением интеллектуальных функций и двигательной активности. Для определения степени угнетения сознания используют шкалу Глазго.

Причины комы

Экзогенные факторы - патогенные агенты окружающей среды, как правило, чрезвычайной силы, токсичности или разрушительного характера.

♦ Различные травмирующие (как правило, головной мозг) факторы (электрический ток, механическая травма).

♦ Термические воздействия (перегревание, солнечный удар, переохлаждение).

♦ Значительные колебания барометрического давления (гипо- и гипербария).

♦ Нейротропные токсины (алкоголь и его суррогаты, этиленгликоль, токсичные дозы наркотиков, барбитуратов, седативных и некоторых других лекарственных веществ).

♦ Инфекционные агенты (нейротропные вирусы, ботулинистический и столбнячный токсины, возбудители малярии, брюшного тифа, холеры).

♦ Экзогенная гипоксия.

♦ Лучевая энергия (большие дозы проникающей радиации). Эндогенные факторы, приводящие к развитию комы, являются результатом тяжёлых расстройств жизнедеятельности организма.

♦ Патологические процессы в мозге (ишемия, инсульт, опухоль, абсцесс, отёк и т.п.).

♦ Недостаточность кровообращения и дыхательная недостаточность.

♦ Патология системы крови (массированный гемолиз эритроцитов, выраженная анемия).

♦ Эндокринопатии (гипоинсулинизм, гипо- и гипертиреоидные состояния, надпочечниковая недостаточность).

♦ Печёночная недостаточность, нарушения системы пищеварения (синдром мальабсорбции, кишечная аутоинтоксикация или аутоинфекция).

♦ Почечная недостаточность.

♦ Тяжёлое прогрессирующее течение коллапса и шока.

Общий патогенез и проявления

Патогенез коматозных состояний, независимо от вызвавших их причин, включает несколько общих ключевых звеньев.

Гипоксия и нарушения процессов энергообеспечения

Расстройство кислородного обеспечения тканей и органов является важнейшим патогенетическим звеном комы и может служить её причиной.

Нейроны головного мозга, являющиеся наиболее кислородзависимыми структурами, в условиях гипоксии становятся самым уязвимым объектом в организме. Прекращение мозгового кровообращения уже через 8-10 с приводит к нарушениям энергетического обеспечения нейронов. В результате происходит потеря сознания. Наступающее в течение последующих 4-7 мин истощение глюкозы, а также подавление анаэробного метаболизма сопровождается невосполнимым расходованием энергии АТФ. Развиваются быстро

прогрессирующие дистрофические процессы, ацидоз и гипергидратация нервных клеток, что приводит к их гибели.

Нарушение энергообеспечения клеток всех органов и тканей обусловливает их дисфункцию, особенно ЦНС и сердца. В связи с этим у пациентов, находящихся в коме, утрачено сознание, снижена выраженность или отсутствуют рефлексы; развиваются аритмии и недостаточность сократительной функции сердца, а также артериальная гипотензия; нарушается частота и периодичность работы нейронов дыхательного центра, уменьшается объём альвеолярной вентиляции, что приводит к сердечно-лёгочной недостаточности и усугублению гипоксии.

Интоксикация

Кома любого происхождения характеризуется накоплением в организме токсичных веществ. Они попадают в организм извне (при экзогенных комах) и образуются в нём самом (при комах любого генеза).

Токсичные вещества, а также продукты их метаболизма оказывают выраженное патогенное действие на нейроны ЦНС, клетки желёз внутренней секреции, сердца, печени, почек, крови.

Интоксикацию организма продуктами метаболизма усугубляет нарушение дезинтоксикационной функции печени и экскреторной деятельности почек.

Дисбаланс ионов и воды

Нарушение содержания и соотношения между отдельными ионами в цитозоле, межклеточной и других биологических жидкостях - важное звено патогенеза комы.

Снижение активности Na + ,К + -АТФазы плазмолеммы и повреждение мембран клеток приводит к потере клетками К+ с развитием гиперкалиемии, увеличению внутриклеточных и .

Уменьшение или и увеличение в крови (смешанный ацидоз).

Гиперосмия и гиперонкия являются результатом гидролиза крупномолекулярных соединений (ЛП, протеогликанов, гликогена и других) до молекул среднего и малого размера.

Некоторые варианты комы, (например, почечная и печёночная), характеризуются иными изменениями ионного баланса. Последствия

♦ Гипергидратация клеток мозга и других органов.

♦ Увеличение содержания жидкости в межклеточном пространстве.

♦ Возрастание объёма жидкости в сосудистом русле (гиперволемия).

♦ Отёк мозга и лёгких.

♦ Диарея, рвота, полиурия (например, при гипохлоремической, диабетической, гиперосмолярной коме) могут вызвать прогрессирующую вначале внеклеточную, а затем и тотальную гипогидратацию.

♦ Значительное повышение вязкости крови.

♦ Нарушение органно-тканевой и микрогемоциркуляции.

♦ Диссеминированная агрегация форменных элементов крови, её гиперкоагуляция и тромбоз (ДВС-синдром).

Нарушения электрогенеза

Нарушения электрогенеза характеризуются расстройствами формирования МП и ПД, возбудимости и проводимости. В наибольшей мере это проявляется в структурах мозга и сердца.

Последствия: нарушения сознания, вплоть до его потери, расстройства функций нервных центров (прежде всего дыхательного и кардиовазомоторного), развитие сердечных аритмий, включая фибрилляцию желудочков.

Дисбаланс БАВ и их эффектов

Нарушение синтеза и высвобождения БАВ (нейромедиаторов, гормонов, цитокинов и др.).

Расстройство процессов активации, инактивации, доставки БАВ к клеткам-мишеням.

Нарушение взаимодействия БАВ с их клеточными рецепторами.

Расстройство ответа клеток-мишеней обусловлено повреждением мембран клеток и внутриклеточных посредников реализации эффектов гормонов, медиаторов и цитокинов.

Распад физиологических и функциональных систем.

Минимизация функций органов и тканей, энергорасходов и пластических процессов.

Переход на метаболический уровень регулирования функций органов и тканей. Обычно это предшествует развитию терминального состояния.

Особенности патогенеза некоторых коматозных состояний

Специфика отдельных видов комы выявляется обычно на ранних этапах её развития. На этих этапах ещё проявляются особенности причины комы, а также инициальных звеньев её патогенеза. По мере нарастания тяжести коматозных состояний уменьшаются специфические и всё более проявляются общие их черты.

КОМА, СВЯЗАННАЯ С ЧЕРЕПНО-МОЗГОВОЙ ТРАВМОЙ

Причина: травма, сопровождающаяся тяжёлым повреждением головного мозга.

Проявления

♦ Двигательные ответы и открывание глаз на болевой раздражитель отсутствуют или значительно снижены.

♦ Речь отсутствует или пациент издает нечленораздельные звуки.

♦ Гипоили арефлексия.

♦ Ритм сердца и дыхание нарушены.

♦ АД и МОК снижены, даже если не было кровопотери.

♦ Выявляется локальная неврологическая симптоматика в связи с очаговыми поражениями головного мозга: параличи (чаще гемипарезы), патологические рефлексы, локальные расстройства чувствительности, судороги.

♦ В ликворе, как правило, обнаруживаются компоненты крови.

АПОПЛЕКСИЧЕСКАЯ КОМА

Причины:

♦ Кровоизлияние в мозг (геморрагический инсульт).

♦ Острая локальная ишемия мозга с исходом в инфаркт (ишемический инсульт).

Факторы риска: артериальная гипертензия (особенно периоды гипертонических кризов), атеросклеротические изменения стенок сосудов мозга.

Патогенез. Ведущими патогенетическими факторами апоплексической комы являются ишемия и гипоксия мозга, повышение проницаемости стенок сосудов микроциркуляторного русла, нарастающий отёк вещества мозга, вторичные расстройства кровообращения вокруг зоны ишемии.

Последствия инсульта различны и зависят от масштаба и топографии повреждения, степени гипоксии и отёка мозга, количества очагов повреждения, тяжести артериальной гипертензии, выраженности атеросклероза, возраста пациента.

Апоплексическая кома относится к наиболее неблагоприятно протекающим коматозным состояниям, чреватым смертью или инвалидизацией пациента.

ГИПОХЛОРЕМИЧЕСКАЯ КОМА

Причина гипохлоремической (хлоргидропенической, хлоропривной) комы - значительная потеря организмом хлорсодержащих веществ.

♦ Многократная обильная рвота (у пациентов с эндогенными интоксикациями, пищевыми отравлениями, токсикозом беременности, стенозом привратника, кишечной непроходимостью).

♦ Неправильное лечение диуретиками.

♦ Продолжительная бессолевая диета.

♦ Почечная недостаточность на её полиурической стадии.

♦ Свищи тонкого кишечника.

Учитывая, что при названных выше состояниях относительно медленно теряются Cl - , Na + и К + , а также компенсирующие эффекты адаптивных механизмов, кома в типичных случаях развивается постепенно.

Проявления

В связи с потерей организмом жидкости кожные покровы и слизистые сухие, тургор ткани снижен, черты лица заострены, язык сухой, развивается олигурия, Ht значительно повышен, АД обычно снижено, ОЦК уменьшен, развивается ионный дисбаланс и нарушение кровоснабжения мозга.

Нарушение формирования МП и ПД вследствие снижения в плазме крови, межклеточной и других биологических жидкостях содержания Na + , К + , Cl - и некоторых других ионов.

Нарушения специфических и неспецифических функций клеток. В результате этого развиваются мышечная слабость, гипогидратация.

Методы терапии коматозных состояний

Этиотропное лечение является основным. Оно в значительной мере определяет прогноз состояния пациента. В связи с этим принимают меры для прекращения или ослабления патогенного действия причинного фактора.

♦ При травматической коме устраняют повреждающий фактор, применяют обезболивающие, местные анестетики, при необходимости - наркоз.

♦ При коме, вызванной интоксикацией организма применяют специфические антидоты, антитоксины, промывание желудка, диуретики.

♦ При диабетических комах вводят расчётную дозу инсулина, при необходимости - одновременно с раствором глюкозы (для профилактики гипогликемической комы).

♦ При коме инфекционного происхождения применяют антибактериальные средства.

Патогенетическая терапия является ключевой при лечении любого пациента в состоянии комы. Она включает мероприятия, направленные на блокаду, устранение или снижение повреждающих эффектов основных звеньев патогенеза комы: гипоксии, интоксикации, расстройств КЩР, дисбаланса ионов и жидкости, БАВ и их эффектов.

Антигипоксическая терапия: ИВЛ, дыхание газовыми смесями с повышенным содержанием кислорода, гипербарическая окси-

генация, введение антиоксидантов, нормализация работы сердца и тонуса сосудов.

Устранение или уменьшение степени интоксикации организма путём переливания крови, плазмы или плазмозаменителей, физиологического раствора хлорида натрия. Эти препараты сочетают с диуретиками для стимуляции выведения из организма жидкости и находящихся в ней токсичных веществ. В тяжёлых случаях, а также при почечной недостаточности, уремической коме показаны гемодиализ и перитонеальный диализ.

Нормализация показателей КЩР, баланса ионов и жидкости достигается введением в организм буферных растворов с необходимым содержанием и соотношением различных ионов.

Нормализация уровня БАВ и их эффектов. С этой целью используют гормоны надпочечников, гормоны поджелудочной железы и др. Указанные препараты нормализуют функции сердца, почек, мозга и других органов, показатели гомеостаза, активируют специфические и неспецифические адаптивные реакции организма.

Симптоматическая терапия направлена на оптимизацию функций органов и их систем, устранение судорог, боли, тягостных ощущений в пре- и посткоматозном периодах. С этой целью применяют противосудорожные средства, болеутоляющие вещества (включая наркотические), кардиотропные и вазоактивные препараты, дыхательные аналептики.

Учитывая, что кома характеризуется тяжёлыми расстройствами функций органов, их систем, механизмов регуляции организма, эффективность терапевтических мероприятий должна контролироваться постоянной регистрацией состояния жизненно важных функций (сердечной деятельности, дыхания, экскреторной функции почек и др.), сознания и параметров гомеостаза.

ОТРАВЛЕНИЯ

Отравление (интоксикация) - патологическое состояние, возникающее при воздействии на организм химического соединения (яда), вызывающего нарушения жизненно важных функций и развитие экстремальных состояний.

АКТУАЛЬНОСТЬ

В последние годы, особенно в России, отмечают постоянное увеличение числа бытовых отравлений. Кроме того, участились случаи криминальных отравлений.

Частота острых отравлений достигает 200-300 человек на 100 000 населения в год (3-5% всех больных).

Случайные отравления составляют около 80%, суицидальные - 18%, профессиональные - 2% в их структуре.

Преобладающий пол: суицидальные отравления - женский, случайные бытовые отравления (особенно алкогольная и наркотическая интоксикации) - мужской.

ЭТИОЛОГИЯ

Причины. Виды ядов в зависимости от их органно-тканевой тропности:

♦ Нейротоксические (вызывают нарушение психической деятельности, судороги и параличи) - наркотики, снотворные средства, алкоголь и его суррогаты, угарный газ, фосфорорганические соединения, никотин, боевые отравляющие вещества (БОВ: виикс, би-зет, зарин), производные изониазида.

♦ Кардиотоксические (приводят к нарушениям сократительной функции и ритма сердца, токсической дистрофии миокарда) - сердечные гликозиды, соли бария, калия.

♦ Пульмонотоксические (вызывают токсический отёк лёгких, дыхательную недостаточность) - оксиды азота, БОВ (фосген, дифосген).

♦ Гепатотоксические (обусловливают токсическую гепатопатию, печёночную недостаточность) - хлорированные углеводороды (дихлорэтан), ядовитые грибы (бледная поганка), фенолы, альдегиды.

♦ Нефротоксические (приводят к токсической нефропатии и почечной недостаточности) - соли тяжёлых металлов, этиленгликоль, щавелевая кислота.

♦ Гемо- и гемоглобинотропные (нарушают транспорт и утилизацию кислорода в связи с гемолизом эритроцитов, метгемоглобинемией, карбоксигемоглобинемией) - анилин и его производные, нитриты, мышьяковистый водород, синильная кислота и её производные, угарный газ, БОВ (хлорциан).

♦ Кожно-резорбтивные (вызывают местные воспалительные и некротические изменения в сочетании с общетоксическими явлениями) - дихлорэтан, гексахлоран, БОВ (иприт, люизит), кислоты и щёлочи, мышьяк и его соединения, ртуть (сулема).

♦ Слезоточивые и раздражающие (раздражают слизистые оболочки) - хлорпикрин, БОВ (си-эс), пары концентрированных кислот и щёлочей.

Факторы риска

♦ Алкоголизм, токсикомания, наркомания.

♦ Частые стрессы, неблагоприятная семейная обстановка, материальное и бытовое неблагополучие.

♦ Напряжённость современных условий жизни, вызывающая у некоторых людей потребность в постоянном приёме успокаивающих средств.

♦ Психические заболевания.

♦ Профессиональные вредности (хронические отравления).

♦ Плохо контролируемая продажа ЛС, самолечение, обращение к знахарям, шарлатанам.

♦ Неправильное хранение ЛС и химических препаратов в домашних условиях (чаще приводит к отравлениям у детей).

СТАДИИ ОСТРЫХ ОТРАВЛЕНИЙ

Токсикогенная (ранняя). Характеризуется специфическими проявлениями воздействия на организм токсичного вещества (нарушение функции мембран, белков и других рецепторов токсичности), а также (при тяжёлой интоксикации) признаками коллапса, шока или комы.

Соматогенная. Проявляется активацией адаптивных реакций организма, направленных на ликвидацию нарушений гомеостаза (гипофизарно-адреналовая реакция, централизация кровообращения, реакции системы гемостаза).

ЛЕЧЕНИЕ

Общая тактика:

♦ Срочная госпитализация пострадавшего в специализированные токсикологические центры.

♦ Выполнение мероприятий по ускоренному выведению токсичных веществ из организма (активная детоксикация).

♦ Проведение специфической (антидотной) терапии.

♦ Нормализация функций органов, тканей и их систем. Этиотропное лечение направлено на детоксикацию организма.

Специфическая (антидотная) терапия.

Предотвращение попадания яда в кровь и его системного действия.

♦ Введение рвотных средств или вызывания рвоты раздражением задней стенки глотки.

♦ Промывание желудка через зонд (особенно важно на догоспитальном этапе).

♦ Фиксация отравляющего вещества и выведение его из кишечника с помощью адсорбентов (например, активированного угля), слабительных средств, зондирование кишечника с последующим введением растворов, устраняющих сдвиги pH и дисбаланс ионов (кишечный лаваж).

♦ Транспортировка пострадавшего на чистый воздух, обеспечение проходимости дыхательных путей, ингаляция кислорода.

♦ Обильное обмывание кожных покровов проточной водой при попадании токсичных веществ на кожу.

Ускорение выведения токсичного вещества из организма посредством форсирования диуреза (вливание растворов электролитов с последующим введением диуретиков), устранение гиповолемии (инфузии плазмозамещающих растворов) и др. Патогенетическая терапия направлена на блокаду основных звеньев патогенеза и восстановление жизненно важных функций организма посредством нормализации дыхания, восстановления сердечной деятельности, нормализации функций почек и печени, коррекции нарушений КЩР.

Симптоматическое лечение имеет целью устранение усугубляющих состояние пациента симптомов (головной боли, гиперили гипотензивных реакций, миалгий и т.п.).

Классическое описание шока, сделанное И.И. Пироговым, вошло практически во все руководства по шоку. Долгое время исследования по шоку проводили хирурги. Первая же экспериментальная работа в этой области была выполнена лишь в 1867 году. До настоящего времени нет однозначного для патофизиологов и клиницистов определения понятия «шок». С точки зрения патофизиологии, наиболее точно следующее: травматический шок – типовой патологический процесс, возникающий в результате повреждения органов, раздражения рецепторов и нервов травмированной ткани, кровопотери и поступления в кровь биологически активных веществ, то есть факторов, вызывающих в совокупности чрезмерные и неадекватные реакции адаптивных систем, особенно симпатико-адреналовой, стойкие нарушения нейроэндокринной регуляции гомеостаза, особенно гемодинамики, нарушения специфических функций поврежденных органов, расстройства микроциркуляции, кислородного режима организма и обмена веществ. Необходимо отметить, что общая этиология травматического шока в виде стойкой теории еще не разработана. Тем не менее не вызывает сомнения, что в развитии шока принимают участие все основные факторы этиологии: травмирующий фактор, условия, в которых получена травма, ответная реакция организма. Для развития травматического шока большое значение имеют условия внешней среды. Травматическому шоку способствуют: перегревание, переохлаждение, недостаточное питание, психическая травма (давно замечено, что у побежденных шок развивается быстрее и протекает тяжелее, чем у победителей).

Значение состояния организма для возникновения шока (данные пока малочисленны): 1. Наследственность – на человеке эти данные получить трудно, но у экспериментальных животных они имеются. Так, резистентность собак к травме зависит от породы. При этом собаки чистых линий менее устойчивы к травме, чем дворняги. 2. Тип нервной деятельности – животные с повышенной возбудимостью менее устойчивы к травме и у них шок развивается после небольшой травмы. 3. Возраст – у молодых животных (щенков) шок получить легче, а лечить труднее, чем взрослых. В пожилом и старческом возрасте травма действует на значительно ослабленный организм, характеризующийся развитием склероза сосудов, гипореактивностью нервной системы, эндокринной системы, поэтому шок развивается легче и смертность выше. 4. Предшествующие травме заболевания. Развитию шока способствуют: гипертоническая болезнь; нервно-психическое напряжение; гиподинамия; кровопотеря, предшествовавшая травме. 5. Алкогольное опьянение – с одной стороны, повышает вероятность получения травмы (нарушения нервной деятельности), и в то же время применяется как противошоковая жидкость. Но и здесь следует помнить, что при хроническом алкоголизме наблюдаются сдвиги со стороны нервной и эндокринной систем, приводящие к снижению резистентности к травме. Обсуждая роль различных патогенетических моментов в происхождении травматического шока, большинство исследователей отмечают разновременность их включения в общий механизм развития процесса и далеко не одинаковую значимость в различные периоды шока. Таким образом, совершенно очевидно, что рассмотрение травматического шока немыслимо без учета его динамики – его фазного развития.

Выделяют две фазы в развитии травматического шока: эректильную, наступающую вслед за травмой и проявляющуюся активацией функций, и торпидную, выражающуюся угнетением функций (обе фазы были описаны еще Н.И. Пироговым, а обоснованы Н.Н. Бурденко). Эректильная фаза шока (от лат. erigo, erectum – выпрямлять, поднимать) – фаза генерализованного возбуждения. В последние годы ее называют адаптивной, компенсаторной, непрогрессирующей, ранней. В эту фазу наблюдается активация специфических и неспецифических адаптивных реакций. Она проявляется побледнением покровов и слизистых, повышением артериального и венозного давления, тахикардией; иногда мочеиспусканием и дефекацией. Указанные реакции имеют адаптивную направленность. Они обеспечивают в условиях действия экстремального фактора доставку к тканям и органам кислорода и субстратов метаболизма, поддержание перфузионного давления. По мере нарастания степени повреждения эти реакции принимают избыточный, неадекватный и нескоординированный характер, что в значительной мере снижает их эффективность. Это и определяет в значительной мере тяжелое или даже необратимое самоусугубляющееся течение шоковых состояний. Сознание при шоке не утрачивается. Обычно отмечается нервное, психическое и двигательное возбуждение, проявляющееся излишней суетливостью, ажитированной речью, повышенными ответами на различные раздражители (гиперрефлексия), крик. В этой фазе в результате генерализованного возбуждения и стимуляции эндокринного аппарата активизируются обменные процессы, тогда как их циркуляторное обеспечение оказывается недостаточным. В этой фазе возникают предпосылки к развитию торможения в нервной системе, расстройствам циркуляции, возникает дефицит кислорода. Эректильная фаза кратковременна и продолжается обычно минуты. Если процессы адаптации недостаточны, развивается вторая стадия шока.

Торпидная фаза шока (от лат. torpidus – вялый) – фаза общего торможения, проявляется гиподинамией, гипорефлексией, значительными циркуляторными нарушениями, в частности артериальной гипотензией, тахикардией, расстройствами внешнего дыхания (тахипноэ вначале, брадипноэ или периодическое дыхание в конце), олигурией, гипотермией и т.д. В торпидной фазе шока усугубляются нарушения обмена вследствие расстройств нейрогуморальной регуляции и циркуляторного обеспечения. Эти нарушения в различных органах неодинаковы. Торпидная фаза – наиболее типичная и продолжительная фаза шока, ее продолжительность может быть от нескольких минут до многих часов. В настоящее время торпидную фазу называют стадией дезадаптации (декомпенсации). На этой стадии выделяют две подстадии: прогрессирующую (заключающуюся в истощении компенсаторных реакций и гипоперфузии тканей) и необратимую (в ходе которой развиваются изменения, не совместимые с жизнью).

Кроме эректильной и торпидной фаз травматического шока при тяжелом шоке, заканчивающимся гибелью, целесообразно различать терминальную фазу шока, подчеркивая тем самым ее специфичность и отличие от предсмертных стадий других патологических процессов, объединяемых обычно общим термином «терминальные состояния». Терминальная фаза характеризуется определенной динамикой: она начинает выявляться расстройствами внешнего дыхания (биотовское или куссмаулевское дыхание), неустойчивостью и резким снижением артериального давления, замедлением пульса. Для терминальной фазы шока характерно сравнительно медленное развитие, а следовательно, большее истощение механизмов адаптации, более значительное, чем, например, при кровопотере, интоксикации, и более глубокие нарушения функций органов. Восстановление же этих функций при терапии происходит медленнее.

Травматический шок следует классифицировать по времени развития и тяжести течения. По времени развития различают первичный шок и вторичный шок. Первичный шок развивается как осложнение вскоре после травмы и может пройти или привести к смерти пострадавшего. Вторичный шок обычно возникает через несколько часов после выхода больного из первичного шока. Причиной его развития чаще всего бывает дополнительная травма из-за плохой иммобилизации, тяжелой транспортировки, преждевременной операции и т.д. Вторичный шок протекает существенно тяжелее первичного, так как он развивается на фоне очень низких адаптационных механизмов организма, которые были исчерпаны в борьбе с первичным шоком, поэтому смертность при вторичном шоке существенно выше. По тяжести клинического течения различают легкий шок, шок средней тяжести и тяжелый шок. Наряду с этим шок подразделяют на четыре степени. В основу такого подразделения положен уровень систолического артериального давления. I степень шока наблюдается при максимальном артериальном давлении выше 90 мм рт. ст. – легкий ступор, тахикардия до 100 уд/мин, мочеотделение не нарушено. Кровопотеря: 15–25% от ОЦК. II степень – 90–70 мм рт. ст., ступор, тахикардия до 120 уд/мин, олигурия. Кровопотеря: 25–30% от ОЦК. III степень – 70–50 мм рт. ст., сопор, тахикардия более 130–140 уд/мин, мочеотделение отсутствует. Кровопотеря: более 30% от ОЦК. IV степень – ниже 50 мм рт. ст., кома, пульс на периферии не определяется, появление патологического дыхания, полиорганная недостаточность, арефлексия. Кровопотеря: более 30% от ОЦК. Следует расценивать как терминальное состояние. На клиническую картину шока определенный отпечаток накладывают тип нервной системы, пол, возраст пострадавшего, сопутствующая патология, инфекционные заболевания, травмы в анамнезе, сопровождавшиеся шоком. Важную роль играют кровопотеря, дегидротирующие заболевания и состояния, влияющие на ОЦК и закладывающие базис гемодинамических расстройств. О степени снижения ОЦК и глубине гиповолемических нарушений определенное представление позволяет получить шоковый индекс. Его можно рассчитать по следующей формуле: шоковый индекс = частота пульса / систолическое АД. В норме показатель шокового индекса составляет 0,5. В случае повышения индекса до 1 (пульс и АД равны 100) ориентировочно снижение ОЦК равно 30% от должного, при повышении его до 1,5 (пульс равен 120, АД – 80) ОЦК составляет 50% от должного, а при значениях шокового индекса 2,0 (пульс – 140, АД – 70) объем циркулирующей крови, находящейся в активном кровообращении, составляет всего 30% от должного, что, безусловно, не может обеспечить адекватную перфузию организма и ведет к высокому риску гибели пострадавшего. В качестве главных патогенетических факторов травматического шока можно выделить следующие: неадекватная импульсация из поврежденных тканей; местная крово- и плазмопотеря; поступление в кровь биологически активных веществ, возникающих в результате деструкции клеток и кислородного голодания тканей; выпадение или нарушение функций поврежденных органов. При этом первые три фактора являются неспецифическими, то есть присущими любой травме, а последний характеризует специфику травмы и развивающегося при этом шока.

В самом общем виде схема патогенеза шока представляется в следующем виде. Травмирующий фактор действует на органы и ткани, вызывая их повреждение. В результате этого возникает деструкция клеток и выход их содержимого в межклеточную среду; другие клетки подвергаются контузии, вследствие чего в них нарушается метаболизм и присущие им функции. Первично (вследствие действия травмирующего фактора) и вторично (вследствие изменения тканевой среды) раздражаются многочисленные рецепторы в ране, что субъективно воспринимается как боль, а объективно характеризуется многочисленными реакциями органов и систем. Неадекватная импульсация из поврежденных тканей имеет ряд последствий. 1. В результате неадекватной импульсации с поврежденных тканей в нервной системе формируется болевая доминанта, которая подавляет другие функции нервной системы. Наряду с этим возникает типичная оборонительная реакция со стереотипным вегетативным сопровождением, так как боль является сигналом к бегству или борьбе. В основе этой вегетативной реакции важнейшими компонентами являются: выброс катехоламинов, повышение давления и тахикардия, учащение дыхания, активация гипоталамо-гипофизарно-надпочечниковой системы. 2. Эффекты болевого раздражения зависят от его интенсивности. Слабое и умеренное раздражение вызывает стимуляцию многих адаптивных механизмов (лейкоцитоз, фагоцитоз, усиление функции СФМ и др.); сильные раздражения угнетают адаптивные механизмы. 3. В становлении шока большую роль играет рефлекторная ишемия тканей. При этом накапливаются недоокисленные продукты, а рН снижается до величин, пограничных с допустимыми для жизни. На этой основе возникают расстройства микроциркуляции, патологическое депонирование крови, артериальная гипотензия. 4. Боль и вся обстановка в момент нанесения травмы, безусловно, вызывают эмоциональный стресс, психическое напряжение, чувство тревоги к опасности, что еще более усиливает нейровегетативную реакцию.

Роль нервной системы. При воздействии на организм повреждающего механического агента в зоне повреждения подвергаются раздражению различные нервные элементы, причем не только рецепторы, но и другие элементы – нервные волокна, проходящие в тканях, входящие в состав нервных стволов. В то время как у рецепторов имеется известная специфичность по отношению к раздражителю, характеризующаяся различиями в пороговой величине для разных раздражителей, нервные волокна по отношению к механическому раздражению не отличаются между собой столь резко, поэтому механическое раздражение вызывает возбуждение в проводниках разного рода чувствительности, а не только болевой или тактильной. Именно этим объясняется то, что повреждения, сопровождающиеся размозжением или разрывами крупных нервных стволов, характеризуются более тяжелым травматическим шоком. Эректильная фаза шока характеризуется генерализацией возбуждения, что находит внешнее проявление в двигательном беспокойстве, речевом возбуждении, крике, повышении чувствительности к различным раздражителям. Возбуждение охватывает и вегетативные нервные центры, что проявляется повышением функциональной активности эндокринного аппарата и выбросом в кровь катехоламинов, адаптивных и других гормонов, стимуляцией деятельности сердца и повышением тонуса сосудов сопротивления, активацией обменных процессов. Длительная и интенсивная импульсация с места повреждения, а затем и из органов с нарушенными функциями, изменения в лабильности нервных элементов в связи с расстройствами кровообращения и кислородного режима определяют последующее развитие тормозного процесса. Иррадиация возбуждения – его генерализация – является необходимой предпосылкой для возникновения торможения. Особое значение имеет тот факт, что торможение в зоне ретикулярной формации охраняет кору больших полушарий от потоков импульсов с периферии, чем обеспечивает сохранность ее функций. При этом элементы ретикулярной формации, облегчающие проведение импульсов (РФ+), более чувствительны к расстройствам циркуляции, чем тормозящие проведение импульсов (РФ–). Из этого следует, что циркуляторные нарушения в указанной зоне должны способствовать функциональной блокаде проведения импульсов. Постепенное торможение распространяется и на другие уровни нервной системы. Оно склонно к углублению за счет импульсации из области травмы.

Роль эндокринной системы.
Травматический шок сопровождается также изменениями со стороны эндокринной системы (в частности, гипоталамо-гипофизарно-надпочечниковой системы). Во время эректильной фазы шока в крови увеличивается содержание кортикостероидов, а в торпидную - их количество уменьшено. Однако корковый слой надпочечников сохраняет реакцию на введенный извне АКТГ. Следовательно, угнетение коркового слоя во многом обусловлено недостаточностью гипофиза. Для травматического шока весьма типична гиперадреналинемия. Гиперадреналинемия, с одной стороны, является следствием интенсивной афферентной импульсации, вызванной повреждением, с другой - реакцией на постепенное развитие артериальной гипотонии.

Местная крово- и плазмопотеря.
При любой механической травме имеет место утрата крови и плазмы, размеры которой весьма вариабельны и зависят от степени травматизации тканей, а также от характера повреждения сосудов. Даже при небольшой травме наблюдается экссудация в травмированные ткани из-за развития воспалительной реакции, а значит и потеря жидкости. Однако специфика травматического шока определяется все же нервно-болевой травмой. Нервно-болевая травма и кровопотеря являются синергетиками в действии на сердечно-сосудистую систему. При болевом раздражении и при утрате крови сначала возникает спазм сосудов и выброс катехоламинов. При кровопотере сразу, а при болевом раздражении позднее уменьшается объем циркулирующей крови: в первом случае за счет выхода из сосудистого русла, а во втором - в результате патологического депонирования. При этом следует заметить, что даже небольшое кровопускание (1% к массе тела) сенсибилизирует (повышает чувствительность организма) к механическому повреждению.

Нарушение кровообращения.
Уже само понятие «шок» включает в себя обязательные и тяжелые нарушения гемодинамики. Нарушения гемодинамики при шоке характеризуются резкими отклонениями многих параметров системного кровообращения. Нарушения системной гемодинамики характеризуются тремя кардинальными признаками - гиповолемией, уменьшением сердечного выброса и артериальной гипотензией. Гиповолемии всегда придавалось важное значение в патогенезе травматического шока. С одной стороны, она обусловлена кровопотерей, а с другой - задержкой крови в емкостных сосудах (венулах, мелких венах), капиллярах - ее депонированием. Исключение части крови из циркуляции может быть отчетливо обнаружено уже в конце эректильной фазы шока. К началу развития торпидной фазы гиповолемия даже более выражена, чем в последующие за этим периоды. Одним из наиболее типичных симптомов травматического шока являются фазные изменения артериального давления - его повышение в эректильной фазе травматического шока (повышается тонус резистивных и емкостных сосудов, о чем свидетельствует артериальная и венозная гипертензия), а также кратковременное увеличение объема циркулирующей крови, сочетающееся с уменьшением емкости функционирующего сосудистого русла органов. Типичное для эректильной фазы травматического шока повышение артериального давления есть результат увеличения общего периферического сопротивления сосудов, обусловленного активацией симпатоадреналовой системы. Повышение тонуса резистивных сосудов сочетается с активацией артерио-венозных анастомозов и отбрасыванием крови из системы сосудов высокого давления (артериальное русло) в систему сосудов низкого давления (венозное русло), что приводит к возрастанию венозного давления и препятствует оттоку крови из капилляров. Если же учесть то обстоятельство, что большинство капилляров лишено сфинктеров на их венозном конце, то нетрудно представить, что в подобных условиях возможно не только прямое, но и ретроградное заполнение капилляров. Многочисленными исследователями было показано, что гиповолемия ограничивает афферентную импульсацию с барорецепторов (рецепторов растяжения) дуги аорты и синокаротидной зоны, в результате чего возбуждаются (растормаживаются) прессорные образования сосудодвигательного центра и возникает спазм артериол во многих органах и тканях. Усиливается симпатическая эфферентная импульсация к сосудам и сердцу. По мере снижения АД падает тканевой кровоток, нарастает гипоксия, что вызывает импульсацию с хеморецепторов тканей и еще более активирует симпатическое влияние на сосуды. Сердце полнее опорожняется (уменьшается резидуальный объем), возникает также тахикардия. С барорецепторов сосудов возникает также рефлекс, приводящий к повышенному выделению адреналина и норадреналина мозговым слоем надпочечников, концентрация которых в крови увеличивается в 10-15 раз. В более позднем периоде, когда развивается гипоксия почек, спазм сосудов поддерживается не только за счет усиленной секреции катехоламинов и вазопрессина, но также выделением ренина почками, который является инициатором ренин-ангиотензиновой системы. Полагают, что в этой генерализованной вазоконстрикции не участвуют сосуды мозга, сердца и печени. Поэтому эту реакцию называют централизацией кровообращения. Периферические органы все более страдают от гипоксии, в результате чего нарушается обмен веществ и в тканях появляются недоокисленные продукты и биологически активные метаболиты. Поступление их в кровь приводит к ацидозу крови, а также появлению в ней факторов, специфически угнетающих сократительную способность мышцы сердца. Здесь возможен и другой механизм. Развитие тахикардии приводит к сокращению времени диастолы - периода, во время которого осуществляется коронарный кровоток. Все это приводит к нарушению метаболизма миокарда. При развитии необратимой стадии шока на сердце также могут оказывать влияние эндотоксины, лизосомные ферменты и другие специфические для этого периода биологически активные вещества. Таким образом, крово- и плазмопотеря, патологическое депонирование крови, экстравазация жидкости приводят к уменьшению объема циркулирующей крови, уменьшению венозного возврата крови. Это в свою очередь наряду с нарушениями метаболизма в миокарде и снижением производительности сердечной мышцы приводит к гипотензии, характерной для торпидной фазы травматического шока. Накапливающиеся при гипоксии тканей вазоактивные метаболиты нарушают функцию гладких мышц сосудов, что приводит к понижению тонуса сосудов, а значит к падению общего сопротивления сосудистого русла и опять же к гипотонии.
Расстройства капиллярного кровотока углубляются в результате нарушения реологических свойств крови, агрегации эритроцитов, которая наступает в результате повышения активности свертывающей системы и сгущения крови из-за выхода жидкости в ткани. Нарушения дыхания. В эректильной стадии травматического шока наблюдается частое и глубокое дыхание. Основным стимулирующим фактором является раздражение рецепторов травмированных тканей, которое вызывает возбуждение коры головного мозга и подкорковых центров, возбуждается и дыхательный центр продолговатого мозга.
В торпидной фазе шока дыхание становится более редким и поверхностным, что связано с угнетением дыхательного центра. В ряде случаев в результате прогрессирующей гипоксии мозга появляется периодическое дыхание типа Чейн-Стокса или Биота. Помимо гипоксии тормозящее влияние на дыхательный центр оказывают различные гуморальные факторы - гипокапния (обусловленная гипервентиляцией - но позднее CO2 накапливается), низкое рН. С расстройствами кровообращения и дыхания тесно связано развитие гипоксии - одного из очень важных моментов патогенеза травматического шока. В генезе шоковой гипоксии определенное место занимает и гемический компонент, обусловленный уменьшением кислородной емкости крови из-за ее разжижения и агрегации эритроцитов, а также расстройства внешнего дыхания, но основное значение все же принадлежит тканевой перфузии и перераспределению кровотока между терминальными сосудами.

Нарушения в легких и вызываемые ими эффекты объединяют в симптомокомплекс, получивший название респираторный дистресс-синдром. Это острое расстройство легочного газообмена с угрожающей жизни тяжелой гипоксемией в результате снижения до критического уровня и ниже числа нормальных респиронов (респирон - терминальная или конечная респираторная единица), к которому приводят отрицательные нейрогуморальные влияния (нейрогенный спазм легочных микрососудов при патологической боли), повреждение легочного капиллярного эндотелия с цитолизом и деструкцией межклеточных соединений, миграция форменных элементов крови (прежде всего лейкоцитов), плазменных белков в легочную мембрану, а затем и в просвет альвеол, развитие гиперкоагуляции и тромбоз легочных сосудов.

Нарушения обмена веществ. Энергетический обмен.
Шок различной этиологии посредством расстройств микроциркуляции и деструкции гистогематического барьера (обменный капилляр - интерстиций - цитозоль клетки) критически уменьшает доставку кислорода в митохондрии. В результате возникают быстро прогрессирующие расстройства аэробного обмена. Звеньями патогенеза дисфункций на уровне митохондрий при шоке являются: - отек митохондрий; - расстройства ферментных систем митохондрий вследствие дефицита необходимых кофакторов; - снижение содержания в митохондриях магния; - рост содержания в митохондриях кальция; - патологические изменения содержания в митохондриях натрия и калия; - расстройства митохондриальных функций вследствие действия эндогенных токсинов (свободных жирных кислот и др.); - свободнорадикальное окисление фосфолипидов мембран митохондрий. Таким образом, при шоке ограничивается аккумуляция энергии в виде макроэргических фосфорных соединений. Накапливается большое количество неорганического фосфора, который поступает а плазму. Недостаток энергии нарушает функцию натрий-калиевого насоса, в результате чего в клетку поступает избыточное количество натрия и воды, и из нее выходит калий. Натрий и вода вызывают набухание митохондрий, что еще более разобщает дыхание и фосфорилирование. В результате понижения продукции энергии в цикле Кребса ограничивается активация аминокислот, и вследствие этого угнетается синтез белков. Понижение концентрации АТФ замедляет соединение аминокислот с рибонуклеиновыми кислотами (РНК), нарушается функция рибосом, в результате чего продуцируются ненормальные, некомплектные пептиды, часть из которых может быть биологически активными. Выраженный ацидоз в клетке вызывает разрыв мембран лизосом, вследствие чего гидролитические ферменты поступают в протоплазму, вызывая переваривание белков, углеводов, жиров. Клетка погибает. В результате недостаточности энергии клетки и нарушения обменных процессов в плазму крови входят аминокислоты, жирные кислоты, фосфаты, молочная кислота. По-видимому, митохондриальные дисфункции (как и любые патологические процессы) развиваются в разных органах и тканях асинхронно, мозаично. Особенно повреждения митохондрий и расстройства их функций выражены в гепатоцитах, тогда когда в нейронах головного мозга они остаются минимальными и при декомпенсированном шоке.
Следует заметить, что митохондриальные повреждения и дисфункции обратимы при компенсированном и декомпенсированном шоке и подвергаются обратному развитию рациональными анальгезией, инфузиями, оксигенотерапией и остановкой кровотечения. Углеводный обмен. В эректильную фазу травматического шока в крови повышается концентрация антагонистов инсулина катехоламинов, стимулирующих распад гликогена, глюкокортикоидов, усиливающих процессы глюконеогенеза, тироксина и глюкагона в результате повышения активности эндокринных желез. Кроме того, повышена возбудимость симпатической нервной системы (гипоталамические центры), что также способствует развитию гипергликемии. Во многих тканях потребление глюкозы угнетается. При этом в целом обнаруживается ложнодиабетическая картина. В поздних стадиях шока развивается гипогликемия. Ее происхождение связано с полным использованием доступных для потребления резервов гликогена печени, а также снижением интенсивности глюконеогенеза из-за использования необходимых для этого субстратов и относительной (периферической) кортикостероидной недостаточности.
Липидный обмен. С изменениями углеводного обмена теснейшим образом сопряжены расстройства липидного обмена, выявляющиеся в торпидной фазе шока кетонемией и кетонурией. Объясняется это тем, что жиры (как один из главных энергетических источников) мобилизуются при шоке из депо (их концентрация в крови повышается), а окисление идет не до конца.
Белковый обмен. Проявлением его нарушения являются увеличение содержания небелкового азота в крови главным образом за счет азота полипептидов и в меньшей степени - азота мочевины, синтез которой с развитием шока нарушается. Изменения в составе сывороточных белков при травматическом шоке выражаются уменьшением их общего количества преимущественно за счет альбуминов. Последнее может быть связано как с нарушением в обмене, так и с изменением проницаемости сосудов. Следует заметить, что с развитием шока увеличивается содержание в сыворотке -глобулинов, имеющих, как известно, прямое отношение к вазоактивным свойствам крови. Накоплению азотистых продуктов и изменениям в ионном составе плазмы способствуют нарушения функции почек. Олигурия, а в тяжелых случаях шока - анурия постоянны при этом процессе. Нарушения функции почек обычно соответствуют тяжести шока. Известно, что с понижением АД до 70-50 мм рт. ст. почки нацело прекращают фильтрацию в клубочковом аппарате почки из-за изменений в соотношениях между гидростатическим, коллоидоосмотическим и капсульным давлением. Однако при травматическом шоке расстройства функций почек не являются исключительно следствием артериальной гипотензии: для шока характерно ограничение корковой циркуляции из-за увеличения сопротивления сосудов и шунтирования через юкстагломерулярные пути. Это определяется не только уменьшением производительности сердца, но и повышением тонуса сосудов коркового слоя.
Ионный обмен. Значительные сдвиги обнаруживаются в ионном составе плазмы. При травматическом шоке наступает постепенное сближение, концентрация ионов в клетках и внеклеточной жидкости, в то время как в норме в клетках преобладают ионы К+, Мg2+, Са2+, НРО42-, PO43-, а во внеклеточной жидкости Na+, С1-, НСОз-. Поступление в кровь биологически активных веществ. Для последующего течения процесса большое значение имеет освобождение из клеток активных аминов, которые являются химическими медиаторами воспаления. В настоящее время описано свыше 25 таких медиаторов. Важнейшими из них, появляющимися сразу после повреждения, являются гистамин и серотонин. При обширном повреждении тканей гистамин может поступить в общий кровоток, а так как гистамин вызывает расширение прекапилляров и спазм вен, не затрагивая непосредственно капиллярного русла, то это приводит к уменьшению периферического сопротивления сосудов и падению артериального давления. Под влиянием гистамина образуются каналы и щели в эндотелии, через которые в ткани проникают составные части крови, в том числе и клеточные элементы (лейкоциты и эритроциты). В результате указанного происходят экссудация и межклеточный отек. Под влиянием травмы проницаемость сосудистых и тканевых мембран повышается, но все же из-за расстройств кровообращения всасывание из травмированных тканей различных веществ замедляется. Большую роль в развитии вторичной альтерации играют ферменты лизосом клеток тканей и нейтрофилов. Эти ферменты (гидролазы) обладают выраженной протеолитической активностью. Наряду с указанными факторами определенную роль в расстройствах циркуляции играют плазменные кинины (брадикинин), а также простагландины. Эти факторы также оказывают влияние на систему микроциркуляции, вызывая расширение артериол, капилляров и повышение их проницаемости, что происходит вначале (главным образом в венулах) вследствие образования межклеточных щелей и трансэндотелиальных каналов. Позднее изменяется проницаемость капиллярного и прекапиллярного отдела сосудистого русла.

Несколько слов о раневой токсемии. Окончательно вопрос о раневом токсине не решен. Однако твердо установлено, что токсические вещества не могут поступать в кровь из травмированных тканей, ибо реабсорбция в них снижена. Источником токсических веществ является обширная зона контузии ткани вокруг раневого канала. Именно в этой зоне под влиянием калия, гистамина, серотонина, лизосомных ферментов, АТФ, АМФ резко повышается проницаемость сосудов. Токсин образуется уже через 15 минут после ишемии, но имеет относительную молекулярную массу 12 000 и представляет собой продукт интенсивного белкового распада. Введение этого токсина интактным животным приводит к расстройствам гемодинамики, типичным для шока. Формирующиеся при травматическом шоке порочные круги можно представить в виде схемы, изображенной на рисунке 1. Рис. 1. Основные порочные круги при шоке. Нарушения функций поврежденных органов. Большинством исследователей шок относится к функциональной патологии, хотя в этиологии и патогенезе всегда играет роль и органический компонент, к которому можно отнести уменьшение объема циркулирующей крови и, следовательно, уменьшение числа эритроцитов.
Существенным фактором, осложняющим анализ патогенеза шока в клинике, является наличие органических повреждений, которые могут ускорить развитие шока и модифицировать его течение. Так, повреждение нижних конечностей, ограничивая подвижность раненых, принуждает их занять горизонтальное положение, нередко на холодной земле, что, вызывая общее охлаждение, провоцирует развитие шока. При ранении челюстно-лицевой области у пострадавших утрачивается большое количество слюны, а вместе с ней воды и белка, что при трудностях приема жидкости и пищи способствует развитию гиповолемии и сгущению крови. При черепно-мозговых ранениях присоединяются симптомы нарушений функций мозга, утрачивается сознание, возникает чрезмерный спазм сосудов, что нередко маскирует гиповолемию. При повреждении гипофиза резко нарушается нейроэндокринная регуляция, что само по себе вызывает развитие шока и осложняет течение постшокового периода. Основы патогенетической терапии шока Сложность патогенеза травматического шока, многообразие нарушений деятельности многих систем организма, различия в представлениях о патогенезе шока обуславливают существенную разницу в рекомендациях лечения этого процесса. Мы же остановимся на устоявшихся вещах. Экспериментальные исследования позволяют определить возможные направления в профилактике травматического шока. Так, например, использование некоторых комплексов лекарственных средств перед тяжелой механической травмой предупреждает развитие шока. К таким комплексам относится совместное использование наркотиков (барбитуратов), гормонов, витаминов. Длительная стимуляция системы гипофиз - кора надпочечников введением АКТГ повышает устойчивость животных к шокогенной травме, введение ганглиоблокаторов тоже оказывает профилактическое действие. Однако ситуации, когда профилактика шока представляется уместной, могут встречаться не так уж часто. Значительно чаще приходится иметь дело с лечением развившегося травматического шока и, к сожалению, не всегда в его ранние периоды, а в большинстве случаев - в поздние. Основной принцип лечения шока - это комплексность терапии. Важное значение в терапии шока имеет учет фазности развития шока. Проводимое лечение должно быть по возможности быстрым и энергичным. Это требование определяет и способы введения тех или иных лекарственных препаратов, большинство их которых вводятся непосредственно в сосудистое русло. При лечении шока в эректильной фазе, когда еще не развились полностью расстройства циркуляции, не наступило глубокой гипоксии и далеко зашедших метаболических нарушений, мероприятия должны сводиться к предупреждению их развития. В эту фазу широко используются средства, ограничивающие афферентную импульсацию; различного рода новокаиновые блокады, анальгетики, нейроплегические средства, наркотические вещества. Анальгетики, угнетающие передачу импульсов, подавляющие вегетативные реакции, ограничивающие чувство боли, показаны в ранние периоды шока. Важным моментом, ограничивающим импульсацию с места повреждения, является покой поврежденного участка (иммобилизация, повязки и т.д.). В эректильной фазе шока рекомендуется применение солевых растворов, содержащих нейротропные и энергетические вещества (жидкостей Попова, Петрова, Филатова и др.). Значительные расстройства циркуляции, тканевого дыхания и метаболизма, имеющего место в торпидной фазе шока, требуют различных мероприятий, направленных на их коррекцию. С целью коррекции расстройств кровообращения используются переливание крови либо кровезаменителей. При тяжелом шоке более эффективными оказываются внутриартериальные переливания. Их высокую эффективность связывают со стимуляцией сосудистых рецепторов, с усилением капиллярного кровотока и выходом части депонированной крови. В связи с тем, что при шоке имеют место преимущественно депонирование форменных элементов и их агрегация, представляется весьма перспективным использование низкомолекулярных коллоидных плазмозаменителей (декстранов, поливинола), обладающих дезагрегирующим действием и понижающих вязкость крови при малых напряжениях сдвига. Следует быть осторожными при применении вазопрессорных веществ. Так, введение одного из наиболее распространенных вазопрессорных веществ - норадреналина в начальном периоде торпидной фазы несколько увеличивает минутный объем кровообращения за счет выброса части депонированной крови и улучшает кровоснабжение мозга и миокарда. Применение же норадреналина в более поздние периоды шока даже усугубляет характерную для него централизацию кровообращения. В этих условиях применения норадреналина оказывается целесообразным лишь в качестве «аварийного» средства. Применение солевых плазмозамещающих растворов хотя и приводит к временному оживлению кровотока, все же не дает длительного эффекта. Эти растворы при существенных нарушениях капиллярного кровотока и изменениях в соотношениях коллоидно-осмотического и гидростатического давлений, характерных для шока, сравнительно быстро покидают сосудистое русло. Заметное влияние на кровоток при травматическом шоке оказывают гормоны - АКТГ и кортизон, вводимые с целью нормализации обменных процессов. В ходе развития шока обнаруживается вначале относительная, а затем абсолютная надпочечниковая недостаточность. В свете этих данных применение АКТГ оказывается более уместным в ранние периоды шока или при его профилактике. Глюкокортикоиды, вводимые в торпидной фазе, оказывают многообразное действие. Они изменяют реакцию сосудов на вазоактивные вещества, в частности потенцируют действие вазопрессоров. Кроме того, они уменьшают проницаемость сосудов. И все же главное их действие связано с влиянием на процессы обмена и прежде всего на обмен углеводов. Восстановление кислородного баланса в условиях шока обеспечивается не только восстановлением циркуляции, но и использованием оксигенотерапии. В последнее время рекомендуется и оксигенобаротерапия. С целью улучшения обменных процессов используют витамины (аскорбиновая кислота, тиамин, рибофлавин, пиридоксин, кальция пангамат). В связи с повышением резорбции из поврежденных тканей биогенных аминов и прежде всего гистамина важное значение в лечении травматического шока может иметь применение антигистаминных препаратов. Существенное место в терапии шока занимает коррекция кислотно-щелочного равновесия. Ацидоз типичен для травматического шока. Его развитие определяется как метаболическими нарушениями, так и накоплением углекислоты. Развитию ацидоза способствует и нарушение выделительных процессов. Для уменьшения ацидоза рекомендуется введение бикарбоната натрия, некоторые считают лучшим применение лактата натрия или трис-буффера.



Понравилась статья? Поделитесь ей
Наверх