Слуховая сенсорная система, её морфо-функциональная организация. Строение слуховой сенсорной системы человека: значение и особенности

Слух является органом чувств человека, который способствует психическому развитию полноценной личности, ее адаптации в социуме. Со слухом связанны звуковые языковые общения. С помощью слухового анализатора человек воспринимает и различает звуковые волны, состоящие из последовательных сгущения и разрежения воздуха.

Слуховой анализатор состоит из трех частей: 1) рецепторного аппарата, содержащегося во внутреннем ухе; 2) проводящих путей, представленных восьмой парой черепно-мозговых (слуховых) нервов; 3) центра слуха в височной доле коры больших полушарий.

Слуховые рецепторы (фонорецепторы) содержатся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания, прежде чем дойти до слуховых рецепторов, проходят через всю систему звукопроводящих и звукоусиливающих частей.

Ухо - это орган слуха, который состоит из 3-х частей: внешнего, среднего и внутреннего уха.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Наружное ухо служит для улавливания звуков. Ушная раковина образована эластичным хрящом, снаружи покрыта кожей. Внизу дополнена складкой - мочкой, которая заполнена жировой тканью.

Наружный слуховой проход (2,5 см), где происходит усиление звуковых колебаний в 2-2,5 раза, выслан тонкой кожей с тонкими волосами и видоизмененными потовыми железами, которые вырабатывают ушную серу, состоящий из жировых клеток и содержит пигмент. Волоски и ушная сера выполняют защитную роль.

Среднее ухо состоит из барабанной перепонки, барабанной полости и слуховой трубы. На границе между наружным и средним ухом находится барабанная перепонка, которая внешне покрыта эпителием, а изнутри слуховой оболочкой. Звуковые колебания, которые подходят к барабанной перепонке, заставляют ее колебаться с той же частотой. С внутренней стороны перепонки находится барабанная полость, внутри которой расположены слуховые косточки , соединенные между собой - молоточек, наковальня и стремя . Через системы слуховых косточек колебания барабанной перепонки передаются во внутреннее ухо. Слуховые косточки размещены так, что образуют рычаги, которые уменьшают размах звуковых колебаний и увеличивают их силу.



Барабанная полость соединена с носоглоткой с помощью евстахиевой трубы, которая поддерживает одинаковое давление извне и изнутри на барабанную перепонку.

На рубеже среднего и внутреннего уха является перепонка, которая содержит овальное окно . Стремя прилегает к овальному окну внутреннего уха.

Внутреннее ухо находится в полости пирамиды височной кости и представляет собой костный лабиринт, внутри которого есть перепончатый лабиринт из соединительной ткани. Между костным и перепончатыми лабиринтами содержится жидкость - перилимфа, а внутри перепончатого лабиринта - эндолимфа. В стенке, отделяющей среднее ухо от внутреннего, кроме овального окна, есть еще круглое окно, которое делает возможным колебания жидкости.

Костный лабиринт состоит из трех частей: в центре - преддверие, спереди от него улитка , а сзади - полукружные каналы . Внутри среднего канала улитки, в улитковом ходе содержатся звуковоспринимающий аппарат - спиральный или кортиев орган. Он имеет основную пластинку, которая состоит примерно из 24 тыс. фиброзных волоконец. На основной пластинке вдоль нее в 5 рядов расположены опорные и волосковые чувствительные клетки, которые являются собственно слуховыми рецепторами . Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной пластинкой. Волосковые клетки охватываются нервными волосками улитковой ветви слухового нерва. В продолговатом мозге содержится второй нейрон слухового пути, дальше этот путь идет, в основном перекрещиваясь, к задним буграм четверохолмия, а от них в височную область коры, где расположена центральная часть слухового анализатора.

Для слухового анализатора звук является адекватным раздражителем. Все вибрации воздуха, воды и другого упругого среды делятся на периодические (тоны) и непериодические (шумы). Тона бывают высокие и низкие. Основной характеристикой каждого звукового тона является длина звуковой волны, которой соответствует определенное количество колебаний в секунду. Длину звуковой волны определяют расстоянием, которое проходит звук в секунду, поделенную на количество полных колебаний, осуществляемых тело, которое звучит, в секунду.

Человеческое ухо воспринимает звуковые колебания в пределах 16-20 000 Гц, сила которых выражается в децибелах (дБ). Звуковые колебания частотой более 20 кГц человек не слышит. Это - ультразвуки.

Звуковые волны - это продольные колебания среды. Сила звука зависит от размаха (амплитуды) колебаний воздушных частиц. Звук характеризуется тембром или окраской.

Наибольшую возбудимость ухо имеет к звукам с частотой колебаний от 1000 до 4000 Гц. Ниже и выше этого показателя возбудимость уха снижается.

В 1863 году Гельмгольц предложил резонансную теорию слуха . Воздушные звуковые волны, попадая в наружный слуховой проход, обуславливают колебания барабанной перепонки, далее колебания передаются через среднее ухо. Система слуховых косточек, действуя как рычаг, усиливает звуковые колебания и передает их жидкости, содержащейся между костным и перепончатыми лабиринтами завитки. Звуковые волны могут передаваться и через воздух, содержащийся в среднем ухе.

По резонансной теории, колебания эндолимфы вызывают колебания основной пластинки, волокна которой имеют разную длину, настроенные на разные тона и составляют собой набор резонаторов, которые звучат в унисон различным звуковым колебаниям. Кратчайшие волны воспринимаются у основы улитки, а длинные у верхушки.

Во время колебания соответствующих резонирующих участков основной пластинки колеблются и расположенные на ней чувствительны волосковые клетки. Мельчайшие волоски этих клеток касаются при колебании покровной пластинки и деформируются, что ведет к возбуждению волосковых клеток и проведения импульсов по волокнам улиткового нерва в центральную нервную систему. Поскольку полной изоляции волокон основной мембраны нет, то одновременно начинают колебаться и соседние волокна, что соответствует обертонам. Обертон - звук, число колебаний которого в 2, 4, 8 и т.д. раз превышает число колебаний основного тона.

При длительном воздействии сильных звуков возбудимость звукового анализатора снижается, а при длительном пребывании в тишине возбудимость возрастает. Это адаптация . Наибольшая адаптация наблюдается в зоне более высоких звуков.

Чрезмерный шум не только ведет к потере слуха, но и вызывает психические нарушения у людей. Специальными опытами на животных доказана возможность появления "акустического шока " и "акустических коряг", порой смертельных.

6. Болезни уха и гигиена слуха. Профилактика негативного влияния "школьного" шума на организм школьника

Воспаление уха - отит . Чаще всего встречается отит среднего уха - опасная болезнь, потому что рядом с полостью среднего уха - головной мозг и его оболочки. Отит чаще всего возникает как осложнение гриппа, острых респираторныхзаболеваний; инфекция из носоглотки может перейти по евстахиевой трубе в полость среднего уха. Отит протекает как тяжелое заболевание и проявляется сильными болями в ухе, высокой температурой тела, сильной головной болью, значительным снижением слуха. При упомянутых признаках необходимо немедленно обратиться к врачу. Профилактика отита: лечение острых и хронических болезней носоглотки (аденоидов, насморка, гайморита). Если возник насморк, нельзя сильно сморкаться, чтобы инфекция через евстахиеву трубу попала в среднее ухо. Нельзя сморкаться одновременно обеими половинами носа, а надо делать это поочередно, прижимая крыло носа к носовой перегородки.

Глухота - полная потеря слуха на одно или оба уха. Она может быть приобретенной или врожденной.

Приобретенная глухота чаще всего является следствием двустороннего отита среднего уха, который сопровождался разрывом обеих барабанных перепонок или тяжелому воспалению внутреннего уха. Глухота может быть вызвана тяжелыми дистрофическими поражениями слуховых нервов, которые часто связаны с профессиональными факторами: шумом, вибрацией, действием паров химических веществ или с травмами головы (например, в результате взрыва). Частой причиной глухоты является отосклероз - болезнь, при которой слуховые косточки (особенно стремя) становятся неподвижными. Эта болезнь была причиной глухоты у выдающегося композитора Людвига Ван Бетховена. К глухоте может привести бесконтрольное применение антибиотиков, которые негативно действуют на слуховой нерв.

Врожденная глухота связана с врожденным нарушением слуха. причинами которого могут быть вирусные болезни матери во время беременности (краснуха, корь, грипп), бесконтрольное употребление ею некоторых лекарств, особенно- антибиотиков, употребление алкоголя, наркотиков, курения. Рожденный глухой ребенок, никогда не слыша речи, становится глухонемым.

Гигиена слуха - система мер, направленная на охрану слуха, создание оптимальных условий для деятельности слухового анализатора, способствует нормальному его развитию и функционированию.

Различают специфическое и неспецифическое действие шума на организм человека. Специфическое действие проявляется в нарушениях слуха разной степени, неспецифическое - в различных отклонениях в деятельности ЦНС, расстройствах вегетативной реактивности, эндокринных расстройствах, функциональном состоянии сердечно-сосудистой системы и пищеварительного тракта. У лиц молодого и среднего возраста при уровне шума 90 дБ (децибел), который длится в течение часа, снижается возбудимость клеток коры головного мозга, ухудшаются координация движений, острота зрения, устойчивость ясного видения, удлиняется латентный период зрительной и слухомоторных реакций. По такой же продолжительности работы в условиях воздействия шума, уровень которого составляет 96 дБ, наблюдается еще более резкие нарушения корковой динамики, фазовые состояния, запредельной торможения, расстройства вегетативной реактивности. Ухудшаются показатели мышечной работоспособности (выносливости, утомляемости) и показатели труда. Работа в условиях воздействия шума, уровень которого - 120 дБ, может вызвать нарушения в виде астенических неврастеническим проявлений. Появляются раздражительность, головные боли, бессонница, расстройства эндокринной системы. Происходят изменения в сердечно-сосудистой системе: нарушается тонус сосудов и ритм сердечных сокращений, возрастает или снижается артериальное давление.

На взрослых и особенно детей чрезвычайно негативное влияние (неспецифический и специфический) производит шум в помещениях, где включены на полную громкость радиоприемники, телевизоры, магнитофоны и тому подобное.

Сильно влияет шум на детей и подростков. Изменение функционального состояние слухового и других анализаторов наблюдается у детей под влиянием "школьного" шума, уровень интенсивности которого в основных помещениях школы колеблется от 40 до 110 дБ. В классе уровень интенсивности шума в среднем составляет 50-80 дБ, во время перерывов может достигать 95 дБ.

Шум, который не превышает 40 дБ, не вызывает негативных изменений в функциональном состоянии нервной системы. Изменения заметны при воздействии шума, уровень которого составляет 50-60 дБ. Согласно данным исследований, решения математических задач требует при шумовой громкости 50 дБ на 15-55%, 60 дБ - на 81 -100% больше времени, чем к действию шума. Ослабление внимания школьников в условиях воздействия шума указанной громкости достигало 16%. Снижение уровней "школьного" шума и его неблагоприятного воздействия на здоровье учащихся достигается благодаря ряду комплексных мероприятий:строительных, технических и организационных.

Так, ширина "зеленой зоны" со стороны улицы должна быть не менее 6 м. Целесообразно вдоль этой полосы на расстоянии не менее 10 м от здания посадить деревья, кроны которых задерживать распространение шума.

Важное значение в уменьшении "школьного" шума имеет гигиенически правильное расположение учебных помещений в здании школы. Мастерские, спортивные залы размещаются на первом этаже в отдельном крыле или пристройке.

Гигиеническим стандартам, направленным на сохранение зрения и слуха учащихся и учителей, должны отвечать размеры учебных помещений: длина (размер от доски до противоположной стенки) и глубина классных комнат. Длина классной комнаты, не превышает 8 м, обеспечивает ученикам с нормальной остротой зрения и слуха, которые сидят на последних партах, четкое восприятие речи учителя и ясное видение того, что написано на доске. По первым и вторыми партами (столами) в любом ряду отводятся места для учащихся с ослабленным слухом, поскольку речь воспринимается от 2 до 4 м, а шепот - от 0,5 до 1 м. Восстановить функциональное состояние слухового анализатора и предупредить сдвиги в других физиологических системах организма подростка помогают небольшие перерывы (10-15 мин.).

Слуховой анализатор (слуховая сенсорная система) – второй по значению дистантный анализатор человека. Слух играет важнейшую роль именно у человека в связи с возникновением членораздельной речи. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего, сенсорная информация передаётся в слуховую область коры большого мозга (височный отдел) через ряд последовательных структур.

Орган слуха (ухо) – это периферический отдел слухового анализатора, в котором расположены слуховые рецепторы. Строение и функции уха представлены в табл. 12.2, рис. 12.10.

Таблица 12.2.

Строение и функции уха

Часть уха

Строение

Функции

Наружное ухо

Ушная раковина, наружный слуховой проход, барабанная перепонка

Защитная (выделение серы). Улавливает и проводит звуки. Звуковые волны колеблют барабанную перепонку, а она – слуховые косточки.

Среднее ухо

Полость, заполненная воздухом, в которой находятся слуховые косточки (молоточек, наковальня, стремечко) и евстахиева (слуховая) труба

Слуховые косточки проводят и усиливают звуковые колебания в 50 раз. Евстахиева труба, соединённая с носоглоткой, обеспечивает выравнивание давления на барабанную перепонку

Внутреннее ухо

Орган слуха: овальное и круглое окна, улитка с полостью, заполненной жидкостью, и кортиев орган – звуковоспринимающий аппарат

Слуховые рецепторы, находящиеся в кортиевом органе, преобразуют звуковые сигналы в нервные импульсы, которые передаются на слуховой нерв, а затем в слуховую зону коры больших полушарий

Орган равновесия (вестибулярный аппарат): три полукруглых канала, отолитовый аппарат

Воспринимает положение тела в пространстве и передаёт импульсы в продолговатый мозг, затем в вестибулярную зону коры больших полушарий; ответные импульсы помогают поддерживать равновесие тела

Рис . 12.10. Органы слуха и равновесия . Наружное, среднее и внутреннее ухо, а также отходящие от рецепторных элементов органа слуха (кортиев орган) и равновесия (гребешки и пятна) слуховая и преддверная (вестибулярная) ветви преддверно–улиткового нерва (VIII пара черепных нервов).

Механизм передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются покровной (текториальной) мембраны, и вследствие механического раздражения в них возникает возбуждение, которое передаётся далее на волокна преддверно-улиткового нерва (рис. 12.11).

Рис . 12.11. Перепончатый канал и спиральный (кортиев) орган . Канал улитки разделён на барабанную и вестибулярную лестницы и перепончатый канал (средняя лестница), в котором расположен кортиев орган. Перепончатый канал отделён от барабанной лестницы базилярной мембраной. В её составе проходят периферические отростки нейронов спирального ганглия, образующие синаптические контакты с наружными и внутренними волосковыми клетками.

Расположение и структура рецепторных клеток кортиевого органа. На основной мембране расположены два вида рецепторных волосковых клеток: внутренние и наружные, отделённые друг от друга кортиевыми дугами.

Внутренние волосковые клетки располагаются в один ряд; общее число их по всей длине перепончатого канала достигает 3 500. Наружные волосковые клетки располагаются в 3-4 ряда; их общее число 12 000-20 000. Каждая волосковая клетка имеет удлинённую форму; один её полюс фиксирован на основной мембране, второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереоцилии . Их число на каждой внутренней клетке составляет 30-40 и они очень короткие – 4-5 мкм; на каждой наружной клетке число волосков достигает 65-120, они тоньше и длиннее. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной (текториальной) мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

Механизм слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микрофиламентов), связывающих между собой верхушки соседних волосков данной клетки. Это натяжение чисто механически открывает от 1 до 5 ионных каналов в мембране стереоцилии. Через открытый канал в волосок начинает течь калиевый ионный ток. Сила натяжения нити, необходимая для открытия одного канала, ничтожна, около 2·10 -13 ньютон. Ещё более удивительным кажется то, что наиболее слабые из ощущаемых человеком звуков растягивают вертикальные нити, связывающие верхушки соседних стереоцилий, на расстояние, вдвое меньшее, чем диаметр атома водорода.

Тот факт, что электрический ответ слухового рецептора достигает максимума уже через 100-500 мкс (микросекунд), означает, что ионные каналы мембраны открываются непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно медленнее работающих фоторецепторов.

Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию возбуждения постсинаптического потенциала и далее генерацию распространяющихся в нервных центрах импульсов.

Открытие всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилий (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими поперечными нитями. Поэтому, когда сгибается один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Бинауральный слух. Человек и животные обладают пространственным слухом, т.е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора (бинауральный слух).

Острота бинаурального слуха у человека очень высока: он способен определять расположение источника звука с точностью порядка 1 углового градуса. Физиологической основой этого служит способность нейронных структур слухового анализатора оценивать интерауральные (межушные) различия звуковых стимулов по времени их прихода на каждое ухо и по их интенсивности. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и большей силы, чем на другое. Оценка удалённости звука от организма связана с ослаблением звука и изменением его тембра.

Слух является органом чувств человека, который способен воспринимать и различать звуковые волны, состоящие из чередующихся уплотнений и разрежений воздуха с частотой от 16 до 20000 Гц. Частота в 1 Гц (герц) равен 1 колебанию за 1 сек.). Инфразвуки (частота менее 20 Гц) и ультразвуки (частота более 20000 Гц) орган слуха человека не способен воспринимать.

Слуховой анализатор человека состоит из трех частей:

Рецепторного аппарата, содержащегося во внутреннем ухе;

Нервных проводящих путей (восьмой пары черепно-мозговых нервов);

Центра слуха, который расположен в височных долях коры больших полушарий.

Слуховые рецепторы (фонорецепторы, или Кортиев орган) содержатся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания, прежде чем дойти до слуховых рецепторов, проходят через систему звукопроводящих и звукоусилительных приспособлений органа слуха которым с ухо.

Ухо в свою очередь состоит из 3-х частей: внешнего, .

Наружное ухо служит для улавливания звуков и состоит из ушной раковины и из наружного слухового прохода. Ушная раковина образована эластичным хрящом, снаружи покрыта кожей, а внизу дополнена складкой, которая заполнена жировой тканью и называется мочка.

Наружный слуховой проход имеет длину до 2,5 см, выслан кожей с тонкими волосами и видоизмененными потовыми железами, которые вырабатывают ушную серу, состоящий из жировых клеток и выполняет функцию защиты полости уха от пыли и воды. Заканчивается наружный слуховой проход барабанной перепонкой, которая способна воспринимать звуковые волны.

состоит из барабанной полости и слуховой (евстахиевой) трубы . На границе между наружным и средним ухом находится барабанная перепонка, которая снаружи покрыта эпителием, а изнутри слизистой оболочкой. Звуковые колебания, подходящие к барабанной перепонке, заставляют ее колебаться с той же самой частотой. С внутренней стороны перепонки находится барабанная полость, внутри которой расположены соединенные между собой слуховые косточки: молоточек (прирастает к барабанной перепонке), наковальня и стремечко (закрывает овальное окно преддверия внутреннего уха). Через систему слуховых косточек колебания барабанной перепонки передаются во внутреннее ухо. Слуховые косточки размещены так, что образуют рычаги, уменьшающие размах звуковых колебаний, но способствуют их усилению.

Парные евстахиевы трубы соединяют полости внутреннего левого и правого уха с носоглоткой, что способствует уравновешиванию атмосферного и звукового (при открытом рте) давления снаружи и изнутри барабанной перепонки.

Внутреннее ухо расположено в полости пирамиды височной кости и делится на костный и перепончатый лабиринт. Первый представляет собой костные полости и состоит из преддверия, трех полукружных каналов (местоположение вестибулярного аппарата органа равновесия, о котором будет речь идти дальше) и завитка внутреннего уха. Перепончатый лабиринт образован соединительной тканью и представляет собой сложную систему канальцев, содержащиеся в полостях костных лабиринтов. Все полости внутреннего уха заполнены жидкостью, которая в середине перепончатого лабиринта называется эндолимфа, а вне его — перилимфа. В преддверии есть два перепончатых тела: круглый и овальный мешочки. От овального мешочка (пестики) пятью отверстиями начинаются перепончатые лабиринты трех полукружных каналов, образуя вестибулярный аппарат, а с круглым мешочком связан перепончатый улитковый ход.

Завиток внутреннего уха межкостных лабиринт улитки длиной до 35 мм, что продольными базальной и присинковой (Рейснера) мембранами делится на вестибулярные или преддверия лестницы (начинаются от овального окна преддверия), барабанные лестницы (заканчиваются круглым окном, или вторичной барабанной перепонкой пригинка, то делает возможным колебания перилимфе) и средние ступени или перепончатый улитковый ход из соединительной ткани. Полости вестибулярных и барабанных лестницы на вершине улитки (что маг 2,5 оборота вокруг своей оси) соединены между собой тонким каналом (гечикотремою) и заполнены, как указывалось, перилимфой, а полость перепончатого улиткового хода заполнена эндолимфой. В середине перепончатого улиткового хода, содержится звукосприймаючий аппарат под названием спирального, или кортиева органа (орган Корти). Этот орган имеет основную (базальную) мембрану, состоящую примерно из 24 тыс. фиброзных волоконец. На основной мембране (Пластинке), вдоль нее расположен ряд опорных и 4 ряда волосковых (чувствительных) клетки, которые и являются слуховыми рецепторами. Второй структурной частью кортиевого органа является покровная, или волокнистая пластинка, нависающей над волосковых клеток и которую поддерживают клетки-столбы, или палочки Корти. Специфической особенностью волосковых клеток является наличие на вершине каждой из них до 150 волосков (микро-ворсинок) . Выделяют один ряд (3,5 тыс.) внутренних и 3 ряда (до 20 тыс.) внешних волосковых клеток, которые отличаются по уровню чувствительности (для возбуждения внутренних клеток требуется больше энергии, так как их волоски почти не контактируют с покровной пластинкой). Волоски внешних волосковых клеток омываются эндолимфой и непосредственно соприкасаются и частично погружены в вещество покровной пластинки. Основы волосковых клеток охватываются нервными отростками завитковом ветви слухового нерва. В продолговатом мозге (в зоне ядра VIII пары черепно-мозговых нервов) содержится второй нейрон слухового тракта. Далее этот путь идет в нижних бугорков чотиригорбикового тела (крыши) среднего мозга и, частично перекрещиваясь на уровне медиальных коленчатых тел таламуса, направляется в центры первичной слуховой коры (первичных слуховых полей), содержащихся в области сильвиевой борозды верхней части левой и правой височных долей коры головного мозга. Ассоциативные слуховые поля, различают тональность, тембр, интонации и другие оттенки звуков, а также сравнивают текущую информацию с той, что есть в памяти человека (обеспечивают «упоминание» звуковых образов) примыкают к первичным и охватывают значительную площадь.

Для органа слуха адекватным раздражителем являются звуковые волны, исходящие от вибрации упругих тел. Звуковые колебания в воздухе, воде и других средах подразделяются на периодические (которые называются тона и бывают высокими и низкими) и непериодические (шумы) Основной характеристикой каждого звукового тона является длина звуковой волны, которой соответствует определенная частота (количество) колебаний за 1 сек. Длина звуковой волны определяется путем деления пути, проходимого звук за I сек на количество полных колебаний, осуществляемых тело, которое звучит, за то же время. Как, указывалось, человеческое ухо способно воспринимать звуковые колебания в пределах 16-20000 Гц, сила которых выражается в децибелах (дБ). Сила звука зависит от размаха (амплитуды) колебаний воздушных частиц и характеризуется тембром (окраской). Наибольшую возбудимость ухо имеет к звукам с частотой колебаний от 1000 до 4000 Гц. Ниже и выше этого показателя возбудимость уха снижается.

В современной физиологии принято резонансное теория слуха , которую в свое время предложил К. Л. Гельмгольц (1863). Воздушные звуковые волны, попадая в наружный слуховой проход, вызывают колебания барабанной перепонки, что дальше передается системе слуховых косточек, которые механически усиливают эти звуковые колебания барабанной перепонки в 35-40 раз и через стремечко и овальное окно преддверия передают их перилимфе, содержащийся в полости вестибулярной и барабанной ступенек завитка. Колебания перилимфе в свою очередь обусловливают синхронные колебания эндолимфы, содержащийся в полости улиткового хода. Это приводит соответствующее колебания базальной (основной) мембраны, волокна которого имеют разную длину, настроенные на разные тона и фактически представляют собой набор резонаторов, вибрирующие в унисон различным звуковым колебаниям. Кратчайшие волны воспринимаются у основания основной мембраны, а самые длинные — у верхушки.

Во время колебания соответствующих резонирующих участков основной мембраны колеблются и расположенные на ней базальные и чувствительные волосковые клетки. Конечные микроворсинки волосковых клеток деформируются от покровной пластинки, что и ведет к возникновению у этих клетках возбуждение слухового ощущения и дальнейшее проведение нервных импульсов по волокнам улиткового нерва в центральную нервную систему. Поскольку полной изоляции фиброзных волоконец основной мембраны нет, то одновременно начинают колебаться волоски и соседних клеток, что создает обертоны (звуковые ощущения, вызванные числом колебаний, которые в 2, 4, 8 и т. д. раз превышают число колебаний основного тона). Этот эффект обусловливает объемность и полифонию звуковых ощущений.

При длительном воздействии сильных звуков возбудимость звукового анализатора снижается, а при длительном пребывании в тишине — растет, что отражает адаптацию слуха. Наибольшая адаптация наблюдается в зоне более высоких звуков.

Чрезмерный и продолжительный шум ведет не только к потере слуха, но и может вызвать у людей психические нарушения. Различают специфическую и неспецифическую действие шума на организм человека. Специфическое действие проявляется в нарушениях слуха различной степени, а неспецифическая — в различных , расстройствах вегетативной реактивности, функционального состояния сердечно-сосудистой системы и пищеварительного тракта, эндокринных расстройствах и т.д.. У лиц молодого и среднего возраста при уровне шума 90 дБ, что продолжается в течение часа, снижается возбудимость клеток коры головного мозга, нарушается координация движений, острота зрения, устойчивость ясного видения, удлиняется латентный период зрительной и слухо-моторной реакции. По такой же продолжительности работы в условиях воздействия шума на уровне 95-96 дБ, наблюдается еще более резкие нарушения мозговой пробковой динамики, развивается запредельное торможение, усиливаются расстройства вегетативных функций, значительно ухудшаются показатели мышечной работоспособности (выносливости, утомляемости) и показатели работы. Длительное пребывание в условиях воздействия шума, уровень которого доходит 120 дБ, дополнительно к указанному вызывает нарушения в виде неврастенических проявлений: появляются раздражительность, головные боли, бессонница, расстройства эндокринной системы. При таких условиях также происходят значительные изменения в состоянии сердечно-сосудистой системы: нарушается тонус сосудов, ритм сердечных сокращений, возрастает артериальное давление.

Шум особенно негативно влияет на детей и подростков. Ухудшение функционального состояния слухового и других анализаторов наблюдается у детей уже под влиянием «школьного» шума, уровень интенсивности которого в основных помещениях школы колеблется от 40 до 5О дБ. В классе уровень интенсивности шума в среднем составляет 50-80 дБ, а во время перерывов и в спортивных залах и мастерских может достигать 95-100 дБ. Важное значение в уменьшении «школьного» шума имеет гигиенически правильное расположение учебных помещений в здании школы, а также использование звукоизолирующих материалов при отделке помещений, где генерируется значительный шум.

Улитковый орган функционирует со дня рождения ребенка но у новорожденных наблюдается относительная глухота , связанная с особенностями строения их уши: барабанная перегинка более толстая, чем у взрослых, и расположена почти горизонтально. Полость среднего уха у новорожденных заполненная амниотической жидкостью, что затрудняет колебания слуховых косточек. В течение ‘первые 1,5-2 месяцев жизни ребенка эта жидкость постепенно рассасывается, и вместо нее из носоглотки через слуховые (Евстахисви) трубы проникает воздух. Слуховая труба у детей шире и короче (2-2,5 см), чем у взрослых (3,5-4 см), что создает благоприятные условия для попадания микробов, слизи и жидкости во время срыгивания, рвота, насморка в полость среднего уха, что может обусловливать воспаление среднего уха (отит).

Становится в конце 2-го в начале 3-го месяца. На втором месяце жизни ребенок уже становится способным дифференцировать различные тона звуков, в 3-4 месяца начинает различать высоту звука в пределах от 1 до 4 октав, а в 4-5 месяцев звуки становятся условно-рефлекторными раздражителями. Дети 5-6 месяцев приобретают способность более активно реагировать на звуки родного языка, тогда как ответы на не специфические звуки постепенно исчезают. В возрасте 1-2 лет дети способны дифференцировать почти все звуки.

У взрослого человека порог чувствительности равен 10-12 дБ, у детей 6-9 лет 17-24 дБ, в 10-12 лет — 14-19 дБ. Наибольшая острота слуха достигается у детей среднего и старшего школьного возраста. Низкие тона дети воспринимают лучше.

Тема. Строение слуховой сенсорной системы

Наличие в кристаллах разориентированных областей (блоков), повернутых друг от­носительно друга на небольшие углы, отмечалось еще в ранних исследованиях кристаллов. Вскоре после открытия дифракции рентгеновских лучей кристаллами было установлено, что кристалл не обладает идеальной структурой: дифрагированные пучки, вопреки теории, распространились в области углов порядка не нескольких секунд, а несколь­ких минут, и обладали интенсивностью, на два порядка превосходящей расчет­ное значение. Пришлось предположить наличие в кристалле мозаики мелких (диаметром порядка 1 мкм) слабо разориентированных блоков. Это явление стали называть блочностью, или мозаичностью кристаллических структур (рис. 14.14).

грани DE и EF. Все лишние плоскости оканчиваются внутри бикристалла в единственной испорченной области, т. о. на границе блоков. Торец каждой оборванной плоскости образует краевую дислокацию, так что вся граница блоков представляется в виде вертикального ряда краевых дис­локации. Угол разориентации блоков определяется отношением вектора Бюргерса b к расстоянию h между дислокациями в гра­нице

Такая граница называется «границей наклона». Ее моделью может служить ряд дислокаций, параллельных оси поворота, обладающих вектором Бюргерса вдоль нормали к границе и располагающихся вдоль границы.

Блоки мозаики являются примером трехмерных (объемных) дефектов структуры кристалла. Практическая важность в исследовании причин образования и особенностей явления мозаичности заключается в том, что на границах блоков мозаики в кристаллах возникают значительные механические напряжения, что в ряде случаев нежелательно.

Тема. Строение слуховой сенсорной системы

Вопросы:

2. Барабанная перепонка. Строение, значение, возрастные особенности.

5. Характеристика проводникового и коркового отделов слухового анализатора. Их значение.

1. Наружное ухо: ушная раковина, наружный слуховой проход. Строение, значение, возрастные особенности.

Слуховая сенсорная система состоит из 3 отделов:

Периферический,

Проводниковый,

Корковый.

Периферический отдел представлен наружным, средним, внутренним ухом (рисунок 1).

Рисунок 1. Строение уха

Наружное ухо состоит из ушной раковины и наружного слухового прохода.

1. Ушная раковина состоит из эластического хряща, покрытого кожей. Особенно кожный этот хрящ у ребёнка, поэтому даже незначительные удары по уху могут привести к образованию гематомы, с последующим её нагноением и деформации раковины. Хрящ имеет множество завитков и углублений - это связано с его защитной функцией. Ухо имеет воронкообразную форму, которая способствует улавливанию звуков и локализацию их в пространстве. В нижней части ушной раковины хрящ отсутствует - точка уха. Она состоит целиком из жировой клетчатки. Величина ушной раковины, её форма, уровень прикрепления к голове у каждого человека индивидуально (наследуется генетически). Однако отлично характерное строение ушной раковины у детей (наследственными заболеваниями, болезнь Дауна). Ушная раковина прикрепляется к голове при помощи мышц и связок, причём мышцы, двигающие ушную раковину, носят рудиментарный характер (недоразвиты).

2. Наружный слуховой проход начинается углублением в центре ушной раковины и направлен вглубь височной кости, заканчивается барабанной перепонкой. Т.о. барабанная перепонка не относится ни к наружному, ни к среднему уху, а лишь отделяет их. У взрослых наружный слуховой проход имеет длину 2,5-3 см. У детей он короче из-за недоразвития костного отдела. У новорождённого слуховой проход имеет вид щели и заполнен слущившимися эпителиальными клетками. Только к 3месяцам этот проход полностью очищается. Наружное ухо по своим параметрам приближается к уху взрослого = 12 годам. Его просвет становится овальным, и диаметр составляет 0,7-1см. Нормальный слуховой проход состоит из 2 частей:

Наружная часть (перепончато-хрящевая) - является продолжением ушного хряща.

Внутренняя часть (костная) - в плотную подходит к барабанной перепонке. Особенностью строения является то, что, самый узкий участок наружного прохода расположен вместе перехода одной части в другую. Поэтому, именно здесь излюбленное место образования серной пробки. В коже наружного слухового прохода имеются волоски и серные железы, которые продуцируют серу.

Причина образования серной пробки:

1. избыточное продукция серы;

2. изменение свойств серы (повышенная вязкость);

3. анатомическая (врожденная) узость и изогнутость наружного слухового прохода.

Наружный слуховой проход имеет 4 стенки. Его передняя стенка прилегает к головке нижнечелюстного сустава, поэтому при ударах по подбородку происходит травматизация головкой нижнечелюстного сустава наружного слухового прохода и кровотечения.

2. Барабанная перепонка. Строение, значение, возрастные особенности

Барабанная перепонка отделяет наружное ухо от среднего. Представляет собой тонкую, но эластичную мембрану толщиной 0,1 мм, диаметр 0,8-1см. Барабанная перепонка имеет 3 слоя:

1. кожный (эпидермальный);

2. соединительнотканный;

3. слизистый.

Первый слой является продолжением кожи наружного слухового прохода. Второй слой состоит из густо переплетенных циркулярных и радиальных волокон. Третий слой является продолжением слизистой оболочки барабанной полости.

К центру барабанной перепонки прикрепляется рукоятка молоточка. Это место называется пупок. Барабанная перепонка имеет 3 слоя только в наружной части. Во второй её части расслабленной она имеет только 2 слоя без среднего. Осмотр барабанной перепонки называется отоскопия. При осмотре здоровая перепонка имеет перламутрово-белый цвет, форму конуса, выпуклостью обращённой внутрь, т.е. в ухо.



Рисунок 2. Строение барабанной перепонки

3. Среднее ухо: барабанная полость, слуховые косточки, слуховые мышцы, слуховая труба, сосцевидный отросток. Строение, значение.

Среднее ухо состоит из:

Барабанной полости, в ней находятся слуховые косточки, слуховые мышцы и евстахиевы трубы;

Ячейки воздухоносного сосцевидного отростка;

Барабанная полость имеет вид шестигранника:

а/ верхняя стенка барабанной полости - крыша. У маленьких детей она имеет отверстие. Поэтому очень часто у детей гнойные отиты осложняются прорывом гноя на мозговые оболочки (гнойный менингит);

б/ нижняя стенка - дно, имеет отверстие, что может приводить к прорыву инфекции в кровь, в кровеносные русла. Так как нижняя стенка расположена над луковицей яремной вены. Это может привести к осложнению (сепсис онтогенный);

в/ передняя стенка. На передней стенке расположены отверстия - вход в евстахиеву трубу;

г/ задняя стенка. На ней расположен вход в пещеру сосцевидного отростка. Задней стеной барабанной полости является костная пластинка, которая отделяет средне ухо от внутреннего. На ней имеются 2 отверстия: одно из них называют овальное и круглое окно. Овальное окно закрыто стременем. Круглое окно прикрыто вторичной барабанной перепонкой. В области задней стенки проходит костный канал лицевого нерва. При воспалении среднего уха инфекция может переходить на этот нерв, вызывая неврит лицевого нерва, и как следствие перекосы лица.

Слуховые косточки соединены в определённой последовательности:

молоточек, наковальня, стремя.

Рисунок 3. Строение слуховых косточек

Рукоятка молоточка соединяется с центром барабанной перепонки. Головка молоточка соединяется с помощью сустава с телом наковальни. Подножная пластинка стремени вставляется в овальное окно, которое расположено на костной стенке внутреннего уха. Т.о. колебания барабанной перепонки через систему слуховых косточек передаются на внутреннее ухо. Слуховые косточки подвешены в барабанной полости при помощи связок. В полости среднего уха есть слуховые мышцы (их 2):

Мышца, натягивающая барабанную перепонку. Она принадлежит защитной функции. Она предохраняет барабанную перепонку от повреждения при действии сильных раздражителей. Это связано с тем, что при сокращении этой мышцы движение барабанной перепонки ограничено.

Мышца стременная. Она отвечает за подвижность стремени в овальном окне, что имеет большое значение для проведения звуков во внутреннее ухо. Установлено, что при блокаде овального окна развивается глухота.

Слуховая «евстахиева» труба. Это парное образование, которое соединяет носоглотку и полость среднего уха. Вход в евстахиеву трубу расположен на задней стенке барабанной полости. Евстахиева труба состоит из 2 отделов: костного (1/3 трубы), перепончатого (2/3 трубы). Костный отдел сообщается с барабанной полостью, а перепончатый - носоглоткой.

Длина слуховой трубы у взрослого человека = 2,5см, диаметр = 2-3мм. У детей она короче и шире чем у взрослого. Это связано с недоразвитием костной кости слуховой трубы. Поэтому у детей инфекция может легко переходить из барабанной перепонки на слизистую слуховой трубы и носоглотку, и наоборот, из носоглотки поступать в среднее ухо. Поэтому дети часто болеют отитом, источником которого является воспалительный процесс в носоглотке. Слуховая труба выполняет вентиляционную функцию. Установлено, что в спокойном состоянии её стенки прилегают друг к другу. Открытие труб происходит во время глотания, зевания. В этот момент воздух из носоглотки поступает в полость среднего уха - дренажная функция трубы. Она является той трубой, которая способствует оттоку гноя или другого ээксудата из полости среднего уха при воспалении. Если этого не происходит, возможен прорыв инфекции через крышу на мозговые оболочки, либо разрыв барабанной перепонки (прободение).

Рисунок 4 - Строение среднего уха.

Воздухоносные ячейки сосцевидного отростка.

Сосцевидный отросток находится на безволосом пространстве позади ушной раковины. На разрезе сосцевидный отросток напоминает «пористый шоколад». Самая большая воздухоносная ячейка сосцевидной кости называется пещера. Она имеется уже у новорождённого. Она выстлана слизистой оболочкой, которая является продолжением слизистой оболочки барабанной полости. Благодаря соединению пещеры и барабанной полости, инфекция может переходить из среднего уха в пещеру, а затем на костное вещество сосцевидного отростка, вызывая его воспаление - мастоидит.

4. Внутреннее ухо: костный и перепончатый лабиринт. Кортиев орган, строение, значение.

Внутреннее ухо (лабиринт) состоит из 2 частей: костного и перепончатого лабиринтов. Между ними находится перелимфотическое пространство, которое заполнено ушной жидкостью - перилимфой. Внутри перепончатого лабиринта также есть лимфа - эндолимфа. Т.о. во внутреннем ухе имеется 2 ушные жидкости, которые отличаются по составу и функциям. Перилимфа - по своему составу напоминает спинномозговую жидкость, но содержит при этом больше белка и ферментов. Её основная функция - это приведение в колебательное состояние основной мембраны. Эндолимфа - по своему составу похожа на внутриклеточную жидкость. В ней много растворимого кислорода, и поэтому она служит питательной средой для кортиевого органа.

Лабиринт имеет 3 отдела: преддверие, полукружные каналы, улитка. Преддверие и полукружные каналы относятся к вестибулярному аппарату. Улитка относится к слуховой сенсорной системе. Она по форме напоминает садовую улитку, образована спиральным каналом, который закруглён в 2,5 оборота. Диаметр канала уменьшается от основания к вершине улитки. В центре улитки находится спиральный гребень, вокруг которого закручена спиральная пластина. Эта пластина выдаётся в просвет спирального канала. На разрезе этот канал имеет следующее строение: двумя мембранами основной и вестибулярный аппарат делится на 3 части, в центре образуя улитковый вход. Верхняя мембрана называется вестибулярная, нижняя - основная. На основной мембране периферический рецептор уха - кортиев орган. Т.о кортиев орган расположен в улитковом ходу, на основной мембране.

Основная мембрана - это наиболее значимая стенка улиткового хода, состоит из множества натянутых струн, которые называются слуховые струны. Установлено, что длина струн и их степень натяжения зависит от того, на каком завитке улитки они находятся. Выделяют 3 завитка улитки:

основной (нижний), средний, верхний. Установлено, что в нижнем завитке находятся короткие и тугонатянутые струны. Они резонируют на высокие звуки. На верхнем завитке находятся длинные и слабонатянутые струны. Они резонируют на низкие звуки.

Кортиев орган является периферическим рецептором слуха. Состоит из 2 видов клеток:

1.Опорные клетки (столбовые) - имеют вспомогательное значение.

2.Волосковые (наружные и внутренние). В них происходит трансформация звуковой энергии в физиологический процесс нервного возбуждения, т.е. образование нервных импульсов.

Опорные клетки расположены под углом друг к другу, образуя тоннель. В нём, в один ряд, располагаются внутренние волосковые клетки. По своей функции эти клетки являются вторичночувствующими. Их головной конец закруглён и имеет волоски. Сверху волоски покрывает мембрана, которая называется покровной. Установлено, что при смещении покровной мембраны относительно волосков, возникают ионные токи.

Рисунок 5 – Строение внутреннего уха.

Слух – это способность организма человека и животных воспринимать звуковые раздражения. Звук, в свою очередь, можно определить как колебательное движение частиц упругой среды (газ, жидкость, твердое тело), распространяющееся в виде продольной волны. Звуковые колебания характеризуются частотой (инфразвук – до 15-20 Гц; собственно звук, т.е. звук, слышимый человеком, – от 16 Гц до 20 кГц; ультразвук – выше 20 кГц), скоростью распространения (зависит от свойств среды): в воздухе – примерно 340 м/с, в морской воде – 1550 м/с) и интенсивностью (силой). На практике применяют сравнительную величину для измерения интенсивности звука – уровень звукового давления, который измеряется относительно порога слышимости человека в децибелах (дБ). Звуки, содержащие колебания только одной частоты (чистые тона), встречаются редко. Большинство звуков образовано наложением нескольких частот.

Чувствительность слуха оценивается по абсолютному порогу слышимости – минимальной улавливаемой интенсивности звука. Чем меньше величина порога слышимости, тем выше чувствительность слуха. Абсолютный порог слышимости, в свою очередь, зависит от частоты тона. Для человека наиболее низкий порог слышимости регистрируется при 1-4 кГц. При действии звуков очень высокой интенсивности возникает болевое ощущение.

Слуховая система, как и другие сенсорные системы, способна к адаптации. В этом процессе участвуют как периферический отдел, так и нейроны ЦНС. Адаптация проявляется во временном повышении слухового порога.

Как уже говорилось, человек воспринимает звуки с частотой от 16 до 20000 Гц. Этот диапазон с возрастом уменьшается за счет сокращения его высокочастотной части. После 40 лет верхняя граница частоты слышимых звуков каждый год становится меньше примерно на 160 Гц.

Диапазон частот, воспринимаемых различными животными, отличается от человеческого. Так, у рептилий он простирается от 50 до 10000 Гц, а у птиц от 30 до 30000 Гц. Ряд животных (дельфины, летучие мыши) способны определять положение объекта в пространстве благодаря особому виду слуха эхолокации – восприятию звуковых сигналов, которые испускаются самим животным и отражаются от объекта.



Орган слуха

Органом слуха является ухо, в котором выделяют три отдела – наружное ухо, среднее ухо и внутреннее ухо, в котором собственно и находятся слуховые рецепторы.

Наружное и среднее ухо

Наружное ухо (рис. 13) состоит из ушной раковины и наружного слухового прохода.

Ушная раковина – эластичный хрящ, покрытый кожей. Функция ушной раковины – звуколокация; она направляет звуковые колебания в наружный слуховой проход, обеспечивая при этом улучшенное восприятие звуков, идущих с определенного направления. У человека ушная раковина рудиментарна и лишена подвижности.

Наружный слуховой проход – полость в виде трубки, покрытая кожей и ведущая к среднему уху. Средняя длина наружного слухового прохода человека составляет 26 мм, средняя площадь – 0,4 см 2 . Кожа слухового прохода содержит большое количество сальных желез, а также желез, вырабатывающих ушную серу, которая играет защитную роль, задерживая пыль и микроорганизмы и предохраняя барабанную перепонку от высыхания.

Наружный слуховой проход заканчивается барабанной перепонкой, отделяющей его от среднего уха. Это натянутая мембрана воронковидной формы между наружным и средним ухом, передающая звуковые вибрации на слуховые косточки среднего уха. Перепонка состоит из соединительнотканных волокон и имеет площадь около 0,6 см 2 .

Среднее ухо – полость в каменистой части височной кости, заполненная воздухом и содержащая слуховые косточки (рис. 13). Объем полости среднего уха, или барабанной полости, около 1 см 3 .

Главная часть среднего уха – это слуховые косточки – небольшие косточки (молоточек, наковальня и стремечко), последовательно связанные между собой и передающие звуковые колебания от барабанной перепонки к мембране овального окна внутреннего уха. Молоточек соединен с барабанной перепонкой, а стремечко – с овальным окном. Слуховые косточки соединены друг с другом подвижно, при помощи суставов. С ними связаны две маленькие мышцы, которые регулируют движения цепи косточек. Степень сокращения этих мышц меняется в зависимости от громкости звука, предохраняя внутреннее ухо от слишком сильных колебаний.

Барабанная полость соединена с носоглоткой евстахиевой трубой . Благодаря ей поддерживается равновесие между давлением в барабанной полости и внешним атмосферным давлением. При отсутствии такого равновесия возникает ощущение «заложенности» ушей (например, в самолете), которое может быть снято сглатыванием. При глотании просвет евстахиевых труб расширяется, что облегчает поступление воздуха в полость среднего уха. К сожалению, через этот же канал могут проникать микроорганизмы, вызывая воспаление – отит среднего уха.

Внутреннее ухо

Внутреннее ухо или лабиринт (рис. 13) – система полостей и извитых каналов, лежащих в каменистой части височной кости. Различают костный лабиринт и лежащий внутри него перепончатый лабиринт.

Костный лабиринт ограничен костью. В нем различают три части – преддверие (vestibulum ), полукружные каналы (canales semicirculares ) и улитку (cochlea ). Преддверие и полукружные каналы относятся к вестибулярному анализатору, улитка – к слуховому.Перепончатый лабиринт находится внутри костного и более или менее повторяет форму послежнего. Стенки перепончатого лабиринта образованы тонкой соединительнотканной перепонкой. Между костным и перепончатым лабиринтами находится жидкость – перилимфа; сам перепончатый лабиринт заполнен эндолимфой. Все полости перепончатого лабиринта соединены друг с другом системой протоков.

Улитка – часть внутреннего уха в виде спирально закрученного канала. Улитка образует примерно 2,5 оборота вокруг костного стержня. В основании этого стержня находится полость, в которой лежит спиральный ганглий.

На продольном и поперечном разрезах через улитку видно (рис. 13, 14), что она разделена на три отдела двумя мембранами – базилярной или основной (нижней) и вестибулярной или Рейснера (верхней). Средний отдел – это перепончатый лабиринт улитки, он носит название средняя лестница или улиточный проток. Над ним расположена вестибулярная лестница, а под ним барабанная лестница. Улиточный проток заканчивается слепо, вестибулярная и барабанная лестницы на вершине улитки соединяются при помощи небольшого отверстия – геликотремы, составляя, по существу, единый канал, заполненный перилимфой. Полость средней лестницы заполнена эндолимфой.

Вестибулярная лестница берет начало от овального окна – тонкой мембраны, соединенной со стремечком и находящейся между средним ухом и преддверием внутреннего уха. Барабанная лестница начинается от круглого окна – мембраны, находящейся между средним ухом и улиткой.

Звуковые волны, попадая в наружное ухо, раскачивают барабанную перепонку, а затем по цепи слуховых косточек достигают овального окна и вызывают его колебания. Последние распространяются по перилимфе, вызывая колебания базилярной мембраны. Т.к. жидкость несжимаема, колебания гасятся на круглом окне, т.е. когда овальное окно вдается в полость вестибулярной лестницы, круглое окно выгибается в полость среднего уха.

Базилярная мембрана представляет собой упругую пластинку, пронизанную слабо натянутыми поперек белковыми волокнами (до 24000 волокон разной длины). Плотность и ширина базилярной мембраны на разных участках различна. Жестче всего мембрана у основания улитки, а к ее вершине пластичность увеличивается. У человека в основании улитки ширина мембраны составляет 0,04 мм, затем, постепенно увеличиваясь, она достигает у вершины улитки 0,5 мм. Т.е. мембрана расширяется там, где сама улитка сужается. Длина мембраны около 35 мм.

На базилярной мембране расположен кортиев орган , содержащий более 20 тысяч слуховых рецепторов, расположенных между опорными клетками. Слуховыерецепторы представляют собой волосковые клетки (рис. 15); за счет их деятельности колебания жидкости внутри улитки преобразуются в электрические сигналы.На поверхности каждой рецепторной клетки находится несколько рядов убывающих по длине волосков (стереоцилий), заполненных цитоплазмой, их около сотни. Волоски выходят в полость улиточного протока, и кончики самых длинных из них погружены в покровную желеобразную мембрану, лежащую над кортиевым органом по всей его длине. Вершины волосков связаны тончайшими белковыми нитями, по-видимому соединенными с ионными каналами. Если волоски изгибаются, белковые нити натягиваются, открывая каналы. В результате возникает входящий ток катионов, развивается деполяризация и рецепторный потенциал. Таким образом, адекватным раздражителем для слуховых рецепторов является изгибание волоска, т.е. эти рецепторы являются механорецепторами.

Звуковая волна, проходя по перилимфе, вызывает колебания базилярной мембраны, представляющие собой так называемую бегущую волну (рис. 16), которая распространяется от основания улитки к ее вершине. В зависимости от частоты звука амплитуда этих колебаний различается в разных частях мембраны. Чем выше звук, тем более узкая часть мембраны раскачивается с максимальной амплитудой. Кроме того, амплитуда колебаний зависит, естественно, и от силы звука. При колебаниях базилярной мембраны волоски сидящих на ней рецепторов, контактирующие с покровной мембраной, смещаются. Это вызывает открывание ионных каналов, что приводит к возникновению рецепторного потенциала. Величина рецепторного потенциала пропорциональна степени смещения волосков. Минимальное смещение волосков, вызывающее ответ, составляет всего 0,04 нм – меньше диаметра атома водорода.

Слуховые волосковые рецепторы – вторичночувствующие. Для передачи сигнала в ЦНС к каждому из них подходят дендриты биполярных нервных клеток, тела которых лежат в спиральном ганглии (рис. 14, 19). Дендриты формируют синапс с волосковыми рецепторами (медиатор – глутаминовая кислота). Чем больше деформация волосков, тем больше рецепторный потенциал и количество выделяемого медиатора, а, значит, и больше частота нервных импульсов, распространяющихся по волокнам слухового нерва. Кроме того, к некоторым слуховым рецепторам подходят эфферентные волокна, приходящие из ЦНС от ядер верхних олив (см. ниже). Благодаря им можно в некоторой степени регулировать чувствительность рецепторов.

Аксоны нейронов спирального ганглия образуют улиточный (кохлеарный) нерв (слуховая часть VIII пары черепных нервов). У человека в улиточном нерве примерно 30 тысяч волокон. Он идет к слуховым ядрам, расположенным на границе продолговатого мозга и моста.

Таким образом, периферический анализ свойств звукового раздражителя заключается в определении его высоты и громкости. При этом для каждого участка базилярной мембраны характерна «настроенность» на определенную частоту звука – частотная дисперсия. В результате волосковые клетки в зависимости от своей локализации избирательно реагируют на звук разной тональности. Поэтому можно говорить о тонотопическом (греч. tonos – тон) расположении волосковых клеток.



Понравилась статья? Поделитесь ей
Наверх