В чем преимущество внутреннего оплодотворения у животных. Кому свойственно оплодотворение внутреннее? В чем преимущество внутреннего оплодотворения

Оплодотворением называется соединение двух гамет, в результате чего образуется оплодотворенное яйцо или зигота (греч. zygota - соединенная в пару), - начальная стадия развития нового организма.

Оплодотворение влечет за собой два важных следствия: 1) активацию яйца, т.е. побуждение к развитию, и 2) синкариогамию, т.е. образование диплоидного ядра зиготы в результате слияния гаплоидных ядер половых клеток, несущих генетическую информацию двух родительских организмов.

Встрече гамет способствует то, что яйцеклетки растений и животных выделяют в окружающую среду химические вещества - гормоны, активирующие сперматозоиды. Возможно, что активизирующие вещества выделяются клетками женских половых путей млекопитающих. Установлено, что сперматозоиды млекопитающих могут проникнуть в яйцеклетку только в том случае, если находились в женском половом тракте не менее одного часа.

У спермиев ряда низших растений обнаружен положительный хемотаксис к веществам, выделяемым яйцеклеткой. Убедительных доказательств хемотаксиса у сперматозоидов животных не существует. Сперматозоиды двигаются беспорядочно и с яйцеклетками сталкиваются случайно.

В оболочке яйцеклетки ряда животных существует крошечные отверстия - микропиле, через которое проникает сперматозоид. У большинства видов микропиле отсутствует, проникновение сперматозоида осуществляется благодаря акросомной реакции, обнаруженный с помощью электронной микроскопии. Расположенная на переднем конце сперматозоида акросомная область окружена мембраной. При контакте с яйцом оболочка акросомы разрушается. Из нее выбрасывается акросомная нить, выделяется фермент, растворяющий оболочку яйцеклетки, и фермент гиалуронидаза, разрушающий фолликулярные клетки, окружающее яйцо. Акросомная нить проникает через растворенную зону яйцевых оболочек и сливается с мембраной яйцеклетки. В этом месте из цитоплазмы яйцеклетки образуется воспринимающий бугорок. Он захватывает ядро, центриоли и митохондрии сперматозоида и увлекает их в глубь яйца. Плазматическая мембрана сперматозоида встраивается в поверхностную мембрану яйца, образуя мозаичную наружную мембрану зиготы.

Проникновение сперматозоида в яйцеклетку изменяет ее обмен веществ, показателем чего является ряд морфологических и физиологических преобразований. Повышается проницаемость клеточной мембраны, усиливается поглощение из окружающей среды фосфора и калия, выделяется кальций, увеличивается обмен углеводов, активируется синтез белка. У ряда животных возникает потребность в кислороде. Так, у морского ежа в первую же минуту после оплодотворения поглощение кислорода повышается в 80 раз. Меняются коллоидные свойства протоплазмы. Вязкость увеличивается в 6-8 раз. В наружном слое яйца изменяется эластичность и оптические свойства. На поверхности отслаивается оболочка оплодотворения; между ней и поверхностью яйца образуется свободное, наполненное жидкостью пространство. Под ним образуется оболочка, которая обеспечивает крепление клеток, возникающих в результате дробления яйца. После образования оболочки оплодотворения другие сперматозоиды уже не могут проникнуть в яйцо.

Показателем изменения обмена веществ является и то, что у ряда видов животных созревание яйца заканчивается после проникновения в него сперматозоида. У круглых червей и моллюсков лишь в оплодотворенных яйцах выделяется второе редукционное тельце. У человека сперматозоиды проникают в яйцеклетки, находящиеся еще в периоде созревания. Первое редукционное тельце выделяется через 10 часов, второе - только через 1 сутки после проникновения сперматозоида.

Кульминационным моментом в процессе оплодотворения является слияние ядер. Ядро сперматозоида (мужской пронуклеус) в цитоплазме яйца набухает и достигает величины ядра яйцеклетки (женского пронуклеуса). Одновременно мужской пронуклеус поворачивается на 180 градусов и центросомой вперед движется в сторону женского пронуклеуса; последний также перемещается ему на встречу. После встречи ядра сливаются.

В результате синкариогамии, т.е. слияние двух ядер с гаплоидным набором, восстанавливается диплоидный набор хромосом. После образования синкариона яйцо приступает к дроблению.

Изучение физиологии оплодотворения позволяет понять роль большого числа сперматозоидов, участвующих в оплодотворении. Установлено, что если при искусственном осеменении кроликов в семенной жидкости содержится менее 1000 сперматозоидов, оплодотворение не наступает. Точно так же не происходит оплодотворение при введении очень большого числа сперматозоидов (более 100 млн.). Это объясняется в первом случае недостаточном, а во втором - избыточным количеством ферментов, необходимых для проникновения сперматозоидов в яйцеклетку.

Размножение – это процесс, который позволяет живым существам иметь потомство, непрерывно воспроизводить себе подобных, и следовательно, существовать виду. Оно бывает половым и бесполым. Простые клеточные организмы размножаются обычным делением клеток.

Половое размножение подразумевает слияние женских и мужских половых клеток различными способами. Для его осуществления необходимо предварительное созревание гамет (половых клеток), а затем требуются определенные условия для их встречи и слияния. Вследствие слияния половых клеток образуется зародыш (зигота), дальнейший рост и развитие которой дает возможность образоваться новому организму (потомству).

Виды полового размножения

Половое размножение осуществляется двумя способами: оплодотворение внутреннее и оплодотворение внешнее (наружное).

Оплодотворение внешнее

Оплодотворение внешнее предусматривает слияние половых клеток за пределами организма женской особи (самки). Ярким примером может служить оплодотворение у рыб, при котором самка мечет яйцеклетки (икру), а самец сперму (молоку) непосредственно в водоем и там же происходит их слияние.

Оплодотворение внешнее присуще большинству беспозвоночных водных животных и некоторым позвоночным (земноводные, моллюски, черви и пр). Оно требует для эффективности стечения многих внешних факторов, ведь сперматозоиды и яйцеклетки должны выбрасываться во внешнюю среду в одно время и в одном месте. Именно поэтому природа предусмотрела половые поведенческие реакции особей одного вида (например, сбор в определенных местах и время на нерест).

Кроме всего выше перечисленного, оплодотворение внешнее требует образования в организме самки и самца большого количества половых клеток для обеспечения успешного их слияния. Это обусловлено тем, что во внешней среде происходят большие их потери и расточительство, ведь большинство из них никогда не встретятся и просто погибнут. К примеру, лягушка озерная постоянно откладывает порядка 11 000 яйцеклеток (яиц), а рыба-луна около 30 миллионов.

Оплодотворение внутреннее

Любое дополнительное приспособление, которое может повысить вероятность встречи половых клеток особей разного пола, обеспечивает виду большую плодовитость, а следовательно, и выживаемость всего вида. Кроме того затраты, которые производит организм на выработку и созревание половых клеток в значительной мере снижаются.

Оплодотворение внешнее уступает внутреннему типу оплодотворения. Свое название внутреннее оплодотворение получило в связи с тем, что половые клетки мужского пола вводятся непосредственно в организм особи женского пола. Такой тип оплодотворения присущ видам, которые стоят на более высокой ступени эволюционного развития. Внутреннее оплодотворение предусматривает наличие у особей разных полов специальных приспособительных (половых) органов.

Чем выше ступень развития и эволюции, на котором стоит вид животных, тем больше дополнительных половых органов у них имеется. Это и дополнительные половые железы, органы (яйцеводы и пр.).

Примечателен тот факт, что количество образуемых половых клеток у самки напрямую зависит от степени её привязанности к потомству. Чем она выше, тем меньше яйцеклеток и, следовательно, потомков. На примере трески и африканской рыбы теляпии можно отследить эту закономерность наглядно. Первая мечет около 10 миллионов икринок за один раз и никогда больше не возвращается к месту кладки. Теляпия же во рту вынашивает икру в количестве не больше, чем 100 штук. Большинство млекопитающих вообще имеют всего несколько потомков, а их родительское поведение обеспечивает длительную заботу.

Оплодотворение у человека

Человек относится к видам, которым присуще только внутренне оплодотворение. Процесс оплодотворения происходит в маточных трубах, а оплодотворенная половая клетка, в дальнейшем продвигается по маточным трубам в полость матки.

Партеногенез – оплодотворение без оплодотворения

Еще один вид размножения – партеногенез. Его еще называют оплодотворением без оплодотворения. Он заключается в том, что дочерний организм развивается из генетического материала самой особи (неоплодотворенная яйцеклетка). Таким способом могут образоваться особи только одного пола. Партеногенез присущ пчелам, тле, некоторым низшим ракообразным, даже птицам (индейки) и скальным ящерицам.

В заключение обзорной статьи можно сделать выводы, что оплодотворение внешнее значительно уступает внутреннему оплодотворению и присуще низшим видам. Вместе с эволюционным развитием живых существ на земле и в воде происходило постепенное усовершенствование способов репродукции (продолжения рода). Ведь, как известно, чем больше здорового потомства производит на свет вид, тем больше у него шансов на выживание.

Механизм оплодотворения яиц сперматозоидами — сложный про-цесс, включающий следующие этапы:

  • Физический контакт гамет.
    • Акросомная реакция со стороны сперматозоида, проникающего в яйцо.
    • Кортикальная реакция со стороны яйца — цитоплазматический процесс активации яйца.
  • Образование пронуклеусов: преобразование ядра спермия в мужской пронуклеус и формирование женского пронуклеуса.
  • Сингамия (непосредственно оплодотворение): сближение мужского и женского пронуклеусов и слияние гаплоидных ядер. В результате образуется диплоидное ядро зиготы (синкариона) — зародышевый пузырёк.
  • Начало дробления .

Акросомная реакция

При акросомной реакции (рис. 40) происходит разрушение передней мембраны акросомного пузырька, вытягивание его задней стенки с преобразованием в акросомную трубочку, которая контактирует с поверхностью яйца и внедряется в цитоплазму (на поверхности трубочки находится гиалуронидаза). Ядро и проксимальная центриоль переходят по трубочке в цитоплазму.

Кортикальная реакция

При соприкосновении акросомной трубочки с цитоплазмой яйца возникает кортикальная реакция (рис. 41) — выброс содержимого кортикальных вакуол, образование оболочки оплодотворения.

После наружного оплодотворения из яиц морских беспозвоночных часто разви-ваются подвижные планктонные личинки, живущие в толще воды и питающиеся фитопланктоном, обычно мелкими водорослями . Это об-легчает выживание и расселение, уменьшает конкуренцию из-за пищи и предоставляет потомству разнообразие местообитаний. И все же процесс наружного оплодотворения очень расточителен, поскольку животным приходится производить огромное количество гамет, чтобы гарантировать развитие немногих зигот. Поэтому в процессе эволю-ции животных наружное оплодотворение сменяется наружно-внутрен-ним или внутренним. Материал с сайта

Наружно-внутреннее оплодотворение

Наружно-внутреннее оплодотворение состоит в том, что самец выводит сперму в виде капелек жидкости или в виде мешочка-сперматофора в наружную среду на субстрат, после чего его захватывает самка. Такое осеменение присуще наземным членистоногим .

Внутреннее оплодотворение

Внутреннее оплодотворение происходит во время копуляции, при которой сперма вводится самцом в половые пути самки либо с помощью специального копулятивного органа, либо опять же посредством сперматофора, который подвешивается к половому отверстию самки или же вводится в него. И в этом случае копуляции может предшествовать стимуляция самки определённым, характерным для каждого вида, «брачным» поведением самца. Иногда стимуляция необходима из-за агрессивного поведения самки, которая может даже съесть самца во время или после копуля-ции, как это бывает у пауков. Препятствием для межвидовой копуля-ции является форма копулятивного органа самца (у насекомых), соот-ветствующая строению влагалища самки. Такое соответствие получи-ло название принципа «ключа и замка». Это такой же видовой признак, как форма и окраска тела, число хромосом и т. д.

Подумайте!

Вопросы

1.Опишите строение половых клеток.

2.От чего зависит размер яйцеклеток?

3.Какие периоды выделяют в процессе развития половых клеток?

4.Расскажите, как протекает период созревания (мейоз) в процессе сперматогенеза; овогенеза.

5.Перечислите отличия мейоза от митоза.

6.В чем заключается биологический смысл и значение мейоза?

Организм развился из неоплодотворенной яйцеклетки. Являются ли его наследственные признаки точной копией признаков материнского организма?

Для осуществления полового размножения организму недостаточно просто сформировать половые клетки - гаметы, надо обеспечить возможность их встречи. Процесс слияния сперматозоида и яйцеклетки, сопровождающийся объединением их генетического материала, называют оплодотворением. В результате оплодотворения образуется диплоидная клетка - зигота , активация и дальнейшее развитие которой приводит к формированию нового организма. При слиянии половых клеток разных особей осуществляется перекрестное оплодотворение , а при объединении гамет, продуцируемых одним организмом, - самооплодотворение .

Существует два основных типа оплодотворения - наружное (внешнее) и внутреннее.

Наружное оплодотворение . При наружном оплодотворении половые клетки сливаются вне организма самки. Например, рыбы мечут икру (яйцеклетки) и молоку (сперму) прямо в воду, где происходит наружное оплодотворение. Подобным образом осуществляется размножение у земноводных, многих моллюсков и некоторых червей. При наружном оплодотворении встреча яйцеклетки и сперматозоида зависит от самых разных факторов внешней среды, поэтому при таком типе оплодотворения организмы обычно образуют огромное количество половых клеток. Например, озерная лягушка откладывает до 11 тыс. яиц, атлантическая сельдь выметывает около 200 тыс. икринок, а рыба-луна - почти 30 млн.

Внутреннее оплодотворение . При внутреннем оплодотворении! встреча гамет и их слияние происходит в половых путях самки. Благодаря^ согласованному поведению самца и самки и наличию специальных совокупительных органов мужские половые клетки поступают непосредственно в женский организм. Так происходит оплодотворение у всех наземных и некоторых водных животных. В этом случае вероятность успешного оплодотворения высока, поэтому половых клеток у таких особей гораздо меньше.

Количество половых клеток, которые образует организм, зависит также от степени заботы родителей о потомстве. Например, треска выметывает 10 млн икринок и никогда не возвращается к месту кладки, африканская рыбка тиляпия, вынашивающая икру во рту, - не более 100 икринок, а млекопитающие, обладающие сложным родительским поведением, обеспечивающим заботу о потомстве, рождают всего одного или нескольких детенышей.



У человека, как и у всех остальных млекопитающих, оплодотворение происходит в яйцеводах, по которым яйцеклетка движется по направлению к матке. Сперматозоиды преодолевают огромное расстояние до встречи с яйцеклеткой, и лишь один из них проникает в яйцеклетку. После проникновения сперматозоида яйцеклетка формирует на поверхности толстую оболочку, непроницаемую для остальных сперматозоидов.

Если оплодотворение произошло, яйцеклетка завершает свое мейотиче-ское деление (§ 3.6) и два гаплоидных ядра сливаются в зиготе, объединяя генетический материал отцовского и материнского организмов. Образуется уникальная комбинация генетического материала нового организма.

Яйцеклетки большинства млекопитающих сохраняют способность к оплодотворению в течение ограниченного времени после овуляции, как правило, не более 24 часов. Сперматозоиды, покинувшие мужскую половую систему, живут тоже очень недолго. Так, у большинства рыб сперматозоиды погибают в воде уже спустя 1-2 минуты, в половых путях кролика живут до 30 часов, у лошадей 5-6 суток, а у птиц до 3 недель. Сперматозоиды человека во влагалище женщины гибнут спустя 2,5 часа, но те, которые успевают добраться до матки, сохраняют жизнеспособность в течение двух и более суток. Существуют в природе и исключительные случаи, например сперматозоиды пчёл сохраняют способность к оплодотворению в семяприемнике самок в течение нескольких лет.

Оплодотворенная яйцеклетка может развиваться в теле материнского организма, как это происходит у плацентарных млекопитающих, или во внешней среде, как у птиц и пресмыкающихся. Во втором случае она покрывается специальными защитными оболочками (яйца птиц и пресмыкающихся).

У некоторых видов организмов встречается особая форма полового размножения - без оплодотворения. Такое развитие называют партеногенезом (от греч. partenos - девственница, genesis - возникновение), или девственным развитием. В этом случае дочерний организм развивается из неоплодотворенной яйцеклетки на основе генетического материала одного из родителей, и образуются особи только одного пола. Естественный партеногенез дает возможность резкого увеличения численности потомства и существует в тех популяциях, где контакт разнополых особей затруднен. Партеногенез встречается у животных разных систематических групп: у пчел, тлей, низших ракообразных, скальных ящериц и даже у некоторых птиц (индеек).

Одним из главных механизмов, который обеспечивает оплодотворение строго внутри вида, является соответствие числа и строения хромосом женских и мужских гамет, а также химическое сродство цитоплазмы яйцеклетки и ядра сперматозоида. Даже если чужеродные половые клетки и соединяются при оплодотворении, это, как правило, приводит к ненормальному развитию зародыша или к рождению стерильных гибридов, т. е. особей, не способных к деторождению.

■ Двойное оплодотворение. Особый тип оплодотворения характерен для цветковых растений. Он был открыт в конце XIX в. русским ученым Сергеем Гавриловичем Навашиным и получил название двойного оплодотворения .

Во время опыления пыльца попадает на рыльце пестика. Пыльцевое зерно (мужской гаметофит) состоит всего из двух клеток. Генеративная клетка делится, образуя два неподвижных спермия, а вегетативная клетка, прорастая внутрь пестика, формирует пыльцевую трубку. В завязи пестика развивается женский гаметофит - зародышевый мешок с восемью гаплоидными ядрами. Два из них сливаются, формируя центральное диплоидное ядро. В результате дальнейшего деления цитоплазмы зародышевого мешка образуется семь клеток: яйцеклетка, центральная диплоидная клетка и пять вспомогательных.

После того как пыльцевая трубка прорастает в основание пестика, спермин, находящиеся внутри нее, проникают в зародышевый мешок. Один спермий оплодотворяет яйцеклетку, - возникает диплоидная зигота; из нее в дальнейшем развивается зародыш. Другой спермий сливается с ядром крупной центральной диплоидной клетки, образуя клетку с тройным хромосомным набором (триплоидную), из которой затем формируется эндосперм - питательная ткань для зародыша. Таким образом, у покрытосеменных растений в оплодотворении участвует два спермия, т. е. осуществляется двойное оплодотворение.

Искусственное оплодотворение . Большое значение в современном сельском хозяйстве имеет искусственное оплодотворение, прием, который широко применяется в селекции при выведении и улучшении пород животных и сортов растений. В животноводстве при помощи искусственного осеменения можно получить многочисленное потомство от одного выдающегося производителя. Сперма таких животных хранится в специальных низкотемпературных условиях и сохраняет жизнеспособность в течение долгого времени (десятки лет).

Искусственное опыление в растениеводстве позволяет осуществлять определенное, заранее запланированное скрещивание и получать сорта растений с необходимым сочетанием родительских свойств.

В современной медицине при лечении бесплодия используется искусственное оплодотворение спермой донора и экстракорпоральное (внетелесное) оплодотворение - метод, разработанный впервые в 1978 г. и известный под названием «ребенок из пробирки». Этот метод заключается в оплодотворении яйцеклеток вне организма и последующем переносе их назад в матку для продолжения нормального развития.

Методы искусственного оплодотворения, используемые в медицине, порождают целый ряд этических и социальных проблем. Многие люди, опираясь на религиозные и моральные соображения, выступают против любых вмешательств в размножение человека, в том числе и против искусственного оплодотворения.

Вопросы для самоконтроля

1.Что такое оплодотворение?

2.Какие типы оплодотворения вы знаете?

3.В чем заключается процесс двойного оплодотворения?

4.Каково значение искусственного оплодотворения в растениеводстве и животноводстве?

Половое размножение организмов связано с их морфологической и физиологической половой дифференциацией (половой диморфизм) и половым процессом.

Половой процесс характеризуется системой приспособительных механизмов:

  1. образованием мужских и женских гамет,
  2. их слиянием в процессе оплодотворения (сингамия),
  3. объединением ядер (кариогамия),
  4. синаупсисогомологивдных хромосом в мейозе и перекомбинацией наследственных факторов.

Цикл полового размножения охватывает период от момента формирования половых клеток до их нового воспроизведения в следующем поколении.

Оплодотворением принято называть побуждение яйца к развитию в результате кариогамии. Оплодотворение представляет собой процесс необратимый - оплодотворенное однажды яйцо не может быть оплодотворено вновь. Сингамия и кариогамия составляют сущность процесса оплодотворения. Однако у некоторых видов воспроизведение нового поколения осуществляется на основе только женской гаметы - яйцеклетки без оплодотворения (девственное размножение). В этом случае половое размножение также заканчивается созреванием гамет. Оба эти способа размножения могут чередоваться у одного и того же вида.

В процессе оплодотворения осуществляются следующие важные генетические явления, необходимые для существования вида:

  • восстановление диплоидного набора хромосом, а в пределах диплоидного набора - парности гомологичных (материнских и отцовских) хромосом, разошедшихся в мейозе в процессе образования половых клеток у родительских организмов;
  • обеспечение материальной непрерывности между следующими друг за другом поколениями;
  • объединение в одном индивидууме наследственных свойств материнского и отцовского организмов.

Для обеспечения оплодотворения необходимо одновременное созревание гамет материнского и отцовского организма. У перекрестноопыляющихся растений созревание мужских и женских половых клеток может не совпадать во времени, и это несоответствие служит приспособительным механизмом, препятствующим самоопылению. Возможно, что несоответствие во времени созревания половых клеток у разных полов одного вида является одним из путей возникновения перекрестного опыления.

Оплодотворение у животных

Процесс оплодотворения у животных можно разделить на несколько фаз.

Первая фаза начинается с того, что сперматозоид либо прикрепляется к любой точке поверхности яйца, либо проникает в нее через микропиле. Момент соприкосновения головки сперматозоида с яйцом является начальным в цепи химических реакций. Эту фазу называют фазой активации яйца . В норме активацию яйца вызывают сперматозоиды своего вида. В некоторых случаях (у червя Rhabdites monohystera) сперматозоиды могут активировать яйцо, но при этом мужское ядро не сливается с материнским. Такое явление называют псевдогамным оплодотворением .

Вторая фаза процесса оплодотворения начинается после проникновения в яйцо, одного, а у некоторых животных и нескольких сперматозоидов. Проникший сперматозоид «готовится» к слиянию с женским ядром и последующему митозу: ядро сперматозоида постепенно набухает и приобретает вид интерфазного ядра. Такое ядро называют семенным, или мужским, пронуклеусом .

К моменту соприкосновения сперматозоида с яйцом и проникновения его внутрь ядро яйцеклетки у разных животных может находиться на разных стадиях деления созревания. Ядро яйцеклетки, готовое к слиянию с ядром сперматозоида, называют женским пронуклеусом. Собственно оплодотворение, т. е. слияние отцовского и материнского пронуклеусов, возможно лишь после окончания мейоза.

Проникновение сперматозоида может происходить на стадиях:

  1. ооцита I с покоящимся ядром
  2. ооцита I в стадии метафазы I
  3. ооцита II в стадиях мета — или анафазы II
  4. зрелой яйцеклетки

У иглокожих и кишечнополостных сперматозоид может проникать в яйцеклетку после завершения мейоза. Такое оплодотворение называют оплодотворением типа морского ежа . После проникновения сперматозоида в яйцо его ядро вскоре соединяется с женским ядром; ядро зиготы приступает к первому делению - дроблению яйца.

У бесчерепных (ланцетник) и всех позвоночных проникновение сперматозоида в яйцеклетку происходит, как правило, во время метафазы II. У асцидий, двустворчатых моллюсков и ряда других животных сперматозоид проникает в яйцеклетку на стадии метафазы I, а у губок, аскарид и некоторых других животных - на стадии ооцит I, т. е. до наступления мейоза. Этот тип оплодотворения называют типом аскариды . Проникший в цитоплазму яйца сперматозоид «ожидает» в стадии покоя окончания второго мейотического деления яйца.

В акте оплодотворения два гаплоидных пронуклеуса сливаются в одно ядро. Кариогамия дает начало новому качественному процессу - развитию зиготы. Этот момент является кульминационным пунктом процесса полового размножения. В результате кариогамии, гомологичные хромосомы, разошедшиеся в мейозе предыдущего поколения, вновь воссоединяются в одном ядре зиготы.

Для понимания ряда важных генетических явлений необходимо знать, какие элементы сперматозоида проникают в яйцеклетку. Раньше считалось, что цитоплазма сперматозоида и ее органоиды не попадают в яйцеклетку. В настоящее время все больше накапливается фактов в пользу того, что в цитоплазму яйцеклетки у млекопитающих проникает не только головка (ядро) сперматозоида, но и его шейка и даже хвостовая часть. Если это подтвердится, то взгляды на роль цитоплазмы мужского организма в передаче его свойств потомству должны быть пересмотрены. Впрочем, генетических данных на этот счет пока нет; известны лишь факты передачи вирусных заболеваний.

Вместе с ядром сперматозоида в цитоплазму яйцеклетки проникает центриоль, которая через некоторое время образует центросферу, дающую начало веретену дробления.

Приведенное общее описание оплодотворения у животных в деталях может варьировать у разных видов. Вследствие этих изменений процесс оплодотворения у каждого вида может протекать специфично, препятствуя межвидовому скрещиванию.

Оплодотворение у растений

У растений так же, как и у животных, сущность оплодотворения сводится к слиянию двух гаплоидных ядер.

Оплодотворение у растений в принципе сходно с таковым у животных, однако существование у растений гаметофита привело к появлению у них и некоторых особенностей.

Цитологический механизм этого процесса у голосеменных был создан русским ботаником Н. Н. Горожанкиным в 1880 г., а у покрытосеменных - Е. Страсбургером в 1884 г. Е. Страсбургер охарактеризовал оплодотворение у покрытосеменных следующим образом:

  1. процесс оплодотворения включает в себя слияние ядра мужской и женской гамет,
  2. цитоплазма гамет не имеет отношения к оплодотворению,
  3. ядро спермия и ядро яйцеклетки суть настоящие ядра.

Слияние спермия с ядром яйцеклетки и является собственно актом оплодотворения, в результате которого образуется зигота с диплоидным набором хромосом.

Выше было сказано, что микрогаметогенез завершается образованием двух спермиев, которые возникают или в пыльцевом зерне, или в пыльцевой трубке при прорастании пыльцевого зерна. Время начала прорастания зерен после попадания их на рыльце у разных растений варьирует в зависимости, от внешних условий и состояния рыльца и пестика. Так, например, у свеклы прорастание пыльцевых зерен начинается через 2 ч, у кок-сагыза - через 5 мин, а у кукурузы, сорго и других растений происходит почти немедленно.

Первым признаком прорастания пыльцевого зерна является увеличение его объема. Обычно из одного пыльцевого зерна образуется одна трубка, но у некоторых растений (мальвовые, тыквенные) из одного зерна образуется несколько трубок, однако полного развития достигает лишь одна из них. Характер роста пыльцевых трубок определяется наследственными свойствами растений. К. Корренсом у MeiaridrTum (дрёма) было обнаружено, что при одновременном прорастании на рыльце нескольких пыльцевых зерен скорость роста пыльцевых трубок нередко зависит от их числа: чем больше их, тем медленнее они прорастают, при этом наблюдается конкуренция.

Пыльцевая трубка, дорастая до микропиле, приходит в соприкосновение с той частью зародышевого мешка, где находится яйцевой аппарат - яйцеклетка и синергиды. Впрочем, у некоторых растений пыльцевая трубка подходит к зародышевому мешку через халазальную часть семяпочки.

Передвигающиеся по пыльцевой трубке по мере ее роста два генеративных ядра - спермия после разрыва трубки вместе с ее содержимым попадают внутрь зародышевого мешка. Спермин могут быть округлой, штопорообразной формы, иногда разрыхленные, с видимыми хромосомными нитями и др. Ядра их в этот момент, как правило, находятся в стадии телофазы. Из двух проникших в зародышевый мешок спермиев один спермий внедряется яйцеклетку и сливается с гаплоидным ядром последней. Слияние ядра спермия с ядром яйцеклетки является центральным моментом оплодотворения у растений.

У растений так же, как и у животных, готовность к слиянию мужского и женского ядер может быть различной. Условно можно считать, что у растений имеются два типа оплодотворения: тип сложноцветных, аналогичный типу морского ежа у животных, и тип лилейных, аналогичный типу аскариды. В первом случае (тип сложноцветных) ядро спермия проникает в зрелую яйцеклетку в состоянии незавершенной телофазы, растворяет оболочку ядра яйцеклетки и переходит в интерфазное состояние. Во втором случае (тип лилейных) спермий проникает в яйцеклетку, находясь на стадии поздней телофазы. Ядро спермия не проникает в ядро яйцеклетки, а остается лежать рядом с ним. Каждое ядро в дальнейшем начинает подготавливаться к делению обособленно, и объединение их хромосом происходит только на стадии метафазы первого митотического деления зиготы. В оплодотворенной яйцеклетке - в зиготе восстанавливается диплоидное число хромосом. Из зиготы развивается зародыш семени.

После оплодотворения у покрытосеменных растений развивается дополнительный эмбриональный орган - эндосперм, который представляет собой питательное депо зародыша. Начало развития эндосперма вторым оплодотворением. Второй спермий пыльцевой трубки, попадая в зародышевый мешок» сливается с диплоидным ядром центральной клетки зародышевого мешка. При этом образуется набор хромосом: два одинаковых набора хромосом материнского организма и один набор отцовского.

Слияние одного спермия с яйцеклеткой, а другого - с ядром центральной клетки называют двойным оплодотворением . Честь этого открытия, сделанного в 1898 г., принадлежит нашему соотечественнику С. Г. Навашину. Триплоидная природа ядер эндосперма впервые была установлена у скерды (Crepis) М. С. Навашиным в 1915 г.

Образование ткани, питающей зародыш, является особенностью растений. У животных эта функция возложена на запасные питательные вещества яйцеклетки и материнский организм, питающий зародыш через плаценту.

Одна из особенностей оплодотворения у растений, вытекающая из наличия у них двойного оплодотворения, представляет собой явление, называемое ксениями . Этот термин был предложен в 1881 г. В. Фоке. Смысл этого явления заключается в прямом влиянии пыльцы на признаки и свойства эндосперма. Например, имеются сорта кукурузы с желтым эндоспермом (желтые семена) и с белым эндоспермом (белые семена). Если женские цветки белозерного сорта опылить пыльцой желтозерного сорта, то, несмотря на то, что эндосперм развивается на растении белозерного сорта, окраска его будет желтой или бледно-желтой. Следовательно, ядро спермия способно изменить окраску эндосперма, ибо эта ткань так же как и ткань зародыша, гибридного происхождения.

Таков в самых общих чертах процесс оплодотворения у животных и растений. Однако он подвержен приспособительным изменениям в зависимости от особенностей строения половых клеток и биологии размножения, свойственных каждому виду животных и растений.



Понравилась статья? Поделитесь ей
Наверх