Углерод и кремний в природе. Химия подготовка к зно и дпа комплексное издание

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.

Кремний - химический элемент IV группы Периодической системы элементов Д.И. Менделеева. Открыт в 1811 г. Ж. Гей-Люсаком и Л. Тернаром. Его порядковый номер 14, атомная масса 28,08, атомный объем 12,04 10 -6 м 3 /моль. Кремний - металлоид, принадлежит к подгруппе углерода. Его валентность по кислороду +2 и +4. По распространенности в природе кремний уступает только кислороду. Его массовая доля в земной коре составляет 27,6 %. Земная кора, по мнению В.И. Вернадского, более чем на 97 % состоит из кремнезема и силикатов. Кислородные и органические соединения кремния входят также в состав растений и животных.

Искусственно полученный кремнии может быть как аморфным, так и кристаллическим. Аморфный кремний - коричневый, тонко дисперсный, сильно гигроскопичный порошок, по рентгеноструктурным данным, состоит из мельчайших кристалликов кремния. Он может быть получен восстановлением при высоких температурах SiCl 4 парами цинка.

Кристаллический кремний имеет серо-стальной цвет и отличается металлическим блеском. Плотность кристаллического кремния при 20°С составляет 2,33 г/см 3 , жидкого кремния при 1723-2,51, а при 1903К — 2,445 г/см 3 . Температура плавления кремния - 1690 К, кипения - 3513 К. В соответствии с данными, давление паров кремния при Т = 2500÷4000 К описывается уравнением lg p Si = -20130/ Т + 7,736, кПа. Теплота возгонки кремния 452610, плавления 49790, испарения 385020 Дж/моль.

Поликристаллы кремния отличаются высокой твердостью (при 20°С HRC = 106). Однако кремний очень хрупок, поэтому имеет высокую прочность при сжатии (σ СЖ В ≈690 МПа) и очень низкое сопротивление разрыву (σ В ≈ 16,7 МПа).

При комнатной температуре кремний инертен, реагирует только со фтором, образуя летучий 81Р4. Из кислот реагирует только с азотной в смеси с плавиковой кислотой. Со щелочами, однако, кремний реагирует довольно легко. Одна из его реакции со щелочами

Si + NaOH + H 2 O = Na 2 SiO 3 + 2H 2

используется для получения водорода. Вместе с этим с неметаллами кремний способен давать большое количество химически прочных соединений. Из подобных соединений необходимо отметить галогениды (от SiX 4 до Si n X 2n+2 , где X - галоген, а n ≤ 25), их смешанные соединения SiCl 3 B, SiFCl 3 и др., оксихлориды Si 2 OCl 3 , Si 3 O 2 Cl 3 и др., нитриды Si 3 N 4 , Si 2 N 3 , SiN и гидриды с общей формулой Si n H 2n+2 , а из соединений, встречающихся при производстве ферросплавов, - летучие сульфиды SiS и SiS 2 и тугоплавкий карбид SiC.

Кремний способен также давать соединения с металлами - силициды, наиболее важными из них являются силициды железа, хрома, марганца, молибдена, циркония, а также РЗМ и ЩЗМ. Это свойство кремния - способность давать химически очень прочные соединения и растворы с металлами - широко используется в технике производства низкоуглеродистых ферросплавов, а также при восстановлении легкокипящих щелочноземельных (Са, Mg, Ва) и трудновосстановимых металлов (Zr, Al и др.).

Сплавы кремния с железом изучены П.В. Гельдом и его школой, особое внимание было обращено на часть системы Fe-Si, относящуюся к сплавам с его высоким содержанием. Это связано с тем, что, как видно из диаграммы Fe-Si (рисунок 1), в сплавах этого состава происходит целый ряд превращений, значительно влияющих на качество ферросилиция различных марок. Так, дисилицид FeSi 2 стабилен только при низких температурах (< 918 или 968 °С, см. рисунок 1). При высоких температурах устойчива его высокотемпературная модификация - лебоит. Содержание кремния в этой фазе колеблется в пределах 53-56 %. В дальнейшем лебоит будем обозначать химической формулой Fe 2 Si 5 , что практически соответствует максимальной концентрации кремния в лебоите.

При охлаждении сплавов с содержанием > 55,5 % Si лебоит при Т < 1213 К разлагается по эвтектоидной реакции

Fe 2 Si 5 → FeSi 2 +Si (2)

а сплавов 33,86-50,07 % Si при Т < 1255 К - по перитектоидной реакции

Fe 2 Si 5 + FeSi = ЗFeSi 2 (3)

Cплавы промежуточного состава (50,15-55,5 % Si) сначала при 1255 К претерпевают перитектоидное (3), а затем при 1213 К - эвтектоидное (2) превращения. Эти превращения Fe 2 Si 5 по реакциям (2) и (3) сопровождаются изменениями объема силицида. Особенно велико подобное изменение в ходе реакции (2) - примерно 14 %, поэтому сплавы, содержащие лебоит, теряют сплошность, растрескиваются и даже рассыпаются. При медленной, равновесной кристаллизации (см. рисунок 1) лебоит может выделяться при кристаллизации как сплава ФС75, так и ФС45.

Однако растрескивание, связанное с эвтектоидным распадом лебоита, лишь одна из причин рассыпания. Второй причиной, по-видимому главной, является то, что образование трещин по границам зерна создает возможность ликватам, выделяющимся по этим границам - фосфору, мышьяку, сульфидам и карбидам алюминия и др., - реагировать с влагой воздуха по реакциям, в результате которых в атмосферу выделяются H 2 , PH 3 , PH 4 , AsH 4 и т.п., а в трещинах — рыхлые оксиды Al 2 O 3 , SiO 2 и другие соединения, распирающие их. Предотвратить рассыпание сплавов можно их модифицированием магнием, легированием добавками элементов, измельчающих зерно (V, Ti, Zг и др.) или делающих его более пластичным. Измельчение зерна уменьшает на его границах концентрацию примесей и их соединений и влияет на свойства сплавов так же, как общее понижение в сплаве концентрации примесей (P, Al, Ca), способствующих рассыпанию. Термодинамические свойства сплавов Fe-Si (теплота смешения, активность, растворимость углерода) изучены подробно, их можно найти в работах. Сведения о растворимости углерода в сплавах Fe-Si приведены на рисунке 2, об активности кремния - в таблице 1.

Рисунок 1. — Диаграмма состояния системы Fe-Si


Физико-химические свойства кислородных соединений кремния изучал П.В. Гельд с сотрудниками. Несмотря на важность системы Si-O, ее диаграмма до сих пор не построена. В настоящее время известны два кислородных соединения кремния - кремнезем SiO 2 и монооксид SiO. В литературе имеются также указания о существовании и других кислородных соединений кремния - Si 2 O 3 и Si 3 O 4 , однако сведения об их химических и физических свойствах отсутствуют.

В природе кремний представлен только кремнеземом SiO 2 . Это соединение кремния отличается:

1) высокой твердостью (по шкале Мооса 7) и тугоплавкостью (T пл = 1996 К);

2) высокой температурой кипения (Т КИП = 3532 К). Давление паров кремнезема может бьггь описано уравнениями (Па):

3) образованием большого количества модификаций:

Особенностью аллотропных превращений SiO 2 является то, что они сопровождаются значительными изменениями плотности и объема вещества, что может вызвать растрескивание и измельчение породы;

4) высокой склонностью к переохлаждению. Поэтому имеется возможность в результате быстрого охлаждения зафиксировать структуру как жидкого расплава (стекло), так и высокотемпературных модификаций в-кристобалита и тридимита. Наоборот, при быстром нагревании можно расплавить кварц, минуя структуры тридимита и кристобалита. Температура плавления SiO 2 при этом понижается примерно на 100 °С;

5) высоким электросопротивлением. Например, при 293 К оно составляет 1 10 12 Ом*м. Однако с повышением температуры электросопротивление SiO 2 понижается, а в жидком состоянии кремнезем — неплохой проводник;

6) высокой вязкостью. Так, при 2073 К вязкость равна 1 10 4 Па с, а при 2273 К - 280 Па с.

Последнее, по мнению Н.В. Соломина, объясняется тем, что SiO 2 , подобно органическим полимерам, способен образовывать цепочки, которые при 2073 К состоят из 700, а при 2273 К — из 590 молекул SiO 2 ;

7) высокой термической устойчивостью. Энергия Гиббса образования SiO 2 из элементов с учетом агрегатного их состояния в соответствии с данными с высокой точностью описывается уравнениями:

Эти данные, как видно из таблицы 2, несколько отличаются от данных авторов. Для термодинамических расчетов могут использоваться и двухчленные уравнения:

Монооксид кремния SiO обнаружен в 1895 г. Поттером в газовой фазе электропечей. В настоящее время надежно установлено, что SiO существует и в конденсированных фазах. По исследованиям П.В. Гельда, оксид отличается невысокой плотностью (2,15 г/см 3), высоким электросопротивлением (10 5 -10 6 Ом*м). Конденсированный оксид хрупок, его твердость по шкале Мооса ∼ 5. Температуру плавления вследствие высокой его летучести экспериментально определить не удалось. По данным О. Кубашевского, она равна 1875 К, по мнению Бережного, - 1883 К. Теплота плавления SiO в несколько раз выше ΔH 0 SiO2 по данным она равна 50242 Дж/моль. По-видимому, вследствие летучести она завышена. Имеет стекловидный излом, его цвет изменяется от белого до шоколадного, что связано, вероятно, с его окислением кислородом воздуха. Свежий излом SiO обычно имеет гороховатый цвет с жирным блеском. Термодинамически стабилен оксид только при высоких температурах в виде SiO (Г) . При охлаждении оксид диспропорционирует по реакции

2SiO (Г) = SiO (Ж) + SiO 2 (6)

Температуру кипения SiO можно ориентировочно оценить из уравнения:

Газообразный оксид кремния термодинамически очень стоек. Энергию Гиббса его образования можно описать уравнениями (см. таблицу 2):

из которых видно, что химическая прочность SiO подобно CO с ростом температуры повышается, что делает его прекрасным восстановителем для многих веществ.

Для термодинамического анализа можно использовать и двухчленные уравнения:

Состав газов над SiO 2 оценивался И.С. Куликовым. В зависимости от температуры содержание SiO над SiO 2 описывается уравнениями:

Карбид кремния, как и SiO, является одним из промежуточных соединений, образующихся в ходе восстановления SiO 2 . Карбид отличается высокой температурой плавления.

В зависимости от давления он стоек вплоть до 3033-3103 К (рисунок 3). При высоких температурах карбид кремния сублимирует. Однако давление паров Si (Г) , Si 2 C (Г) , SiC 2(Г) над карбидом при Т < 2800К невелико, что следует из уравнения

Карбид существует в виде двух модификаций - кубической низкотемпературной β-SiC и гексагональной высокотемпературной α-SiC. В ферросплавных печах обычно встречается лишь β-SiC. Как показали расчеты с использованием данных, энергия Гиббса образования описывается уравнениями:

которые заметно отличаются от данных. Из этих уравнений следует, что карбид термически стоек до 3194 К. По физическим свойствам карбид отличается высокой твердостью (~ 10), высоким электросопротивлением (при 1273К p≈0,13 ⋅ 10 4 мкОм ⋅ м), повышенной плотностью (3,22 г/см 3) и высокой стойкостью как в восстановительной, так и в окислительной атмосфере.

По внешнему виду чистый карбид бесцветен, обладает полупроводниковыми свойствами, которые сохраняются и при высоких температурах. Технический карбид кремния содержит примеси и поэтому окрашен в зеленый или черный цвет. Так, зеленый карбид содержит 0,5-1,3 % примесей (0,1-0,3 % C, 0,2-1,2 % Si + SiO 2 , 0,05-0,20 % Fe 2 O 3 , 0,01- 0,08 % Al 2 O 3 и др.). В черном карбиде содержание примесей более высокое (1-2 %).

В качестве восстановителя при производстве сплавов кремния применяют углерод. Он же является основным веществом, из которого изготавливают электроды и футеровки электропечей, выплавляющих кремний и его сплавы. Углерод довольно распространен в природе, его содержание в земной коре составляет 0,14 %. В природе он встречается как в свободном состоянии, так и в виде органических и неорганических соединений (в основном карбонатов).

Углерод (графит) имеет гексагональную кубическую решетку. Рентгеновская плотность графита 2,666 г/см 3 , пикнометрическая — 2,253 г/см 3 . Он отличается высокими температурами плавления (~ 4000 °С) и кипения (~ 4200 °С), повышающимся с ростом температуры электросопротивлением (при 873 К p≈9,6 мкОм⋅м, при 2273 К p≈ 15,0 мкОм⋅м), довольно прочен. Его временное сопротивление на усах может составить 480-500 МПа. Однако электродный графит имеет σ в = 3,4÷17,2 МПа. Твердость графита по шкале Мооса ~ 1.

Углерод - прекрасный восстановитель. Это связано с тем, что прочность одного из его кислородных соединений (СО) повышается с ростом температуры. Это видно из энергии Гиббса его образования, которая, как показали наши расчеты с использованием данных, хорошо описывается как трехчленным

так и двухчленными уравнениями:

Диоксид углерода СO 2 термодинамически прочен лишь до 1300 К. Энергия Гиббса образования CO 2 описывается уравнениями:

Наиболее часто в природе встречается каменный уголь. Достаточно часто находят залежи графита. Он является более устойчивой аллотропной модификацией по сравнению с алмазом, поэтому в земной коре его больше, чем алмаза. Графит залегает в земле в виде чешуйчатых и пластинчатых масс. Учёные считают, что он образовался из каменного угля под воздействием высокого давления. Алмазы встречаются редко. Полагают, что они образуются из углеродсодержащих веществ при высоких температуре и давлении на глубине примерно 100 км.

Применение углерода и его соединений

1) Сначала алмазы использовали только для изготовления бриллиантов, которые всегда ценились как самые дорогие украшения.

Высокая твёрдость алмазов позволяет использовать их и для изготовления бурового и режущего инструментов, обработки других камней, металлов, твёрдых материалов. Алмазные свёрла применяют для сверления бетонных плит. С помощью алмазного инструмента можно с высокой точностью обработать камни, применяемые в часовых механизмах. Тонкие алмазные пластинки наносят на хирургические инструменты. Применение алмаза в технике удешевляет и ускоряет производственные процессы.

Широко в технике и промышленности применяется графит. Жаропрочность и химическая инертность делают его незаменимым материалом для изготовления огнеупорных изделий, а также химически устойчивых труб и аппаратов.

В электротехнической промышленности используют электропроводность графита. Из него делают электроды, гальванические элементы, контакты электрических машин. Графит имеет большое сопротивление. Поэтому из него изготовляют нагреватели для электропечей.

Очень чистый графит применяют в ядерных реакторах.

Графит служит в качестве карандашных стержней. Благодаря отслаиванию чешуек, стержень оставляет след на бумаге.

Каменный уголь применяется в качестве топлива. Его перерабатывают в кокс, который содержит меньше примесей, чем уголь.

Кокс является хорошим восстановителем, его используют в металлургической промышленности для получения металлов.

2) Диоксид углерода используют как хладагент, применяют при тушении пожаров, используют в медицине. Его добавляют в кислород, которым дышат тяжелобольные. Углекислый газ потребляется для приготовления газированной воды и других напитков.

3) Наибольшее применение имеет карбонат кальция. Из него получают негашёную известь, используемую в строительстве. Карбонаты натрия (сода) и калия (поташ) используют в мыловарении, для производства стекла, в фармацевтической промышленности, для получения удобрений.

Кремний

Кремний не менее значим в природе и жизни человека, чем углерод. Если углерод образует вещества живой природы, то кремний является основой веществ, составляющих всю планету Земля.

Применение кремния и его соединений

1) Поскольку кремний является хорошим восстановителем, его используют для получения металлов в металлургической промышленности.

Кремний применяют в электронике благодаря его свойству при определённых условиях проводить электрический ток. Из кремния изготавливают фотоэлементы, полупроводниковые приборы для производства радиоприёмников, телевизоров, компьютеров.

Характеристика элемента

14 Si 1s 2 2s 2 2p 6 3s 2 3p 2



Изотопы: 28 Si (92.27 %); 29 Si (4.68 %); 30 Si (3,05 %)



Кремний - второй после кислорода по распространенности в земной коре элемент (27,6 % по массе). В свободном состоянии в природе не встречается, находится преимущественно в виде SiO 2 или силикатов.


Соединения Si токсичны; вдыхание мельчайших частиц SiO 2 и др. соединений кремния (например, асбеста) вызывает опасную болезнь - силикоз


В основном состоянии атом кремния имеет валентность = II, а в возбужденом состоянии = IV.


Наиболее устойчивой степенью окисления Si является +4. В соединениях с металлами (силицидах) С.О. -4.

Способы получения кремния

Самым распространенным природным соединением кремния является кремнезем (диоксид кремния) SiО 2 . Он является основным сырьем для получения кремния.


1) Восстановление SiO 2 углеродом в дуговых печах при 1800"С: SiO 2 + 2С = Si + 2СО


2) Высокочистый Si из технического продукта получают согласно схеме:


a) Si → SiCl 2 → Si


б) Si → Mg 2 Si → SiH 4 → Si

Физические свойства кремния. Аллотропные модификации кремния

1) Кристаллический кремний - вещество серебристо - серого цвета с металлическим блеском, кристаллическая решетка типа алмаза; т. пл. 1415"С, т. кип. 3249"С, плотность 2,33 г/см3; является полупроводником.


2) Аморфный кремний - порошок бурого цвета.

Химические свойства кремния

В большинстве реакций Si выступает в роли восстановителя:

При низких температурах кремний химически инертен, при нагревании его реакционная способность резко возрастает.


1. С кислородом взаимодействует при Т выше 400°С:


Si + О 2 = SiO 2 оксид кремния


2. С фтором реагирует уже при комнатной температуре:


Si + 2F 2 = SiF 4 тетрафторид кремня


3. С остальными галогенами реакции идут при температуре = 300 - 500°С


Si + 2Hal 2 = SiHal 4


4. С парами серы при 600°С образует дисульфид:



5. Реакция с азотом происходит выше 1000°С:


3Si + 2N 2 = Si 3 N 4 нитрид кремния


6. При температуре = 1150°С реагирует с углеродом:


SiO 2 + 3С = SiС + 2СО


По твердости карборунд близок к алмазу.


7. С водородом кремний непосредственно не реагирует.


8. Кремний стоек к действию кислот. Взаимодействует только со смесью азотной и фтороводородной (плавиковой) кислот:


3Si + 12HF + 4HNO 3 = 3SiF 4 + 4NO + 8H 2 O


9. реагирует с растворами щелочей с образованием силикатов и выделением водорода:


Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2


10. Восстановительные свойства кремния используют для выделения металлов из их оксидов:


2MgO = Si = 2Mg + SiO 2

В реакциях с металлами Si - окислитель:

Кремний образует силициды с s-металлами и большинством d-металлов.


Состав силицидов данного металла может быть различен. (Например, FeSi и FeSi 2 ; Ni 2 Si и NiSi 2 .) Один из наиболее известных силицидов - силицид магния, который можно получать прямым взаимодействием простых веществ:


2Mg + Si = Mg 2 Si

Силан (моносилан) SiH 4

Силаны (кремневодороды) Si n H 2n + 2 , (ср. с алканами), где п = 1-8. Силаны - аналоги алканов, отличаются от них неустойчивостью цепей -Si-Si-.


Моносилан SiH 4 - бесцветный газ с неприятным запахом; растворяется в этаноле, бензине.


Способы получения:


1. Разложение силицида магния соляной кислотой: Mg 2 Si + 4HCI = 2MgCI 2 + SiH 4


2. Восстановление галогенидов Si алюмогидридом лития: SiCl 4 + LiAlH 4 = SiH 4 + LiCl + AlCl 3


Химические свойства.


Силан - сильный восстановитель.


1.SiH 4 окисляется кислородом даже при очень низких температурах:


SiH 4 + 2O 2 = SiO 2 + 2Н 2 О


2. SiH 4 легко гидролизуется, особенно в щелочной среде:


SiH 4 + 2Н 2 О = SiO 2 + 4Н 2


SiH 4 + 2NaOH + Н 2 О = Na 2 SiO 3 + 4Н 2

Оксид кремния (IV) (кремнезем) SiO 2

Кремнезем существует в виде различных форм: кристаллической, аморфной и стеклообразной. Наиболее распространенной кристаллической формой является кварц. При разрушении кварцевых горных пород образуются кварцевые пески. Монокристаллы кварца - прозрачны, бесцветны (горный хрусталь) или окрашены примесями в различные цвета (аметист, агат, яшма и др.).


Аморфный SiO 2 встречается в виде минерала опала: искусственно получают силикагель, состоящий из коллоидных частиц SiO 2 и являющийся очень хорошим адсорбентом. Стеклообразный SiO 2 известен как кварцевое стекло.

Физические свойства

В воде SiO 2 растворяется очень незначительно, в органических растворителях также практически не растворяется. Кремнезем является диэлектриком.

Химические свойства

1. SiO 2 - кислотный оксид, поэтому аморфный кремнезем медленно растворяется в водных растворах щелочей:


SiO 2 + 2NaOH = Na 2 SiO 3 + Н 2 О


2. SiO 2 взаимодействует также при нагревании с основными оксидами:


SiO 2 + К 2 О = K 2 SiO 3 ;


SiO 2 + СаО = CaSiO 3


3. Будучи нелетучим оксидом, SiO 2 вытесняет углекислый газ из Na 2 CO 3 (при сплавлении):


SiO 2 + Na 2 CO 3 = Na 2 SiO 3 + CO 2


4. Кремнезем реагирует с фтороводородной кислотой, образуя кремнефтористоводородную кислоту H 2 SiF 6:


SiO 2 + 6HF = H 2 SiF 6 + 2Н 2 О


5. При 250 - 400°С SiO 2 взаимодействует с газообразным HF и F 2 , образуя тетрафторсилан (тетрафторид кремния):


SiO 2 + 4HF (газ.) = SiF 4 + 2Н 2 О


SiO 2 + 2F 2 = SiF 4 + O 2

Кремниевые кислоты

Известны:


Ортокремниевая кислота H 4 SiО 4 ;


Метакремниевая (кремниевая) кислота H 2 SiO 3 ;


Ди- и поликремниевые кислоты.


Все кремниевые кислоты малорастворимы в воде, легко образуют коллоидные растворы.

Способы по-лучения

1. Осаждение кислотами из растворов силикатов щелочных металлов:


Na 2 SiO 3 + 2HCl = H 2 SiO 3 ↓ + 2NaCl


2. Гидролиз хлорсиланов: SiCl 4 + 4Н 2 О = H 4 SiO 4 + 4HCl

Химические свойства

Кремниевые кислоты - очень слабые кислоты (слабее угольной кислоты).


При нагревании они дегидратируются с образованием в качестве конечного продукта кремнезема


H 4 SiО 4 → H 2 SiO 3 → SiO 2

Силикаты - соли кремниевых кислот

Поскольку кремниевые кислоты чрезвычайно слабые, их соли в водных растворах сильно гидро лизованы:


Na 2 SiO 3 + Н 2 О = NaHSiO 3 + NaOH


SiO 3 2- + Н 2 О = HSiO 3 - + ОН - (щелочная среда)


По этой же причине при пропускании углекислого газа через растворы силикатов происходит вытеснение из них кремниевой кислоты:


K 2 SiO 3 + СO 2 + Н 2 О = H 2 SiO 3 ↓ + K 2 СO 3


SiO 3 + СO 2 + Н 2 О = H 2 SiO 3 ↓ + СO 3


Данную реакцию можно рассматривать как качественную реакцию на силикат-ионы.


Среди силикатов хорошо растворимыми являются только Na 2 SiO 3 и K 2 SiO 3 , которые называются растворимым стеклом, а их водные растворы - жидким стеклом.

Стекло

Обычное оконное стекло имеет состав Na 2 O СаО 6SiO 2 , т. е. является смесью силикатов натрия и кальция. Его получают сплавлением соды Na 2 CO 3 , известняка СаСO 3 и песка SiO 2 ;


Na 2 CO 3 + CaCO 3 + 6SiO 2 = Na 2 O СаО 6SiO 2 + 2СO 2

Цемент

Порошкообразный вяжущий материал, образующий при взаимодействии с водой пластичную массу, превращающуюся со временем в твердое камневидное тело; основной строительный материал.


Химический состав наиболее распространенного портланд-цемента (в % по массе) - 20 - 23% SiO 2 ; 62 - 76 % СаО; 4 - 7 % Al 2 O 3 ; 2-5% Fe 2 O 3 ; 1- 5% МgО.

дорослей, поглощающих растворенный в воде кислород, поэтому гибнут рыбы и др. К тому же, анаэробное (т.е. без доступа O2 ) разложение останков организмов приводит к образованию веществ, которые превращают водоемы в болота.

Особенно опасна передозировка нитратов , т.к. с растениями, поглотившими их, нитраты попадают в живые организмы, где превращаются внитриты. Последние делают гемоглобин неспособным переносить кислород (поэтому возможна даже смерть), а также провоцируют раковые заболевания.

Помимо использования в качестве сельскохозяйственных удобрений фосфаты идут также на приготовление моющих средств и как добавки в корм животным. В последнем случае для синтеза фосфата кальция применяют кислоту Н3 РО4 , полученную сжиганиемчистого фосфора (с последующей гидратацией Р2 О5 ), поскольку природные минералы содержат вредные для скота примеси, например фторидионы.

Глава 6. УГЛЕРОД И КРЕМНИЙ

6.1. Общая характеристика. Нахождение в природе. Получение

К p-элементам IV группы относятся углерод, кремний, германий, олово и свинец. Причем C – довольно распространенный элемент на Земле (0,14 %), а кремний (16,7 %) занимаетвторое место после кислорода. Аналогов кремния несопоставимо меньше (пример-

но по 10-4 %).

Атомы элементов данной группы в невозбужденном состоянии имеют электронную конфигурацию валентного слоя s2 p2 , а при возбуждении s1 p3 . Как следствие, они образуют соединения в степенях окисления +2, +4 и –4. Но только углерод достаточно устойчив в ст.ок. –4, чтобы находиться в ней в природе – в видеуглеводородов (поскольку лишь он имеет сравнительно высокое значение ЭО, равное 2,5, а у остальных – 1,9 и ниже).

Кроме того, С встречается на Земле и в виде простых веществ (в частности, в составе углей25 ). Природные же соединения аналогов углерода –сложные вещества , например: SnO2 (минерал касситерит) и PbS (т.н. свинцовый блеск).

Подчеркнем, что, хотя C и назван (в 1797 г.) углеродом (углерождающим ), но основные его природные запасы – не угли, акарбонаты (известняк, мрамор, мел и т.п.).

Кремний представлен на земле кислородными соединениями, которые составляют 58,3 % земной коры. Этокремнеземы SiO2 (песок, кварц26 , топаз, аметист),силикаты (асбест MgSiO3 , слюда, полевой шпат и др.). А также граниты, сиениты27 , т.е. спрессованные природой смеси песка, слюды и полевого шпата. В качестве микроэлемента кремний находится также в человеческом организме и играет важную биологическую роль, причем чем старше человек, тем меньше в нем Si.

Технический (т.е. сравнительно грязный) кремний в промышленности получают из природного оксида карботермически , как и его аналоги, но PbS предварительно обжигом переводят в PbO.

6.2. Структура и физические свойства простых веществ

Особенности углерода . Все простые вещества С образованы атомами углерода в возбужденном состоянии sp3 , а поскольку при этом еще и атомный радиус С достаточно мал, то -связь С–С

оказывается максимально прочной.

Кроме того, атомы углерода менее склонны, чем N, давать-перекрывания (из-за большего радиуса С). Поэтому частицы С2 хотя и существуют, но, в отличие от N2 , нестабильны. Напротив, гораз-

до более устойчивы гомоядерные полимеры , в которых атомы уг-

лерода имеют по четыре -связи. Это и простое вещество алмаз, и многочисленные органические соединения.

25 Содержание углерода в антраците 96 %, в буром угле – 72 %, а в сухой древе-

сине – 50 %.

26 К кварцам относится и горный хрусталь – размер некоторых его природных кристаллов достигает 2 м.

27 Из сиенита сложены знаменитые «Красноярские Столбы».

Однако атомы С могут формировать между собой и достаточно эффективные -перекрывания, причем в зависимости от кратности связи (к.с.) между атомами углерода, различают несколько аллотропных форм С: алмаз (к.с. = 1), графит (к.с. = 1,3), карбин (к.с. = 2) и др. Рассмотрим их подробнее.

Карбин. Данное простое вещество углерода имеет, как и пластическая сера,волокнистую структуру, но его волокна не зигзагообразные, алинейные .

Они имеют одинаковую форму –промежуточную между ша-

ром и гантелью. (На рис. 7, а и 8 одна из ГО для наглядности нарисована более жирной линией). Такой процесс смешивания s-орбитали и

одной p-орбитали называется sp-гибридизацией .

Рис. 7. Гибридизация орбиталей: а ) spб ) sp2 в ) sp3

Поскольку ГО имеют асимметричную форму, то они вбольшей степени перекрываются с орбиталями других атомов (при формировании -связи с ними, как показано на рис. 8), и поэтому обра-

зуют более прочныеХС.

Подчеркнем, что угол между осями двух -связей при spгибридизации равен 180°, т.к. гибридные орбитали из-за отрицательного заряда электронов, находящихся на них, взаимноотталкивают-

ся , т.е. стремятся кмаксимальной удаленности друг от друга. Как следствие, фрагмент из трех атомов получаетсялинейным (рис. 8). А поскольку в карбиневсе атомы углерода в цепях, образуя по две - связи, имеют sp-гибридизацию своих орбиталей, то эти цепи тожелинейны. Причем 2pz и 2py -орбитали каждого атома С в карбине участвуют в -перекрывании, давая двойные (или тройные) связи в цепи:

C C C (C C C).

Графит . В графитевсе атомы углерода образуют по 3 -связи с тремя соседними С, используя s-, px - и pz -орбитали (рис. 7,б ). А значит, имеем sp2 -гибридизацию, при которой углы между осями связей равны по 120°. Таким образом фрагмент из четырех атомов представляет собойплоский треугольник (см. рис. 9). Треугольные фрагменты, объединяясь между собой, даютплоский слой , составленный из шестиугольников, в которых углы как раз по 120°.

Итак, решетка графита построена из слоев. Они связаны между собой с помощью ММС. А четвертая орбиталь (py -) каждого атома С графита участвует вобщем -перекрывании со всеми атомами своего слоя. Этообщее -перекрывание обеспечивает pу -электронам почти такую же подвижность, как в металлах. Вследствие чего графит имеет серый, как многие М, цвет и проводит ток (но только вдоль слоев, а не перпендикулярно к ним).

В целом решетка графита прочная, благодаря чему он термостоек (т.пл. 3800 °С), поэтому из него делают огнеупорные изделия, например тигли. Но поскольку ММС между слоями значительно слабее , чем ХС в слое, то возможно довольно легкоеотслаивание графита. В частности, при надавливании им на бумагу, на ней остается его серый след. Поэтому графит (его название в переводе с нем. озна-

чает «пишущий») используют для изготовления карандашей, а также в технике в качестве твердой смазки между трущимися деталями.

Отметим, что многие простые соединения С (кокс, сажа, основное вещество угля и т.п.) являются мелкокристаллическими разновидностями графита.

Сравнительно недавно получены новые простые вещества C:

трубчатый углерод (его молекулы имеют вид трубок),фуллерены

(состоящие, например, из «шаров» С60 или С70 ) и др. И все они построены, как и графит, изтреугольников , ноне плоских , ибо в них атомы С имеют лишьприблизительно sp2 -гибридизацию орбиталей.

Алмаз . Самая прекрасная форма углерода – алмаз (прозрачное вещество, сильно преломляющее световые лучи). В нем все четыре орбитали С (s- и три p-) каждого атома углерода участвуют в - перекрываниях счетырьмя соседними атомами С. А значит, имеем sp3 -гибридизацию (рис. 7 в), при которой углы между связями≈109 0 , а пять атомов углерода, связанных указанным образом, образуюттетраэдр , т.е. объемную форму.

Как результат того, что каждый атом С в алмазе (кроме поверхностных) имеет по четыре -связи, тетраэдры оказываются соединенными между собойтолько химическими связями, и, значит, образуютстабильную координационную решетку. А поскольку -связи С–С максимально прочные (прочнее, напомним, лишь в молекуле Н2 ), то, как следствие, алмаз –самое твердое вещество из известных на Земле (само его название на арабском означает «твердейший»).

Благодаря столь высокой твердости применение алмазов в промышленности в 2-3 раза увеличивает мощность оборудования, а также срок его службы. Используют алмазы для резки стекла, шлифования твердых материалов, бурения горных пород и др. Причем почти половина применяемых образцов получены искусственно из графита.

Один из способов синтеза алмаза – действие на сильно нагретый графит сверхвысокого давления, которое сближает слои графита настолько, чтомежду ними формируются -связи (перекрыванием py - орбиталей).

При этом sp2 -гибридизация переходит в sp3 -, а, значит,слоистая решетка сменяетсякоординационной (как следствие, исчезают проводимость и «пачкающие» свойства), т.е. образуетсяалмаз. По твердости он как настоящий, но внешне не привлекателен (из-за примеси графита). Так что для украшений годятся лишь природные алмазы. Самый крупный из них весит 600 г.



Понравилась статья? Поделитесь ей
Наверх