Термические эффекты. Что такое тепловой эффект реакции

Введение

Тепловые эффекты химических реакций необходимы для многих технических расчетов. Они находят обширное применение во многих отраслях промышленности, а также в военных разработках.

Целью данной курсовой работы является изучение практического применения теплового эффекта. Мы рассмотрим некоторые варианты его использования, и выясним насколько важно использование тепловых эффектов химических реакций в условиях развития современных тех­нологий.


Тепловой эффект химической реакции

В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.

Одним из самых известных ученых, работающих в области термохимии, является Бертло. Бертло- профессор химии Высшей фармацевтической школы в Париже (1859). Министр просвещения и иностранных дел.

Начиная с 1865 Бертло активно занимался термохимией, провел обширные калориметрические исследования, приведшие, в частности, к изобретению "калориметрической бомбы" (1881); ему принадлежат понятия "экзотермической" и "эндотермической" реакций. Бертло получены обширные данные о тепловых эффектах огромного числа реакций, о теплоте разложения и образования многих веществ.

Бертло исследовал действие взрывчатых веществ: температуру взрыва, скорости сгорания и распространения взрывной волны и др.

Энергия химических соединений сосредоточена главным образом в химических связях. Чтобы разрушить связь между двумя атомами, требуется затратить энергию. Когда химическая связь образуется, энергия выделяется.

Любая химическая реакция заключается в разрыве одних химических связей и образовании других.

Когда в результате химической реакции при образовании новых связей выделяется энергии больше, чем потребовалось для разрушения "старых" связей в исходных веществах, то избыток энергии высвобождается в виде тепла. Примером могут служить реакции горения. Например, природный газ (метан CH 4) сгорает в кислороде воздуха с выделением большого количества теплоты (рис. 1а). Такие реакции являются экзотермическими.

Реакции, протекающие с выделением теплоты, проявляют положительный тепловой эффект (Q>0, DH<0) и называются экзотермическими.

В других случаях на разрушение связей в исходных веществах требуется энергии больше, чем может выделиться при образовании новых связей. Такие реакции происходят только при подводе энергии извне и называются эндотермическими.

Реакции, которые идут с поглощением теплоты из окружающей среды (Q<0, DH>0), т.е. с отрицательным тепловым эффектом, являются эндотермическими.

Примером является образование оксида углерода (II) CO и водорода H 2 из угля и воды, которое происходит только при нагревании (рис. 1б).

Рис. 1а,б. Изображение химических реакций при помощи моделей молекул: а) экзотермическая реакция, б) эндотермическая реакция. Модели наглядно показывают, как при неизменном числе атомов между ними разрушаются старые и возникают новые химические связи.

Таким образом, любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции.

Тепловой эффект - количество теплоты, выделившееся или поглощенное химической системой при протекании в ней химической реакции.

Тепловой эффект обозначается символами Q или DH (Q = -DH). Его величина соответствует разности между энергиями исходного и конечного состояний реакции:

DH = Hкон.- Hисх. = Eкон.- Eисх.

Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.

Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.

Используется также частный случай теплового эффекта реакции - теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:

ацетилен

теплота сгорания ацетилена

Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции ( Е) можно показать графически (рис. 2).

Рис. 2. Графическое изображение теплового эффекта (Q =  Е): а) экзотермической реакции горения водорода; б) эндотермической реакции разложения воды под действием электрического тока. Координату реакции (горизонтальную ось графика) можно рассматривать, например, как степень превращения веществ (100% - полное превращение исходных веществ).


Уравнения химических реакций

Уравнения химических реакций, в которых вместе с реагентами и продуктами записан и тепловой эффект реакции, называются термохимическими уравнениями.

Особенность термохимических уравнений заключается в том, что при работе с ними можно переносить формулы веществ и величины тепловых эффектов из одной части уравнения в другую. С обычными уравнениями химических реакций так поступать, как правило, нельзя.

Допускается также почленное сложение и вычитание термохимических уравнений. Это бывает нужно для определения тепловых эффектов реакций, которые трудно или невозможно измерить в опыте.

Приведем пример. В лаборатории чрезвычайно трудно осуществить "в чистом виде" реакцию получения метана СH4 путем прямого соединения углерода с водородом:

С + 2H 2 = СH 4

Но можно многое узнать об этой реакции с помощью вычислений. Например, выяснить, будет эта реакция экзо- или эндотермической, и даже количественно рассчитать величину теплового эффекта.

Известны тепловые эффекты реакций горения метана, углерода и водорода (эти реакции идут легко):

а) СH 4 (г) + 2O 2 (г) = СO 2 (г) + 2H 2 О(ж) + 890 кДж

б) С(тв) + O 2 (г) = СO 2 (г) + 394 кДж

в) 2H 2 (г) + O 2 (г) = 2H 2 О(ж) + 572 кДж

Вычтем два последних уравнения (б) и (в) из уравнения (а). Левые части уравнений будем вычитать из левой, правые - из правой. При этом сократятся все молекулы O 2 , СO 2 и H 2 О. Получим:

СH 4 (г) - С(тв) - 2H 2 (г) = (890 - 394 - 572) кДж = -76 кДж

Это уравнение выглядит несколько непривычно. Умножим обе части уравнения на (-1) и перенесем CH 4 в правую часть с обратным знаком. Получим нужное нам уравнение образования метана из угля и водорода:

С(тв) + 2H 2 (г) = CH 4 (г) + 76 кДж/моль

Итак, наши расчеты показали, что тепловой эффект образования метана из углерода и водорода составляет 76 кДж (на моль метана), причем этот процесс должен быть экзотермическим (энергия в этой реакции будет выделяться).

Важно обращать внимание на то, что почленно складывать, вычитать и сокращать в термохимических уравнениях можно только вещества, находящиеся в одинаковых агрегатных состояниях, иначе мы ошибемся в определении теплового эффекта на величину теплоты перехода из одного агрегатного состояния в другое.


Основные законы термохимии

Раздел химии, занимающийся изучением превращения энергии в химических реакциях, называется термохимией.

Существует два важнейших закона термохимии. Первый из них, закон Лавуазье–Лапласа, формулируется следующим образом:

Тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.

Это означает, что при образовании любого соединения выделяется (поглощается) столько же энергии, сколько поглощается (выделяется) при его распаде на исходные вещества. Например:

2H 2 (г) + O 2 (г) = 2H 2 О(ж) + 572 кДж (горение водорода в кислороде)

2 H 2 О(ж) + 572 кДж = 2H 2 (г) + O 2 (г) (разложение воды электрическим током)

Закон Лавуазье–Лапласа является следствием закона сохранения энергии.

Второй закон термохимии был сформулирован в 1840 г российским академиком Г. И. Гессом:

Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.

Это означает, что общий тепловой эффект ряда последовательных реакций будет таким же, как и у любого другого ряда реакций, если в начале и в конце этих рядов одни и те же исходные и конечные вещества. Эти два основных закона термохимии придают термохимическим уравнениям некоторое сходство с математическими, когда в уравнениях реакций можно переносить члены из одной части в другую, почленно складывать, вычитать и сокращать формулы химических соединений. При этом необходимо учитывать коэффициенты в уравнениях реакций и не забывать о том, что складываемые, вычитаемые или сокращаемые моли вещества должны находиться в одинаковом агрегатном состоянии.


Применение теплового эффекта на практике

Тепловые эффекты химических реакций нужны для многих технических расчетов. Например, рассмотрим мощную российскую ракету "Энергия", способную выводить на орбиту космические корабли и другие полезные грузы. Двигатели одной из её ступеней работают на сжиженных газах - водороде и кислороде.

Допустим, нам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя?

Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу.

В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплот сгорания топлива рассчитывают выработку тепловой энергии.

Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись: "калорийность 320 ккал/100 г".

Тепловой эффект рассчитывается при получении монометиланилина, который относится к классу замещенных ароматических аминов. Основная область применения монометиланилина – антидетонационная присадка для бензинов. Возможно использование монометиланилина в производстве красителей. Товарный монометиланилин (N-метиланилин) выделяется из катализата методом периодической или непрерывной ректификации. Тепловой эффект реакции ∆Н= -14±5 кДж/моль.

Жаропрочные покрытия

Развитие техники высоких температур вызывает необходимость создания особо жаропрочных материалов. Эта задача может быть решена путём использования тугоплавких и жаропрочных металлов. Интерметаллические покрытия привлекают всё большее внимание, поскольку обладают многими ценными качествами: стойкостью к окислению, агрессивными расплавами, жаропрочностью и т.д. Интерес представляет и существенная экзотермичность образования этих соединений из составляющих их элементов. Возможны два способа использования экзотермичности реакции образования интерметаллидов. Первый – получение композитных, двухслойных порошков. При нагреве компоненты порошка вступают во взаимодействие, и тепло экзотермической реакции компенсируют остывание частиц, достигающих защищаемой поверхности в полностью расплавленном состоянии и образующих малопористое прочно сцеплённое с основой покрытие. Другим вариантом может быть нанесение механической смеси порошков. При достаточном нагреве частиц они вступают во взаимодействие уже в слое покрытие. Если величина теплового эффекта значительная, то это может привести к самопроплавлению слоя покрытия, образованию промежуточного диффузионного слоя, повышающего прочность сцепления, получения плотной, малопористой структуры покрытия. Пpи выборе композиции, образующей интерметаллидное покрытие с большим тепловым эффектом и обладающее многими ценными качествами – коррозионной стойкостью, достаточной жаропрочностью и износостойкостью, обращает на себя внимание алюминиды никеля, в частности NiAl и Ni 3 Al. Образование NiAl сопровождается максимальным тепловым эффектом.

Термохимический способ обработки алмаза

Свое название "термохимический" способ получил благодаря тому, что протекает он при повышенных температурах, а в основе его лежит использование химических свойств алмаза. Осуществляется способ следующим образом: алмаз приводят в контакт с металлом, способным растворять в себе углерод, а для того, чтобы процесс растворения или обработки шел непрерывно, его проводят в атмосфере газа, взаимодействующего с растворенным в металле углеродом, но не реагирующим непосредственно с алмазом. В процессе величина теплового эффекта принимает высокое значение.

Для определения оптимальных условий проведения термохимической обработки алмаза и выявления возможностей способа потребовалось изучить механизмы определенных химических процессов, которые, как показал анализ литературы, вообще не исследовались. Более конкретному изучению термохимической обработки алмаза мешало, прежде всего, недостаточное знание свойств самого алмаза. Опасались испортить его нагревом. Исследования по термической устойчивости алмаза были выполнены лишь в последние десятилетия. Установлено, что алмазы, не содержащие включений, в нейтральной атмосфере или в вакууме можно без всякого для них вреда нагреть до 1850 “С”, и только выше.

Алмаз является лучшим материалом для лезвия благодаря уникальной твердости, упругости и низкому трению по биологическим тканям. Оперирование алмазными ножами облегчает проведение операций, сокращает в 2-3 раза сроки заживления разрезов. По мнению микрохирургов МНТК микрохирургии глаза, ножи, заточенные термохимическим способом, не только не уступают, но и превосходят по качеству лучшие зарубежные образцы. Термохимически заточенными ножами уже сделаны тысячи операций. Алмазные ножи разной конфигурации и размеров могут применяться и в других областях медицины, биологии. Так, для изготовления препаратов в электронной микроскопии используют микротомы. Высокая разрешающая способность электронного микроскопа предъявляет особые требования к толщине и качеству среза препаратов. Алмазные микротомы, заточенные термохимическим методом, позволяют изготавливать срезы нужного качества.

Техногенное сырьё для производства цемента

Дальнейшая интенсификация цементного производства предполагает широкое внедрение энерго- и ресурсосберегающих технологий с использованием отходов различных отраслей.

При переработке скарново-магнетитовых руд выделяются хвосты сухой магнитной сепарации (СМС), представляющие собой щебневидный материал с размером зерен до 25 мм. Хвосты СМС имеют достаточно стабильный химический состав, мас.%:

SiO 2 40…45,

Al 2 O 3 10…12,

Fe 2 O 3 15…17,

CaO 12…13,

MgO 5…6,

Доказана возможность использования хвостов СМС в производстве портландцементного клинкера. Полученные цементы характеризуются высокими прочностными показателями.

Тепловой эффект клинкерообразования (ТЭК) определен как алгебраическая сумма теплот эндотермических процессов (декарбонизация известняка, дегидратация минералов глины, образование жидкой фазы) и экзотермических реакций (окисление пирита, вносимого хвостами СМС, формирование клинкерных фаз).

Основными преимуществами использования отходов обогащения скарново-магнетитовых руд в производстве цемента являются:

Расширение сырьевой базы за счет техногенного источника;

Экономия природного сырья при сохранении качества цемента;

Снижение топливно-энергетических затрат на обжиг клинкера;

Возможность выпуска малоэнергоемких активных низкоосновных клинкеров;

Решение экологических проблем за счет рациональной утилизации отходов и сокращения газовых выбросов в атмосферу при обжиге клинкера.

Биосенсоры

Биосенсоры – датчики на основе иммобилизованных ферментов. Позволяют быстро и качественно анализировать сложные, многокомпонентные смеси веществ. В настоящее время находят все более широкое применение в целом ряде отраслей науки, промышленности, сельского хозяйства и здравоохранения. Основой для создания автоматических систем ферментативного анализа послужили последние достижения в области энзимологии и инженерной энзимологии. Уникальные качества ферментов - специфичность действия и высокая каталитическая активность – способствуют простоте и высокой чувствительности этого аналитического метода, а большое количество известных и изученных на сегодняшний день ферментов позволяют постоянно расширять список анализируемых веществ.

Ферментные микрокалориметрические датчики – используют тепловой эффект ферментативной реакции. Состоит из двух колонок (измерительной и контрольной), заполненных носителем с иммобилизованным ферментом и снаряженных термисторами. При пропускании через измерительную колонку анализируемого образца происходит химическая реакция, которая сопровождается регистрируемым тепловым эффектом. Данный тип датчиков интересен своей универсальностью.

Заключение

Итак, проведя анализ практического применения теплового эффекта химических реакций, можно сделать вывод: тепловой эффект вплотную связан с нашей повседневной жизнью, он подвергается постоянному исследованию и находит всё новые применения на практике.

В условиях развития современных технологий теплой эффект нашел свое применение в различных отраслях. Химическая, военная, строительная, пищевая, горнодобывающая и многие другие отрасли используют тепловой эффект в своих разработках. Он применяется в двигателях внутреннего сгорания, холодильных установках и в различных топочных устройствах, а также в производстве хирургических приборов, жаропрочных покрытий, новых видах строительных материалов и так далее.

В современных условиях постоянно развивающейся науке, мы наблюдаем появление всё более новых разработок и открытий в сфере производства. Это влечет за собой всё новые и новые области применения теплового эффекта химических реакций.

Черных Е. А.


Список литературы

Мусабеков Ю. С., Марселен Бертло, М., 1965; Centenaire de Marcelin Berthelot, 1827-1927, P., 1929.

Патент 852586 Российская Федерация. МКИ В 28 Д 5/00. Способ размерной обработки алмаза /А.П.Григорьев, С.Х.Лифшиц, П.П.Шамаев (Российская Федерация). - 2 с.

Тепловой эффект реакции количество теплоты, которое выделяется или поглощается системой в результате протекания химической реакции. Это может быть Н (Р,Т = const) или U (V,T = const).

Если в результате реакции теплота выделяется, т.е. энтальпия системы понижается (Н 0 ), то реакция называется экзотермической.

Реакции, сопровождающиеся поглощением теплоты, т.е. с повышением энтальпии системы (Н 0), называются эндотермическими.

Как и другие функции состояния, энтальпия зависит от количества вещества, поэтому ее велечену (Н) обычно относят к 1 моль вещества и выражают в кДж/моль.

Обычно функции системы определяют при стандартных условиях , в которые, кроме параметров стандартного состояния, входит стандартная температура T = 298,15 К (25C). Часто температуру указывают в виде нижнего индекса ().

5.3. Термохимические уравнения

Термохимические уравнения реакций  уравнения, в которых указан тепловой эффект, условия реакций и агрегатные состояния веществ. Обычно в качестве теплового эффекта указывается энтальпия реакции. Например,

C (графит) + O 2 (газ) = CO 2 (газ) , Н 0 298 = 396 кДж.

Тепловой эффект можно записать в уравнении реакции:

C (графит) + O 2 (газ) = CO 2 (газ) + 396 кДж.

В химической термодинамике первая форма записи употребляется чаще.

Особенности термохимических уравнений.

1. Тепловой эффект зависит от массы реагирующего вещества, поэ-

тому его обычно рассчитывают на один моль вещества. В связи с этим в термохимических уравнениях можно использовать дробные коэффициенты . Например, для случая образования одного моля хлороводорода термохимическое уравнение записывается так:

½H 2 + ½Cl 2 = HCl, H 0 298 = 92 кДж

или Н 2 + Cl 2 = 2HСl, H 0 298 = 184 кДж.

2. Тепловые эффекты зависят от агрегатного состояния реагентов; оно указывается в термохимических уравнениях индексами: ж жидкое, г  газообразное, т твердое или к – кристаллическое, р – растворенное.

Например:H 2 + ½ O 2 = H 2 О (ж) , Н 0 298 = -285,8 кДж.

H 2 + ½ О 2 = H 2 О (г) , Н 0 298 = 241,8 кДж.

3. С термохимическими уравнениями можно производить алгебраические действия (их можно складывать, вычитать, умножать на любые коэффициенты вместе с тепловым эффектом).

Термохимические уравнения более полно, чем обычные, отражают происходящие при реакции изменения  они показывают не только качественный и количественный состав реагентов и продуктов, но и количественные превращения энергии, которыми данная реакция сопровождается.

5.4. Закон Гесса и его следствия

В основе термохимических расчетов лежит закон открытый российским ученым Гессом Г. И. (1841 г.). Суть его в следующем: тепловой эффект химической реакции зависит только от начального и конечного состояния системы, но не зависит от скорости и пути процесса, то есть от числа промежуточных стадий. Это, в частности, значит, что термохимические реакции можно складывать вместе с их тепловыми эффектами. Например, образование CO 2 из углерода и кислорода можно представить следующей схемой:

С+О 2 Н 1 СО 2 1. C (граф.) +O 2 (г) = CO 2 (г) , Н 0 1 = 396 кДж.

2. C (граф.) + 1/2O 2 (г) = CO (г) , Н 0 2 = Х кДж.

Н 2 Н 3

3. CO (г) + 1/2O 2 (г) = CO 2 (г) , Н 0 3 = 285,5кДж.

СО + ½ О 2

Все эти три процесса находят широкое применение в практике. Как известно, тепловые эффекты образования СО 2 (Н 1) и горения СО (Н 3) определяются экспериментально. Тепловой же эффект образования СО (Н 2) экспериментально измерить невозможно, так как при горении углерода в условиях недостатка кислорода образуется смесь СО и СО 2 . Но энтальпию реакции образования СО из простых веществ можно рассчитать.

Из закона Гесса следует, что H 0 1 = H 0 2 + H 0 3 . Следовательно,

H 0 2 = H 0 1  H 0 3 = 396  (285,5) = 110,5 (кДж) – это и есть истенная величина

Таким образом, пользуясь законом Гесса, можно находить теплоту реакций, которые невозможно определить экспериментально.

В термохимических расчетах широко используют два следствия закона Гесса. По первому, тепловой эффект реакции равен сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ (реагентов).

Н 0 х.р. = n прод · H 0 ƒ прод - n исх · Н 0 ƒ реагентов ,

где n  количество вещества; Н 0 ƒ  стандартная энтальпия (теплота) образования вещества.

Тепловой эффект реакции образования 1 моль сложного вещества из простых веществ, определенный при стандартных условиях, называется стандартной энтальпией образования этого вещества (Н 0 образ или Н 0 ƒ кДж/моль).

Так как абсолютную энтальпию вещества определить невозможно, то для измерений и расчетов необходимо определить начало отсчета, то есть систему и условия, для которых принимается значение : Н = 0. В термодинамике в качестве начала отсчета принимают состояния простых веществ в их наиболее устойчивых формах при обычных условиях – в стандартном состоянии.

Например: Н 0 ƒ (О 2) = 0, но Н 0 ƒ (О 3) = 142,3 кДж/моль. Стандартные энтальпии образования определены для многих веществ и проведены в справочниках (табл. 5.1).

В общем виде для реакции аА+ вВ = сС + dD энтальпия, согласно первому следствию определяется по уравнению:

H 0 298 х.р. = (cН 0 ƒ, C + dН 0 ƒ , Е)  (аH 0 ƒ , A + вH 0 ƒ , B).

Второе следствие закона Гесса относится к органическим веществам. Тепловой эффект реакции с участием органических веществ равен сумме теплот сгорания реагентов за вычетом теплот сгорания продуктов.

При этом теплота сгорания определяется в предположении полного

сгорания: углерод окисляется до CO 2 , водород  до H 2 O, азот  до N 2 .

Тепловой эффект реакции окисления кислородом элементов, входящих в состав вещества, до образования высших оксидов называется теплотой сгорания этого вещества (Н 0 сг.). При этом очевидно, что теплоты сгорания O 2 , CO 2 , H 2 O, N 2 принимаются равными нулю.

Таблица 5.1

Термодинамические константы некоторых веществ

Вещество

Н 0 f , 298 , кДж/ моль

S 0 298 , Дж/ мольK

G 0 f , 298 , кДж/ моль

Вещество

Н 0 f , 298, кДж/ моль

Дж/ мольK

G 0 f , 298 ,

С(графит)

Например, теплоту сгорания этанола

C 2 H 5 OH (ж) + 3O 2 = 2CO 2 + 3H 2 O (г)

H 0 х.р. = Н 0 сг (C 2 H 5 OH) = 2Н 0 ƒ, (CO 2)+3Н 0 ƒ, (H 2 O)  Н 0 ƒ, (C 2 H 5 OH).

Н 0 сг (C 2 H 5 OH) = 2(393,5) + 3(241,8) – (277,7) = 1234,7 кДж/моль.

Значения теплот сгорания также приведены в справочниках.

Пример 1. Определить тепловой эффект реакции дегидратации этанола, если

H 0 сг (C 2 H 4) =1422,8;H 0 сг (H 2 О) = 0; Н 0 сг (C 2 H 5 OH) =1234,7 (кДж/моль).

Решение. Запишем реакцию:C 2 H 5 OH (ж) =C 2 H 4 +H 2 O.

Согласно второму следствию определяем тепловой эффект реакции по теплотам сгорания, которые приведены в справочнике:

H 0 298 х.р = H 0 сг (C 2 H 5 OH)  H 0 сг (C 2 H 4)  H 0 сг (H 2 O) =

1234,7 + 1422,8 = 188,1 кДж/моль.

В технике для характеристики тепловых качеств отдельных видов топлива обычно используют их теплотворную способность.

Теплотворной способностью топлива называется тепловой эффект, который соответствует сгоранию единицы массы (1 кг) для твердых и жидких видов топлива или единицы объема (1 м 3) для газообразного топлива (табл. 5.2).

Таблица 5.2

Теплотворная способность и состав некоторых

распространенных видов топлива

Теплотворная способность,

кислород

Антрацит*

Древ. уголь

Прир. газ

Сырая нефть

*Антрацит – каменный уголь с максимальным содержанием углерода (94-96%).

Водород является наиболее эффективным химическим энергоносителем для энергетики, транспорта и технологии будущего, поскольку имеет очень высокую теплотворную способность (табл. 4.2), его относительно легко транспортировать, а при его сгорании образуется только вода, т.е. он является "чистым" горючим, не вызывает загрязнения воздуха. Однако, его широкому использованию в качестве источника энергии мешает слишком малое содержание водорода в природе в свободном состоянии. Большую часть водорода получают разложением воды или углеводородов. Однако, такое разложение требует большого расхода энергии, причем на практике из-за тепловых потерь на получение водорода приходится затратить больше энергии, чем ее потом можно будет получить. В перспективе, если удастся создать большие и дешевые источники энергии (например, в результате развития техники получения ядерной или солнечной энергии), часть ее будет использоваться на получение водорода. Многие ученые убеждены, что энергетика будущего – это водородная энергетика.

С помощью закона Гесса и его следствий можно определять многие величины, в том числе не определяемые экспериментально, если соответствующую неизвестной величине реакцию можно получить, складывая другие реакции с известными характеристиками.

Пример 2. Исходя из теплоты сгорания СН 4 (Н 0 сг =890кДж/моль) и Н 2 (Н 0 сг =286 кДж/моль), вычислить теплотворную способность газа, содержащего 60 % водорода и 40 % метана СН 4 .

Решение . Запишем термохимические уравнения реакций сгорания:

1) Н 2 +½О 2 = Н 2 О (ж) ;Н 0 f (Н 2 О)=286 кДж/моль;

    СН 4 + 2О 2 = СО 2 + 2Н 2 О (ж) ;Н 0 2

H 0 2 = Н 0 ƒ, (CO 2) + 2Н 0 ƒ, (Н 2 0)Н 0 ƒ, (СН 4) =3932 . 286 + 75 =890 кДж/моль.

1м 3 газа содержит 600л Н 2 и 400л СН 4 , что составляетН 2 иСН 4 . Теплотворная способность газа составит:

кДж/м 3 .

Пример 3. Используя данные таблицы 5.1, рассчитать тепловой эффект реакции сгорания этилена: С 2 Н 4 + 3О 2 = 2СО 2 + 2Н 2 О (г).

Решение. Из таблицы 5.1 выписываем значения энтальпий образования веществ, участвующих в реакции (в кДж/моль):

H 0 ƒ , co 2 =393,5;Н 0 ƒ , с 2 н 4 = 52,3;Н 0 ƒ , н 2 о =241,8.

(Напомним, что энтальпия образования простых веществ равна нулю.)

Согласно следствию из закона Гесса (4.4):

H 0 298 х.р =n прод · Н 0 ƒ , прод n исх · Н 0 ƒ , исх = 2Н 0 ƒ , со 2 + 2Н 0 ƒ , н 2 оН 0 ƒ , с 2 н 4 =

2 . (393,5) + 2 . (241,8)52,3 =1322,9 кДж.

Пример 4. Исходя из теплового эффекта реакции

3СаО (т) + Р 2 О 5 (т) = Са 3 (РО 4) 2 (т) ,Н 0 =739 кДж,

определить энтальпию образования ортофосфата кальция.

Решение. По следствию из закона Гесса:

H 0 298 х.р =Н 0 ƒ , Са 3 (PO 4) 2 (3Н 0 ƒ, СаО +Н 0 ƒ, P 2 O 5).

Из табл. 4.1: Н 0 ƒ , (СаО) =635,5;Н 0 ƒ , (P 2 O 5)=1492 (кДж/моль).

Н 0 ƒ , Са 3 (PO 4) 2 =739 + 3 . (635,5)1492 =4137,5 кДж/моль.

Пример 5. Написать термохимическое уравнение реакции сгорания твердой серы в N 2 O, если известно, что при сгорании 16 г серы выделяется 66,9 кДж тепла (предполагается, что при измерении теплоты температура продуктов снижается до температуры реагентов, равной 298 К).

Решение. Чтобы записать термохимическое уравнение, надо рассчитать тепловой эффект реакции:

S (т) + 2N 2 O (г) = SO 2 (г) + 2N 2 (г) ;H 0 = Х кДж.

По условию задачи известно, что при сгорании 16 г серы выделяется 66,9 кДж, а в реакции участвует 32 г серы. Составляем пропорцию:

16г 66,9 кДж

32г X кДж X = 133,8 к Дж.

Таким образом, термохимическое уравнение записывается так:

S (т) + 2N 2 O (г) = SO 2 (г) + 2N 2 (г) ,Н 0 х..р. =133,8 кДж.

(Так как тепло выделяется, реакция экзотермическая, Н 0 0).

Пример 6. Какое количество теплоты выделится при соединении 5,6 л водорода с хлором (н. у.), если энтальпия образования хлористого водорода равна91,8 кДж/моль (температура продуктов и реагентов равна 25С).

Решение. Н 0 ƒ , (HCl) = -91,8 кДж/моль, это значит, что при образовании одного моля HCl из простых веществ выделяется 91,8 кДж тепла, что соответствует термохимическому уравнению:

½Cl 2 +½ H 2 =HCl,H 0 ƒ =91,8 кДж.

Из уравнения видно, что для получения 1 моль HCl расходуется 0,5 моль Н 2 , т. е. 0,5·22,4 л = 11,2 л. Составляем пропорцию:

11,2 л 91,8 кДж

5,6 л XX= 45,19 кДж.

Ответ: выделится 45,19 кДж тепла.

Пример 7. Определить энтальпию образования оксида железа (III), исходя из трех термохимических уравнений (справочником не пользоваться):

    Fe 2 O 3 + 3CO = 2Fe + 3CO 2 , Н 0 1 = 26,5 кДж;

    С (графит) +½O 2 = CO,Н 0 2 =110,4 кДж;

    СO 2 = C (графит) + O 2 ,Н 0 3 = + 393,3 кДж.

Решение: Запишем уравнение, тепловой эффект которого нужно определить:

4Fe + 3O 2 = 2Fe 2 O 3 ; Н 0 4 = 2Х кДж.

Чтобы из первых трех уравнений получить четвертое, надо уравнение 1) умножить на (2), а уравнения 2) и 3) – на (6) и сложить:

1) 4Fe + 6CO 2 = 2Fe 2 O 3 + 6CO, Н 0 1 = 2·(+26,5) кДж;

2) 6CO = 6С (графит) + 3O 2 ,Н 0 2 = 6·(+110,4) кДж;

3) 6C (графит) + 6O 2 = 6СO 2 ,Н 0 3 = 6·(393,3) кДж;

Н 0 4 = 2Н 0 1 + 6Н 0 2 + 6Н 0 3 = +53 + 662,42359,8 =1644,4 кДж.

Отсюда Н 0 ƒ (Fe 2 O 3) =822,2 кДж/моль.

ПРИ V - const и р = const

Тепловой эффект химической реакции, протекающей при по­стоянном объеме, называется изохорным тепловым эффектом и обозначается Q V .

Подставив в уравнение (43) Q V , с учетом, что V = const , получим

Следовательно, изохорный тепловой эффект реакции (про­текающей при изохорно-изотермическом процессе) равен измене­нию внутренней энергии системы.

Тепловой эффект реакции, протекающей при постоянном дав­лении, называется изобарным тепловым эффектом Q p . Подставив в уравнение (43) значение Q p , получим

(45)

Заменяя выражение U 2 + pV 2 на Н 2 , а U 1 + pV 1 на Н 1 , получаем

Q p = ΔН = Н 2 -Н 1 . (46)

Следовательно, изобарный тепловой эффект реакции (проте­кающей при изобарно-изотермическом процессе) равен измене­нию энтальпии системы.

Таким образом, изобарный и изохорный тепловые эффекты равны изменениям функций состояния (44) и (46). Следовательно, они не зависят от пути перехода, а определяются начальным и конечным состояниями системы. В общем случае теплоты реак­ции зависят от характера протекания процесса.

§ 5. ЗАВИСИМОСТЬ МЕЖДУ ТЕПЛОВЫМИ ЭФФЕКТАМИ Q v И Q p

Для вывода уравнения зависимости между Q v и Q p восполь­зуемся соотношением

Q p = ΔН = ΔU p + Δ (pV),

где ΔU p - изменение внутренней энергии термодинамической системы при осуществлении изобарного процесса. В общем слу­чае это изменение отличается от изменения внутренней энергии в изохорном процессе, т. е. ΔU P ≠ ΔU V , так как

V≠ const . Следовательно, . Поэтому при за­мене ΔU V на Q V уравнение (45) можно переписать так:

.

В конденсированных системах разница между Q p и Q v незна­чительна и можно принять, что Q p = Q v . Однако при наличии в системе газообразных веществ разница значительная.

Если принять газы идеальными, то уравнение (45) можно записать в виде

Q P = Qv + pΔV= Q V + pV 2 - pV 1 .

Заменив в этом выражении pV 2 на n 2 RT и pV 1 на n 1 RT , где n 1 и п 2 - числа киломолей газообразных веществ до и после реакции, из уравнения (3) получим

Q p = Q v + Δ nRT (47)

Q v = Q p -Δ nRT, (48)

где Δn - изменение числа киломолей газообразных продуктов реакции. При Δn > 0

Q V < Q P .

Примером такой реакции может служить реакция образова­ния окиси углерода

2С + О 2 = 2СО , в которой Δn= 2 - 1 = 1 и Q v = Q p - RT, т. е. Q v < Q p . Термодинамическая система в этом случае совершает работу расширения за счет уменьшения внутренней энергии системы.

При Δn <0 Q V > Q p . Примером такой реакции могут слу­жить реакции: СО + 0,5О 2 = СО 2 или Н 2 + 0,5О 2 = Н 2 О , в ко­торых Δn = 1 - 1,5 = -0,5 , т. е. Δn < 0 . Тогда Q v = Q p + 0,5RT , т. е. Q v > Q p .

В этом случае над термодинамической системой совершается работа внешней средой и система получает дополнительную теп­лоту.

Когда Δn = 0 , тепловые эффекты Q v = Q p . Примером такой реакции может быть реакция СО + Н 2 О = СО 2 + Н 2 , в кото­рой Δn = 2 - 2 = 0 . Следовательно, Q v = Q p .

ЗАКОН ГЕССА

Независимость теплового эффекта реакции от промежуточных стадий химических процессов была установлена русским ученым академиком Г. И. Гессом в 1840 г. на основании эксперименталь­ных данных. Это справедливо для реакций, протекающих при V, Т = const или р, Т = const . Такое утверждение является, по существу, законом сохранения энергии применительно к хи­мическим реакциям. Следует заметить, что закон Гесса - основ­ной закон химической теплодинамики был открыт еще до того, как был сформулирован первый закон термодинамики. Закон Гесса устанавливает, что тепловой эффект химической реакции не зависит от пути перехода системы из одного состояния в дру­гое, а определяется лишь начальным и конечным ее состояниями.

Таким образом, выведенные ранее соотношения

Q V =U 2 -U 1 и Q p =H 2 - H 1

являются алгебраическими выражениями закона Гесса.

Расчеты тепловых эффектов химических реакций описаны в ра­ботах М. В. Ломоносова, Лавуазье, Лапласа. Значительный экспериментальный материал был получен Г. И. Гессом, Н. Н. Бекетовым, Бертло, Томсоном, И. А. Каблуковым и другими учеными. Обширные исследования по определению теп­ловых эффектов химических реакций проведены В. Ф. Лугининым и его учениками.

Для определения тепловых эффектов химических реакций применяются специальные приборы - калориметры.

Закон Гесса имеет большое практическое значение, так как с его помощью можно вычислить тепловые эффекты химических реакций, экспериментальное определение которых затруднительно или практически неосуществимо. Поясним это на примере

Предположим, что вещество А превращается в вещество В тремя путями: непосредственно из веще­ства А в вещество В с тепловым эффектом Q 1 ; через стадии С, D с тепловыми эффектами Q 2 , Q 3 , Q 4 , через стадии Е , N , М с тепловыми эффектами Q 5 , Q 6 , Q 7 и Q 8 . По закону Гесса суммарные тепловые эффекты одинаковы, поэтому

Q 1 =Q 2 +Q 3 +Q 4 ;

Q 1= Q 5 +Q 6 +Q 7 +Q 8 .

Q 2 +Q 3 +Q 4 =Q 5 +Q 6 +Q 7 +Q 8 .

Пользуясь этими соотношениями, легко вычислить тепловой эффект любой химической реакции, который невозможно полу­чить экспериментально. Например, тепловой эффект

Q 8 =Q 1 -Q 5 -Q 6 -Q 7 .

Как правило, экспериментальное определение тепловых эффектов на всех стадиях проводится с большой тщательностью, соблюдаются все предпосылки, вытекающие из закона Гесса (усло­вия, к которым приводятся начальные и конечные продукты сго­рания, одинаковый химический состав исходных продуктов и т. д.), сведены до минимума ошибки и неточности, связанные с усло­виями теплообмена экспериментальной аппаратуры с окружаю­щей средой, способами измерения температур и др., т. е. необра­тимые потери, связанные с превращением механической энергии непосредственно в тепловую, практически отсутствуют.

С помощью закона Гесса можно производить расчеты, исполь­зуя так называемые термохимические уравнения, представляю­щие собой стехиометрические уравнения химических реакций, в которых наряду с химическими формулами веществ, участвую­щих в реакции, записываются тепловые эффекты (отнесенные к одинаковым условиям). С этими уравнениями можно произво­дить алгебраические действия так же, как с любыми алгебраи­ческими уравнениями.

Стехиометрическими уравнениями или соотношениями назы­ваются численные соотношения между количествами реагирую­щих веществ, отвечающие законам стехиометрии, основные поло­жения которой вытекают из законов Авогадро, Гей-Люссака, постоянства состава, кратных отношений и др.

Из стехиометрического соотношения, например,

2Н 2 + О 2 = 2Н 2 О

следует, что при образовании воды на две молекулы водорода Приходится одна молекула кислорода или в общем виде

x a A+x b B=x a D , при образовании x d молекул вещества D на x а молекул вещества А требуется x b молекул вещества В . Коэффициенты х а , x b и x d - число молекул исходных веществ и полученных в реакции назы­ваются стехиометрическими коэффициентами.

Количество киломолей исходных и полученных веществ в хи­мической реакции пропорционально стехиометрическим коэф­фициентам. В газовых реакциях объемы и парциальные давления реагирующих веществ и продуктов реакции также пропорцио­нальны стехиометрическим коэффициентам.

Так как тепловые эффекты зависят от физического состояния реагирующих веществ и условий, при которых протекает реак­ция, то для возможности проведения термохимических расче­тов, тепловые эффекты, вводимые в термохимические уравнения, должны быть отнесены к каким-то одинаковым условиям, в про­тивном случае они несопоставимы. За такие условия принимают условия, при которых реакция осуществляется между веществами, находящимися в определенных стандартных состояниях.

За стандартные состояния индивидуальных жидких и твер­дых веществ принимают их устойчивое состояние при данной тем­пературе и давлении р = 1 атм = 760 мм рт. ст., или 1,013- 10 5 Па, а для индивидуальных газов - такое их состояние, когда при давлении р = 760 мм рт. ст. и данной температуре они подчиняют­ся уравнению состояния идеального газа.

Широко приводимые в справочниках тепловые эффекты обычно относят к давлению р = 1 физической атмосфере (1,013·10 5 Па) и температуре t = 25° С (298,15 К) и обозначают Q 0 V 298 и Q 0 P 298

или ΔQ 0 298 и ΔH 0 298 .

Из закона Гесса вытекают следствия, имеющие большое прак­тическое значение.

1. Тепловой эффект реакции разложения Q pa з химического соединения по величине равен и противоположен по знаку тепло­вому эффекту образования Q o 6p этого соединения из продуктов разложения:

Q разл =-Q обр

2. Если из двух химических систем образуются одни и те же конечные продукты двумя различными путями, то разность между значениями тепловых эффектов химических реакций равна теп­ловому эффекту превращения одной химической системы в дру­гую. Так, например, для реакции образования вещества В из веществ А и С (рис. 7), согласно закону Гесса,

Q 1 = Q 2 + Q 3 ,

откуда тепловой эффект превращения вещества А в С

Q 3 = Q 1 - Q 2

3. Если одинаковые по химическому составу системы двумя путями превращаются в различные конечные продукты, то разность между значениями тепловых эффектов, равна теплоте, по­лученной при превращении одного конечного продукта химиче­ской реакции в другой. Так, при образовании из вещества А ве­ществ В и С (рис. 8), согласно закону Гесса, Q 1 = Q 2 + Q 3 , откуда тепловой эффект перехода вещества С в вещество В

Q 3 =Q 1 - Q 2 .

При термохимических расчетах особое значение имеют два вида тепловых эффектов химических реакций: теплота образова­ния соединений и теплота сгорания.

Теплотой образования принято называть тепловой эффект реакции образования данного соединения из соответствующих простых веществ в стандартных условиях.

За стандартное состояние простых веществ принимают их стабильное состояние при давлении, равном одной физической атмосфере (760 мм рт. ст., или 1,013- 10 5 Па) и температуре 298,15 К.

В качестве примера можно привести реакцию образования бензола: из веществ в стандартных состояниях -"■ твердого угле­рода и газообразного водорода получается жидкий бензол

6С ТВ + ЗН 2 = С 6 Н 6ж .

Индексы соответственно «ж» и «тв» относятся к жидкой и твердой фазам. Индекс «г» относится к газообразному веществу, однако в расчетных уравнениях его обычно опускают.

Теплота образования, соответствующая стандартным усло­виям, называется стандартной. Данные по теплоте образования наряду с другими физико-химическими величинами приводятся в справочниках.

Так как при термодинамических расчетах определяют не аб­солютные значения внутренней энергии и энтальпии, а их изме­нение, то при определении теплоты образования какого-либо соединения начало отсчёта внутренней энергии или энтальпии можно выбрать произвольно. Так, например, в справочниках Для различных простых веществ при стандартных условиях при­нимают, что энтальпия равна нулю. К таким веществам отно­сятся С, Н 2 , О 2 , Cl 2(г) ,F 2(г) и др.

Таким образом, тепловой эффект образования соединений из этих веществ, например, Q p оказывается равным энтальпии соеди­нения при искомых условиях.

Теплоту образования можно относить к любому количеству вещества. В справочниках, как правило, ее относят к 1 кмоль или 1 кг соединения.

В табл. 1 приведены значения теплоты образования веществ для некоторых распространенных химических соединений.

Теплота сгорания. Горение представляет собой сложное, быстро протекающее химическое превращение, сопровождающееся выде­лением значительного количества теплоты и, как правило, ярким свечением.

Таблица 1. Тепловые эффекты образования соединений из простых веществ при стандартных условиях

Вещество Вещество Q 0 P 298 = ΔH 0 298 ·10 -6 Джfкмоль Q 0 P 298 = ΔH 0 298 ·10 -3 Ккалfкмоль
С (графит) С 2 Н 4г - этилен 52,28 12,492
Н г 217,98 52,098 С 2 Н 6г - этан -84,67 -20,236
H 2г С 3 Н 8г - пропан -103,9 -24,820
N 2 г С 6 Н вг - бензол 82,93 19,82
429,18 59,56 С 6 Н 6ж - бензол 49,04 11,718
OH г 38,96 9,31 С в Н 12г - цикло- -123,1 -29,43
OH 2г 0 - гексан
142,3 34,0 С 7 Н 8г - толуол 50,00 11,95
CO г -110,5 -26,41 С 7 Н 8ж - толуол 8,08 1,93
CO 2г -393,51 -94,05 C 10 H 8кр - нафта- 75,44 18,03
СаСО 3 (кальцит) -1206 -288,2 лин
СаО (кристалл) -635,1 -151,8 СН 4 О ж - метило- -238,7 -57,05
Н 2 О Г -241,84 -57,80 вый спирт
H 2 O ж -285,84 -68,32 СН 4 О Г - метило- -202,2 -48,09
NH 3 г -46,19 -11,04 вый спирт
NH 3 ж -69,87 -16,7 С 2 Н 6 О Ж - этило- -277,6 -66,35
NO г 90,37 21,60 вый спирт
NO 2 г 33,89 8,09 С 2 Н в О г - этило- -235,3 -56,24
N 2 O г 81,55 19,5 вый спирт
N 2 O 4r 9,37 2,24 CH 5 N r - метил- -28,03 -6,70
N a O 5 (12,5) (3,06) амин
CH 4r - метан -74,85 -17,889 C 2 H 7 N r - диметил- -27,61 -6,60
QH 2r - ацетилен 226,75 54,194 амин

Рис. 9. Схема калориметрической «бомбы»:

1 – цилиндр; 2 – крышка; 3 – чашечка; 4 - спираль

Тепловой эффект реакции горе­ния, называемый теплотой сгорания, обычно измеряют калориметрическим способом.

Теплотой сгорания соединения называется тепловой эффект реакции окисления данного соединения кис­лородом с образованием предельных высших окислов соответствующих элементов. Так, например, в орга­нических соединениях, являющихся основным топливом в тепловых двигателях, углерод окисляется до углекислого газа, водород - до водяных паров, другие вещества, входящие в соединение в незначительных количествах - до их конечных продуктов окисления.

На теплоту сгорания существенное влияние оказывают темпе­ратура и давление. Для возможности использования теплоты сго­рания в термохимических соотношениях ее нужно приводить к стандартным условиям. Теплота сгорания в этом случае назы­вается стандартной. Значение теплоты сгорания, найденное по справочнику, используется для определения тепловых эффектов реакций.

На рис. 9 приведена схема калориметрической бомбы, в кото­рой экспериментально определяют теплоту сгорания. Калориме­трическая бомба представляет собой толстостенный стальной цилиндр 1, покрытый изнутри платиной. На цилиндр навинчи­вают крышку 2. Внутри цилиндра предусмотрена чашечка 3 для навески исследуемого вещества. В цилиндр под высоким давлением нагнетают кислород. С помощью проволочки 4, нагре­ваемой электрическим током, поджигают исследуемое вещество. Бомбу помещают в калориметр, посредством которого и опре­деляют теплоту сгорания исследуемого вещества. Температуру про­дуктов сгорания «приводят» к температуре в бомбе до поджигания.

Теплота сгорания органических соединений, часто называемая теплотой сгорания топлива, является исходной величиной в рас­четах рабочих процессов тепловых двигателей. Она определяется как количество теплоты (в Дж или ккал), выделяющееся при пол­ном сгорании 1 кг массы, 1 м 3 объема или 1 кмоль топлива.

Теплота сгорания топлива, если ее определить описанным выше способом, в калориметрической бомбе будет теплотой сгорания для процесса при V = const, т. е. это будет тепловой эффект Q V .

Различают высшую и низшую теплоту сгорания топлива.

Высшей теплотой сгорания топлива Q B называется полное количество теплоты, выделившееся при сгорании горючих частей топлива при условии конденсации водяных паров.

Низшей теплотой сгорания топлива Q H называют разницу между полным количеством выделившейся теплоты и скрытой теп­лотой парообразования воды как имеющейся в топливе в виде примеси, так и получающейся в результате сгорания водорода.

Высшая Q B и низшая Q H теплоты сгорания топлива связаны между собой соотношением

-Q h = -Q B +r b (9H + W) = -Q b + 2,512·10 6 (9H+W) , Джfкг, (49)

где r b - скрытая теплота парообразования (для технических расчетов принято r b ≈ 2,512· 10 6 Джfкг); 9H - количество во­дяного пара, образующегося при сжигании H (кг) водорода, со­держащегося в 1 кг топлива; W - количество влаги, содержа­щейся в 1 кг топлива, кг.

В расчетах рабочих процессов ДВС за теплоту сгорания при­нимают низшую теплоту сгорания, так как продукты сгорания, удаляющиеся из двигателя через выпускную систему, обычно имеют температуру, превышающую температуру конденсации содержащихся в них водяных паров.

В табл. 2 приведены значения низшей теплоты сгорания топлив.

На основании закона Гесса и его следствий можно составить термохимическое уравнение для определения теплового эффекта реакции через тепловые эффекты образования реагирующих веществ.

Так, например, если имеет место реакция bВ + dD = еЕ + gG , где В, D, Е, G, b, d,e, g - исходные вещества и продукты реакции

Таблица 2

Низшая теплота сгорания топлив

Топливо Молекуляр- ная масса Низшая теплота сгорания
μ г, кгfмоль Джfкг · 10 -6 ккалfкг
Бензин (элементарный состав по массе 110-120 -44,0 -10 500
С = 0,855: Н = 0,145)
Дизельное топливо (элементарный со- 180-200 -42,50 -10 150
став по массе С = 0,870; Н = 0,126;
О = 0,004)
Керосин типа Т-1 -42,845 -10 230
СН 4г - метан 16,042 -49,80 -11 860
С 3 Н 8г - пропан 44,094 -46,05 -11 000
CH 5 N r - метиламин 31,058 -31,20 -7 446
СгН 7 Н г - этиламин 45,084 -35,15 -8 340
CH e N 2}K - металгидразин 46,084 -25,44 -^-6 070
C 2 H 8 N 2}K - несимметричный диметил- 60,100 -32,90 -7 850
Гидразин

и их стехиометрические коэффициенты соответственно, то тепло­вой эффект этой реакции

Q p =(eQ обр +gQ обрG) – (bQ обрB +dQ обрD)

Отсюда уравнение в общем виде

(50)

где Q обрB , Q обрD , Q обрE и Q o 6pG -теплота образования соот­ветственно исходных веществ и продуктов реакдии; n i - числа киломолей (от 1 до т), пропорциональные стехиометрическим ко­эффициентам реагирующих веществ.

Следовательно, тепловой эффект реакции равен разности теплоты образования продуктов реакции и теплоты образования исходных веществ, взятых с соответствующими стехиометрическими коэффициентами.

С помощью закона Гесса и его следствий можно также соста­вить термохимическое уравнение для расчета теплового эффекта, если известна теплота сгорания веществ, участвующих в ре­акции.

В общем виде

т. е. тепловой эффект реакции равен разности между теплотой сгорания исходных веществ и теплотой сгорания продуктов реак­ции (с учетом их стехиометрических коэффициентов).

Это можно проиллюстрировать на примере сгорания метило­вого спирта СН 3 ОН (рис. 10). Теплота сгорания 1 кмоля метилового жидкого спирта

Q 2сг = - 726,49·10 6 Дж/кмоль;

теплоты сгорания С в СО 2 и Н 2 в Н 2 О Ж соответственно равны

Q" 1 c г = -393,51·10 6 Дж/кмоль;

Q" 1 c г = -285,84·10 6 Дж/кмоль;

Q lc г = -965,19 ·10 6 Дж/кмоль.

Рис. 10. Схема определения теп­лов ого эффекта при сгорании ме­тилового спирта

Запишем термохимические уравнения реакций горения:

C +O 2 = CO 2 + Q" 1 c г;

2Н 2 + О 2 = 2Н 2 О Ж + 2Q" 1 c г;

СН 3 ОН Ж + 1,5О 2 = СО 2 + 2Н 2 О + Q 2 .

Для определения теплоты образования метилового спирта из уравнения С + 2Н 2 + 0,5О 2 = СН 3 ОН + Q 3 сложим два напи­санных выше уравнения и вычтем третье. После некоторых пре­образований получим

С + 2Н 2 + 0,5О 2 = СН 3 ОН + (Q lcr - Q 2cr),

сравнивая два последних уравнения, заключаем, что искомая теплота образования 1 кмоля жидкого метилового спирта

Q 3обр = -238,7·10 6 Джfкмоль.


Похожая информация.


Или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

  • Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс).
  • В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Стандартная энтальпия образования (стандартная теплота образования)

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях .

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

С(тв) + 2H 2 (г) = CH 4 (г) + 76 кДж/моль.

Стандартная энтальпия образования обозначается ΔH f O . Здесь индекс f означает formation (образование), а перечеркнутый кружок, напоминающий диск Плимсоля - то, что величина относится к стандартному состоянию вещества. В литературе часто встречается другое обозначение стандартной энтальпии - ΔH 298,15 0 , где 0 указывает на равенство давления одной атмосфере (или, несколько более точно, на стандартные условия ), а 298,15 - температура. Иногда индекс 0 используют для величин, относящихся к чистому веществу , оговаривая, что обозначать им стандартные термодинамические величины можно только тогда, когда в качестве стандартного состояния выбрано именно чистое вещество . Стандартным также может быть принято, например, состояние вещества в предельно разбавленном растворе. «Диск Плимсоля» в таком случае означает собственно стандартное состояние вещества, независимо от его выбора.

Энтальпия образования простых веществ принимается равной нулю, причем нулевое значение энтальпии образования относится к агрегатному состоянию, устойчивому при T = 298 K. Например, для йода в кристаллическом состоянии ΔH I 2 (тв) 0 = 0 кДж/моль, а для жидкого йода ΔH I 2 (ж) 0 = 22 кДж/моль. Энтальпии образования простых веществ при стандартных условиях являются их основными энергетическими характеристиками.

Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствие закона Гесса):

ΔH реакции O = ΣΔH f O (продукты) - ΣΔH f O (реагенты)

Термохимические эффекты можно включать в химические реакции. Химические уравнения в которых указано количество выделившейся или поглощенной теплоты, называются термохимическими уравнениями. Реакции, сопровождающиеcя выделением тепла в окружающую среду имеют отрицательный тепловой эффект и называются экзотермическими . Реакции, сопровождающиеся поглощением тепла имеют положительный тепловой эффект и называются эндотермическими . Тепловой эффект обычно относится к одному молю прореагировавшего исходного вещества, стехиометрический коэффициент которого максимален.

Температурная зависимость теплового эффекта (энтальпии) реакции

Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т 1 до Т 2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений):

Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:

где ΔC p (T 1 ,T f) - изменение теплоемкости в интервале температур от Т 1 до температуры фазового перехода; ΔC p (T f ,T 2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и T f - температура фазового перехода.

Стандартная энтальпия сгорания - ΔH гор о, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

Стандартная энтальпия растворения - ΔH раств о, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ΔH реш > 0, а гидратация ионов - экзотермический, ΔH гидр < 0. В зависимости от соотношения значений ΔH реш и ΔH гидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:

ΔH раствKOH о = ΔH реш о + ΔH гидрК + о + ΔH гидрOH − о = −59 КДж/моль

Под энтальпией гидратации - ΔH гидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

Стандартная энтальпия нейтрализации - ΔH нейтр о энтальпия реакции взаимодействия сильных кислот и оснований с образованием 1 моля воды при стандартных условиях:

HCl + NaOH = NaCl + H 2 O H + + OH − = H 2 O, ΔH нейтр ° = −55,9 кДж/моль

Стандартная энтальпия нейтрализации для концентрированных растворов сильных электролитов зависит от концентрации ионов, вследствие изменения значения ΔH гидратации ° ионов при разбавлении.

Примечания

Литература

  • Кнорре Д. Г., Крылова Л. Ф., Музыкантов В. С. Физическая химия. - М. : Высшая школа, 1990
  • Эткинс П. Физическая химия. - Москва. : Мир, 1980

Wikimedia Foundation . 2010 .

  • Ненюков, Дмитрий Всеволодович
  • Witching Hour

Смотреть что такое "Тепловой эффект химической реакции" в других словарях:

    тепловой эффект химической реакции - Теплота, поглощаемая (выделяемая) в результате химического превращения исходных веществ в продукты реакции в количествах, соответствующих уравнению химической реакции при следующих условиях: 1) единственно возможной работой при этом является… … Справочник технического переводчика

    Тепловой эффект химической реакции - –теплота, поглощаемая (выделяемая) в результате химического превращения исходных веществ в продуктыреакции в количествах, соответствующих уравнению химической реакции при следующих условиях: … … Энциклопедия терминов, определений и пояснений строительных материалов

    тепловой эффект химической реакции - тепловой эффект химической реакции; тепловой эффект Сумма теплоты, поглощенной системой, и всех видов работы, совершенных над ней, кроме работы внешнего давления, причем все величины отнесены к одинаковой температуре начального и конечного… …

    тепловой эффект - химической реакции; тепловой эффект Сумма теплоты, поглощенной системой, и всех видов работы, совершенных над ней, кроме работы внешнего давления, причем все величины отнесены к одинаковой температуре начального и конечного состояний системы … Политехнический терминологический толковый словарь

    ТЕПЛОВОЙ ЭФФЕКТ РЕАКЦИИ - количество теплоты, выделяемой или поглощаемой системой при химической реакции. Тепловой эффект работы равен изменению внутренней энергии системы при постоянном объеме или изменению ее энтальпии при постоянном давлении и отсутствии работы внешних … Большой Энциклопедический словарь

    тепловой эффект реакции - количество теплоты, выделяемой или поглощаемой системой при химической реакции. Тепловой эффект реакции равен изменению внутренней энергии системы при постоянном объёме или изменению её энтальпии при постоянном давлении и отсутствии работы… … Энциклопедический словарь

    тепловой эффект реакции - количество теплоты, выделенное или поглощенное в термодинамической системе в ходе протекания химической реакции при условии, что система не совершает работы, кроме работы против внешнего давления, а температура… … Энциклопедический словарь по металлургии

    Тепловой эффект реакции - алгебраическая сумма теплоты, поглощённой при данной реакции химической (См. Реакции химические), и совершенной внешней работы за вычетом работы против внешнего давления. Если при реакции теплота выделяется или работа совершается системой … Большая советская энциклопедия

    изобарный тепловой эффект - Тепловой эффект химической реакции, протекающей при постоянном давлении … Политехнический терминологический толковый словарь

    изохорный тепловой эффект - Тепловой эффект химической реакции, протекающей при постоянном объеме … Политехнический терминологический толковый словарь


(Страница подготовлена с использованием материалов сайта http://www.hemi.nsu.ru/ucheb211.htm )

В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.

Энергия химических соединений сосредоточена главным образом в химических связях. Чтобы разрушить связь между двумя атомами, требуется затратить энергию . Когда химическая связь образуется, энергия выделяется .

Атомы не соединялись бы между собой, если бы это не вело к "выигрышу" (то есть высвобождению) энергии. Этот выигрыш может быть большим или малым, но он обязательно есть при образовании молекул из атомов.

Любая химическая реакция заключается в разрыве одних химических связей и образовании других.

Когда в результате химической реакции при образовании новых связей выделяется энергии больше , чем потребовалось для разрушения "старых" связей в исходных веществах, то избыток энергии высвобождается в виде тепла. Примером могут служить реакции горения. Например, природный газ (метан CH 4) сгорает в кислороде воздуха с выделением большого количества теплоты.

Реакция даже может идти со взрывом - так много энергии заключено в этом превращении. Такие реакции называются экзотермическими от латинского "экзо" - наружу (имея в виду выделяющуюся энергию).

В других случаях на разрушение связей в исходных веществах требуется энергии больше, чем может выделиться при образовании новых связей. Такие реакции происходят только при подводе энергии извне и называются эндотермическими (от латинского "эндо" - внутрь). Примером является образование оксида углерода (II) CO и водорода H 2 из угля и воды, которое происходит только при нагревании.


Изображение химических реакций при помощи моделей молекул: а) экзотермическая реакция, б) эндотермическая реакция. Модели наглядно показывают, как при неизменном числе атомов между ними разрушаются старые и возникают новые химические связи.

Таким образом, любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции . Например, тепловой эффект реакции сгорания водорода в кислороде можно выразить любым из двух уравнений:

2 H 2(г) + O 2(г) = 2 H 2 О (ж) + 572 кДж

или

H 2(г) + 1/2 O 2(г) = H 2 О (ж) + 286 кДж

Оба уравнения одинаково правильны и оба выражают тепловой эффект экзотермической реакции образования воды из водорода и кислорода. Первое - на 1 моль использованного кислорода, а второе - на 1 моль сгоревшего водорода или на 1 моль образовавшейся воды.

Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.

Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.

Используется также частный случай теплового эффекта реакции – теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:

C 2 H 2 +2,5 O 2 =2 CO 2 + H 2 O + 1300 кДж

Ацетилен теплота сгорания ацетилена

Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции (?Е) можно показать графически.


Графическое изображение теплового эффекта: а) экзотермической реакции горения водорода; б) эндотермической реакции разложения воды под действием электрического тока. Координату реакции (горизонтальную ось графика) можно рассматривать, например, как степень превращения веществ (100% - полное превращение исходных веществ).

Уравнения химических реакций, в которых вместе с реагентами и продуктами записан и тепловой эффект реакции, называются термохимическими уравнениями .

Особенность термохимических уравнений заключается в том, что при работе с ними можно переносить формулы веществ и величины тепловых эффектов из одной части уравнения в другую. С обычными уравнениями химических реакций так поступать, как правило, нельзя.

Допускается также почленное сложение и вычитание термохимических уравнений. Это бывает нужно для определения тепловых эффектов реакций, которые трудно или невозможно измерить в опыте.

Приведем пример. В лаборатории чрезвычайно трудно осуществить "в чистом виде" реакцию получения метана СH 4 путем прямого соединения углерода с водородом:

С + 2H 2 = СH 4

Но можно многое узнать об этой реакции с помощью вычислений. Например, выяснить, будет эта реакция экзо- или эндотермической, и даже количественно рассчитать величину теплового эффекта.

Известны тепловые эффекты реакций горения метана, углерода и водорода (эти реакции идут легко):

а) СH 4(г) + 2O 2(г) = СO 2(г) + 2H 2 О (ж) + 890 кДж

б) С (тв) + O 2(г) = СO 2(г) + 394 кДж

в) 2H 2(г) + O2 (г) = 2H 2 О (ж) + 572 кДж

Вычтем два последних уравнения (б) и (в) из уравнения (а). Левые части уравнений будем вычитать из левой, правые - из правой. При этом сократятся все молекулы O 2 , СO 2 и H 2 О. Получим:

СH 4(г) - С (тв) - 2H 2(г) = (890 - 394 - 572) кДж = -76 кДж

Это уравнение выглядит несколько непривычно. Умножим обе части уравнения на (-1) и перенесем CH 4 в правую часть с обратным знаком. Получим нужное нам уравнение образования метана из угля и водорода:

С (тв) + 2H 2(г) = CH 4(г) + 76 кДж/моль

Итак, наши расчеты показали, что тепловой эффект образования метана из углерода и водорода составляет 76 кДж (на моль метана), причем этот процесс должен быть экзотермическим (энергия в этой реакции будет выделяться).

Важно обращать внимание на то, что почленно складывать, вычитать и сокращать в термохимических уравнениях можно только вещества, находящиеся в одинаковых агрегатных состояниях, иначе мы ошибемся в определении теплового эффекта на величину теплоты перехода из одного агрегатного состояния в другое.

Основные законы термохимии

Раздел химии, занимающийся изучением превращения энергии в химических реакциях, называется термохимией .

Существует два важнейших закона термохимии. Первый из них, закон Лавуазье–Лапласа , формулируется следующим образом:

Тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.

Это означает, что при образовании любого соединения выделяется (поглощается) столько же энергии, сколько поглощается (выделяется) при его распаде на исходные вещества. Например:

2H 2(г) + O 2(г) = 2H 2 О (ж) + 572 кДж (горение водорода в кислороде)

2 H 2 О (ж) + 572 кДж = 2H 2(г) + O 2(г) (разложение воды электрическим током)

Закон Лавуазье–Лапласа является следствием закона сохранения энергии.

Второй закон термохимии был сформулирован в 1840 г российским академиком Г. И. Гессом :

Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.

Это означает, что общий тепловой эффект ряда последовательных реакций будет таким же, как и у любого другого ряда реакций, если в начале и в конце этих рядов одни и те же исходные и конечные вещества. Эти два основных закона термохимии придают термохимическим уравнениям некоторое сходство с математическими, когда в уравнениях реакций можно переносить члены из одной части в другую, почленно складывать, вычитать и сокращать формулы химических соединений. При этом необходимо учитывать коэффициенты в уравнениях реакций и не забывать о том, что складываемые, вычитаемые или сокращаемые моли вещества должны находиться в одинаковом агрегатном состоянии.

Применение теплового эффекта на практике

Тепловые эффекты химических реакций нужны для многих технических расчетов. Например, рассмотрим мощную российскую ракету "Энергия", способную выводить на орбиту космические корабли и другие полезные грузы. Двигатели одной из её ступеней работают на сжиженных газах - водороде и кислороде.

Допустим, нам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя?

Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу.

В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплот сгорания топлива рассчитывают выработку тепловой энергии.

Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись:

"калорийность 320 ккал/100 г".



Понравилась статья? Поделитесь ей
Наверх