Производственный шум. Его источники и характеристики. Различие звука и шума

Шум — это совокупность звуков, неблагоприятно воздействующих на организм человека и мешающих его работе и отдыху.

Источниками звука являются упругие колебания материальных частиц и тел, передаваемых жидкой, твердой и газообразной средой.

Скорость звука в воздухе при нормальной температуре составляет приблизительно 340 м/с, в воде -1 430 м/с, в алмазе — 18 000 м/с.

Звук с частотой от 16 Гц до 20 кГц называется слышимый, с частотой менее 16 Гц — и более 20 кГц — .

Область пространства, в котором распространяются звуковые волны, называется звуковым полем, которое характеризуется интенсивностью звука, скоростью его распространения и звуковым давлением.

Интенсивность звука — это количество звуковой энергии, передаваемой звуковой волной за 1 с через площадку 1 м 2, перпендикулярную направлению распространения звука, Вт/м2.

Звуковое давление — им называется разность между мгновенным значением полного давления, создаваемого звуковой волной и средним давлением, которое наблюдается в невозмущенной среде. Единица измерения — Па.

Порог слуха молодого человека в диапазоне частот от 1 000 до 4 000 Гц соответствует давлению 2× 10-5 Па. Наибольшее значение звукового давления, вызывающего болезненные ощущения, называется порогом болевого ощущения и составляет 2× 102 Па. Между этими значениями лежит область слухового восприятия.

Интенсивность воздействия шума на человека оценивается уровнем звукового давления (L), который определяется как логарифм отношения эффективного значения звукового давления к пороговому. Единица измерения — децибел, дБ.

На пороге слышимости при среднегеометрической частоте 1 000 Гц уровень звукового давления равен нулю, а на пороге болевого ощущения — 120-130 дБ.

Окружающие человека шумы имеют разную интенсивность: шепот — 10-20 дБА, разговорная речь — 50-60 дБА, шум от двигателя легкового автомобиля — 80 дБА, а от грузового — 90 дБА, шум от оркестра — 110-120 дБА, шум при взлете реактивного самолета на расстоянии 25 м — 140 дБА, выстрел из винтовки — 160 дБА, а из тяжелого орудия — 170 дБА.

Виды производственного шума

Шум, в котором звуковая энергия распределена по всему спектру, называется широкополосным ; если прослушивается звук определенной частоты, шум называется тональным ; шум, воспринимаемый как отдельные импульсы (удары), называется импульсным.

В зависимости от характера спектра шумы разделяются на низкочастотные (максимальное звуковое давление меньше 400 Гц), среднечастотные (звуковое давление в пределах 400-1000 Гц) и высокочастотные (звуковое давление больше 1000 Гц).

В зависимости от временных характеристик шумы разделяются на постоянные и непостоянные.

Непостоянные шумы бывают колеблющимися по времени, уровень звука которых непрерывно изменяется во времени; прерывистыми, уровень звука которых резко падает до уровня фонового шума; импульсными , состоящими из сигналов менее 1 с.

В зависимости от физической природы шумы могут быть:

  • механическими - возникающими при вибрации поверхностей машин и при одиночных или периодических ударных процессах (штамповка, клепка, обрубка и т.п.);
  • аэродинамическими — шумы вентиляторов, компрессоров, двигателей внутреннего сгорания, выпусков пара и воздуха в атмосферу;
  • электромагнитными - возникающими в электрических машинах и оборудовании за счет магнитною поля, обусловленного электрическим током;
  • гидродинамическими - возникающими вследствие стационарных и нестационарных процессов в жидкостях (насосы).

В зависимости от характера действия шумы делятся на стабильные, прерывистые и воющие ; последние два особенно неблагоприятно действуют на слух.

Шум создается одиночными или комплексными источниками, находящимися снаружи или внутри здания, — это прежде всего транспортные средства, техническое оборудование промышленных и бытовых предприятий, вентиляторные, газотурбокомпрессорные установки, санигарно-техническое оборудование жилых зданий, трансформаторы.

В производственной сфере шумы наиболее распространены в промышленности и сельском хозяйстве. Значительный уровень шума наблюдается в горнорудной промышленности, машиностроении, лесозаготовительной и деревообрабатывающей, текстильной промышленности.

Воздействие шума на организм человека

Шум, возникающий при работе производственного оборудования и превышающий нормативные значения, воздействует на центральную и вегетативную нервную систему человека, органы слуха.

Шум воспринимается весьма субъективно. При этом имеет значение конкретная ситуация, состояние здоровья, настроение, окружающая обстановка.

Основное физиологическое воздействие шума заключается в том, что повреждается внутреннее ухо, возможны изменения электрической проводимости кожи, биоэлектрической активности головного мозга, сердца и скорости дыхания, общей двигательной активности, а также изменения размера некоторых желез эндокринной системы, кровяного давления, сужение кровеносных сосудов, расширение зрачков глаз. Работающий в условиях длительного шумового воздействия испытывает раздражительность, головную боль, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, нарушение сна. В шумном фоне ухудшается общение людей, в результате чего иногда возникает чувство одиночества и неудовлетворенности, что может привести к несчастным случаям.

Длительное воздействие шума, уровень которого превышает допустимые значения, может привести к заболеванию человека шумовой болезнью — нейросенсорная тугоухость. На основании всего выше сказанного шум следует считать причиной потери слуха, некоторых нервных заболеваний, снижения продуктивности в работе и некоторых случаях потери жизни.

Гигиеническое нормирование шума

Основная цель нормирования шума на рабочих местах — это установление предельно допустимого уровня шума (ПДУ), который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

Допустимый уровень шума — это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.

Предельно допустимые уровни шума на рабочих местах регламентированы СН 2.2.4/2.8.562-96 “Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки”, СНиП 23-03-03 “Защита от шума”.

Мероприятия по защите от шума

Защита от шума достигается разработкой шумобезопасной техники, применением средств и методов коллективной защиты, а также средств индивидуальной защиты.

Разработка шумобезопасной техники — уменьшение шума в источнике — достигается улучшением конструкции машин, применением малошумных материалов в этих конструкциях.

Средства и методы коллективной защиты подразделяются на акустические, архитектурно-планировочные, организационно-технические.

Защита от шума акустическими средствами предполагает:

  • звукоизоляцию (устройство звукоизолирующих кабин, кожухов, ограждений, установку акустических экранов);
  • звукопоглощение (применение звукопоглощающих облицовок, штучных поглотителей);
  • глушители шума (абсорбционные, реактивные, комбинированные).

Архитектурно-планировочные методы — рациональная акустическая планировка зданий; размещение в зданиях технологического оборудования, машин и механизмов; рациональное размещение рабочих мест; планирование зон движения транспорта; создание шумозащищенных зон в местах нахождения человека.

Организационно-технические мероприятия — изменение технологических процессов; устройство дистанционного управления и автоматического контроля; своевременный планово-предупредительный ремонт оборудования; рациональный режим труда и отдыха.

Если невозможно уменьшить шум, действующий на работников, до допустимых уровней, то необходимо использовать средства индивидуальной защиты (СИЗ) — противошумные вкладыши из ультратонкого волокна “Беруши” одноразового использования, а также противошумные вкладыши многократного использования (эбонитовые, резиновые, из пенопласта) в форме конуса, грибка, лепестка. Они эффективны для снижения шума на средних и высоких частотах на 10-15 дБА. Наушники снижают уровень звукового давления на 7-38 дБ в диапазоне частот 125-8 000 Гц. Для предохранения от воздействия шума с общим уровнем 120 дБ и выше рекомендуется применять шлемофоны, оголовья, каски, которые снижают уровень звукового давления на 30-40 дБ в диапазоне частот 125-8 000 Гц.

См.также

Защита от производственного шума

Основные мероприятия по борьбе с шумом — это технические мероприятия, которые проводятся потрем главным направлениям:

  • устранение причин возникновения шума или снижение его в источнике;
  • ослабление шума на путях передачи;
  • непосредственная защита работающих.

Наиболее эффективным средством снижения шума является замена шумных технологических операций малошумными или полностью бесшумными, однако этот путь борьбы с шумом не всегда возможен, поэтому большое значение имеет снижение шума в источнике — путем совершенствования конструкции или схемы той части оборудования, которая производит шум, использования в конструкции материалов с пониженными акустическими свойствами, оборудования на источнике шума дополнительного звукоизолирующего устройства или ограждения, расположенного по возможности ближе к источнику.

Одним из наиболее простых технических средств борьбы с шумом на путях передачи является звукоизолирующий кожух , закрывающий отдельный шумный узел машины.

Значительный эффект снижения шума от оборудования дает применение акустических экранов, отгораживающих шумный механизм от рабочего места или зоны обслуживания машины.

Применение звукопоглощающих облицовок для отделки потолка и стен шумных помещений (рис. 1) изменяет спектр шума в сторону более низких частот, что даже при относительно небольшом снижении уровня существенно улучшает условия труда.

Рис. 1. Акустическая обработка помещений: а — звукопоглощающие облицовки; б — штучные звукопоглощатели; 1 — защитный перфорированный слой; 2 — звукопоглощающий материал; 3 — защитная стеклоткань; 4 — стена или потолок; 5 — воздушный промежуток; 6 — плита из звукопоглощающего материала

Для снижения аэродинамического шума применяют глушители , которые принято делить на абсорбционные, использующие облицовку поверхностей воздуховодов звукопоглощающим материалом: реактивные типа расширительных камер, резонаторов, узких отростков, длина которых равна 1/4 длины волны заглушаемого звука: комбинированные, в которых поверхности реактивных глушителей облицовывают звукопоглощающим материалом; экранные.

Учитывая, что с помощью технических средств в настоящее время не всегда удается решить проблему снижения уровня шума, большое внимание должно уделяться применению средств индивидуальной защиты : наушников, вкладышей, шлемов, защищающих ухо от неблагоприятного действия шума. Эффективность средств индивидуальной защиты может быть обеспечена их правильным подбором в зависимости от уровней и спектра шума, а также контролем за условиями их эксплуатации.

В статье мы расскажем о нормативах 2019 года на допустимый уровень шума на рабочем месте, а также как избежать негативных последствий его воздействия на организмы работников.

Читайте в статье:

Допустимый уровень шума на рабочем месте

Имеется ряд методик, призванных нормировать звуковое воздействие на рабочих местах. С 2015 года введен в действие , заменивший ставший неактуальным ГОСТ12.1.050-86. Главное отличие нового стандарта – его соответствие международной норме ИСО 9612:2009 «Акустика. Оценка воздействия производственного шума. Технический метод».

Как критерий используется понятие ПДУ – предельно допустимого уровня. Это означает, что данный вредный фактор позволяет работать при нем до 40 часов в неделю длительное время. Конечно, возможна и индивидуальная чувствительность. В таком случае работнику стоит задуматься о смене профессии.

СанПиН по шуму в производственных помещениях

Нормирование шумов в зависимости от типа помещений дается в санитарных нормах. Наиболее актуальным для специалиста службы охраны труда являются , утвержденные постановлением Госкомсанэпиднадзора РФ от 31.10.1996г. №36. Они должны быть исполнены всеми без исключения фирмами, госорганизациями, предприятиями. Нарушение санитарных норм карается административными и дисциплинарными взысканиями, вплоть до приостановки деятельности организации.

Помимо классификации, перечня необходимых для измерения и предотвращения вредного фактора определений, СН дают список параметров и ПДУ для разных работ. Нормы классифицированы по видам производственной деятельности, то есть по профессиональному критерию. Не так важно, чем, собственно, занимается специалист на своем рабочем месте, важно, насколько тяжела и напряженна его работа.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования Р.Ф.

Белгородский Государственный Технологический Университет

Им. В.Г.Шухова

Негосударственное образовательное учреждение

Белгородский Инженерно-Экономический Институт

Факультет заочного обучения

Контрольная работа

по дисциплине

Производственная санитария и гигиена труда

на тему:

Производственный шум

Выполнил:

Студент группы БЖз-41Б

Жидкова А.И.

Проверила:

Залаева С.А.

Введение.

Физические характеристики шума.

Действие шума на организм человека.

Классификация шумов.

Нормирование шума.

Приборы и методы контроля шума на производстве.

Методы борьбы с шумом.

Заключение.

Список литературы.

Введ ение

Шумом называется бессистемное сочетание звуков различной интенсивности и чистоты, оказывающих вредное действие на организм человека. Еще в начале века знаменитый ученый Р. Кох сравнивал шум с чумой. Разумеется речь идет не о том, чтобы везде стояла абсолютная тишина. В условиях современного города и производства она не достижима. Более того, человек не может жить в абсолютной тишине. Длительная абсолютная тишина так же вредна для психики человека, как и непрерывный повышенный шум.

При проектировании конструкторского бюро в Ганновере архитекторы предусмотрели все меры, чтобы ни один посторонний звук не проникал в здание - рамы с тройным остеклением, звукоизоляционные панели из ячеистого бетона и специальные пластмассовые обои, гасящие звук. Через неделю сотрудники стали жаловаться, что не могут работать в условиях гнетущей тишины, они нервничали, теряли работоспособность. Администрации пришлось купить магнитофон, который время от времени включался и создавал эффект «тихого уличного шума».

Каждый человек воспринимает шум по-своему. Это зависит от многих факторов: возраста, состояния здоровья, характера трудовой деятельности. Установлено, что большее влияние шум оказывает на людей, занятых умственным трудом, чем физическим. Особенно беспокоит человека шум непонятного происхождения, возникающий в ночное время суток. Шум, создаваемый самим человеком, беспокоит его значительно меньше, чем окружающих. Многочисленными исследованиями доказано, что шум снижает производительность труда на промышленных предприятиях на 30%, повышает опасность травматизма, приводит к развитию заболеваний. В структуре профессиональных заболеваний в РФ примерно 17% приходится на заболевания органа слуха. Борьба с шумом на промышленных предприятиях является одной из важнейших проблем современности.

Физические характеристики шума

По физической природе шумом является всякий нежелательный для человека звук. Звук обусловливается механическими колебаниями в упругих средах и телах(твердых, жидких и газообразных), частоты которых лежат в диапазоне от 17…20 до 20000 Гц. Соответственно этому механические колебания с указанными частотами называют звуковыми или акустическими.

Неслышимые человеком механические колебания с частотами ниже звукового диапазона называют инфразвуковыми, а с частотами выше звукового диапазона - ультразвуковыми.

При распространении волны частиц среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частицы среды передаются лишь состояния колебательного движения и его энергия. Поэтому основным свойством волн является перенос энергии без переноса вещества. Это характерно для всех волн независимо от их природы, в том числе и для звуковых. Звуковые волны возникают при нарушении стационарного состояния среды в следствии воздействия на неё какой-либо возмущающей силы.

Шум, как любой звук, характеризуется частотой f , интенсивностью I и звуковым давлением p . Чем выше частота колебания, тем выше тональность шума. Чем больше интенсивность и звуковое давление, тем громче шум.

Во время распространения звуковых колебаний в воздухе появляются области разряжения и области повышенного давления, которые и определяют величину звукового давления p . Звуковым давлением называется разность между мгновенными значениями давления при распространении звуковой волны и средним значением давления в невозмущенной среде. Звуковое давление изменяется с частотой, равной частоте звуковой волны.

На слух человека действует среднеквадратичное значение звукового давления:

Осреднение во времени происходит в органе слуха человека за время 30…100 мс.

Единица измерения звукового давления - Па (Н/м 2).

При распространении звуковой волны происходит перенос кинетической энергии, величина которой определяется интенсивностью звука. Интенсивность звука определяется средней во времени энергией, переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны:

Единица измерения интенсивности звука - Вт/м 2 .

Интенсивность звука и звуковое давление связаны с соотношением:

где с - плотность среды, кг/м 3 ; с - скорость распространения звука в данной среде, м/с; сс - удельное акустическое сопротивление среды, ПаМс/м.

Для воздуха сс - 410 ПаМс/м, для воды - 1,5М10 6 ПаМс/м, для стали - 4,8М10 7 ПаМс/м.

Величины звукового давления и интенсивности, с которыми приходится иметь дело в практике борьбы с шумом, изменяются в очень широких пределах: по давлению до 10 8 раз, по интенсивности - до 10 16 раз. Оперировать такими цифрами неудобно.

Кроме того установлено, что согласно биологическому закону Вебера-Фехнера, выражающего связь между изменением интенсивности раздражителя и силой вызванного ощущения, реакция организма прямо пропорциональна относительному приращению раздражителя.

В связи с этим были введены логарифмические величины - уровни звукового давления и интенсивности:

где I 0 - интенсивность звука на пороге слышимости, принимаемая для всех звуков равной 10 -12 Вт/м 2 .

Величина L называется уровнем интенсивности звука и выражается в белах (Б) в честь изобретателя телефона ученого Александра Белла. Ухо человека реагирует на величину в десять раз меньшую, чем бел, поэтому распространение получила единица децибел (дБ), равна 0,1 Б.

Так как интенсивность звука пропорциональна квадрату звукового давления, то уровень звукового давления определится по формуле:

где p 0 - пороговое звуковое давление, едва различимое ухом человека, на частоте 1000 Гц составляет 2М10 -5 Па.

Уровнями интенсивности обычно пользуются при выполнении акустических расчетов, а уровнями звукового давления - при измерении шума и оценке его воздействия на организм человека.

Использование логарифмической шкалы для измерения уровня шума позволяет получить сравнительно небольшой интервал логарифмических величин от 0 до 140 дБ. Уровни звукового давления некоторых источников шума имеют следующие значения:

· 10 дБ - шелест листвы, тиканье часов;

· 30 дБ - тихий разговор;

· 50 дБ - громкий разговор;

· 80 дБ - шум работающего двигателя грузовика;

· 100 дБ - автомобильная сирена;

· 140 дБ - аварийный нефтяной или газовый фонтан, порог болевого ощущения, выше которого давление звука приводит к разрыву барабанной перепонки.

Реальный звук является наложением гармонических колебаний (т.е. колебаний, совершаемых по закону косинуса или синуса) с большим набором частот, т.е. звук обладает акустическим спектром. Спектр - распределение уровней шума по частотам.

При измерении и анализе шумов весь диапазон частот разбивают на октавы - интервал частот, где конечная частота больше начальной в 2 раза:

и третьоктавные полосы частот, определяемые соотношением:

В качестве частоты, характеризующей полосу в целом, берется среднегеометрическая частота:

· для октавного диапазона - f ср =vf 1 f 2 ;

· для третьоктавного - f ср = 6 v2f 1 .

Область слышимых звуков ограничивается не только определенными частотами, но и предельными значениями звуковых давлений и их уровней. Так, для того чтобы вызвать звуковое ощущение, волна должна обладать некоторым минимальным звуковым давлением, но если это давление превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существует наименьшее (порог слышимости) и наибольшее (порог болевого ощущения) звуковое давление, которое способно вызвать звуковое восприятие.

Дей ствие шума на организм человека

Шум является общебиологическим раздражителем, способным влиять на все органы и системы организма, вызывая разнообразные физиологические изменения.

Шумовые патологии подразделяются на специфические, наступающие в звуковом анализаторе, и неспецифические, возникающие в других органах и системах.

Поражение органа слуха определяется главным образом интенсивностью шума. Изменения в центральной нервной системе наступают значительно раньше, чем нарушения в звуковом анализаторе.

Шум с уровнем звукового давления до 30…35 дБ привычен для человека и не беспокоит его. Повышение этого уровня до 40…70 дБ создает значительную нагрузку на нервную систему, вызывая ухудшение самочувствия, и при длительном действии может быть причиной неврозов. Воздействие шума уровнем свыше 80 дБ может привести к потере слуха - профессиональной тугоухости. При действии шума высоких уровней(более 140дБ) возможен разрыв барабанных перепонок, контузия, а при еще более высоких (более 160 дБ) и смерть.

Интенсивный шум при ежедневном воздействии медленно влияет на незащищенный орган слуха и приводит к развитию тугоухости. Снижение слуха на 10дБ практически неощутимо, на 20 дБ -т начинает серьезно мешать человеку, так как нарушается способность слышать важные звуковые сигналы, наступает ослабление разборчивости речи.

Снижение слуха восстанавливается в редких случаях или в непродолжительном воздействии шума, если оно является результатом незначительных сосудистых изменений. При длительном акустическом воздействии или при острой акустической травме происходят необратимые нарушения в слуховом анализаторе. В некоторых случаях решить проблему потери слуха помогает слуховой аппарат, но он не в состоянии восстановить естественную остроту в той же степени, как, например, очки возвращают остроту зрения.

При воздействии шума наблюдаются также отклонения в состоянии вестибулярной функции, общие неспецифические изменения в организме: головные боли, головокружения, боли в области сердца, повышения артериального давления, боли в области желудка. Шум вызывает снижение функции защитных систем и общей устойчивости организма к внешним воздействиям.

Кроме интенсивности шума особенности воздействия шума на организм человека определяет характер спектра. Более неблагоприятное влияние оказывают высокие частоты (свыше 1000 Гц) по сравнению с низкими (31,5…125 Гц). К биологически агрессивному шуму относится импульсивный и тональный шум. Относительно благоприятным является также постоянный шум по сравнению с непостоянным из-за непрерывно меняющегося уровня звукового давления во времени.

Степень шумовой патологии зависит в некоторой степени от индивидуальной чувствительности организма к акустическому раздражителю. Считают, что повышенная чувствительность к шуму присуща 11% людей. Женский и детский организм особенно чувствительны к шуму. Высокая индивидуальная чувствительность может быть одной из причин повышенной утомляемости и развития неврозов.

Длительное воздействие интенсивного шума на человека приводит к развитию шумовой болезни, являющейся самостоятельной формой профессиональной патологии.

Шумовая болезнь - это общее заболевание организма с преимущественным поражением органа слуха, центральной нервной и сердечнососудистой систем, развивающееся в результате длительного воздействия интенсивного шума. Формирование патологического процесса при шумовом воздействии происходит постепенно и начинается с неспецифических проявлений вегетативно-сосудистой дисфункции. Далее развиваются сдвиги со стороны центральной нервной и сердечнососудистой систем, затем - специфические изменения в слуховом анализаторе.

Классификация шумов

В соответствии с ГОСТ 12.1.003-88 «ССБТ. Шум. Общие требования безопасности» шумы классифицируются по характеру спектра и временным характеристикам.

По характеру спектра шумы подразделяются на широкополосные и тональные.

Широкополосным называется шум с непрерывным спектром шириной более одной октавы.

Тональным называется шум, в спектре которого имеются выраженные дискретные тона. Тональность шума устанавливается измерением уровней звукового давления в 1/3 октавных полосах частот, когда превышение уровня в одной полосе по сравнению с соседними составляет не менее чем 10 дБ.

По временным характеристикам шумы подразделяются на постоянные и непостоянные.

Постоянный шум - шум, уровень звука которого изменяется по времени (за 8-часовой рабочий день или за время измерения) не более чем на 5 дБА при измерении по временной характеристики шумомера «медленно». В свою очередь, непостоянный шум - это шум, уровень которого во времени изменяется более чем на 5дБА.

Непостоянные шумы подразделяются на:

· колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;

· прерывистые, уровень звука которых ступенчато изменяется (на 5дБА и более), причем длительность интервалов, в течении которых уровень остается постоянным, составляет 1с и более;

· импульсные, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1с, при этом уровни звука в дБАI и дБА, измеренные соответственно на временных характеристик шумомера «импульс» и «медленно», отличаются не менее чем на 7 дБА.

Нормирование шума

Предупреждение неблагоприятного воздействия шума на организм человека основано на его гигиеническом нормировании, целью которого является обоснование допустимых уровней. Обеспечивающих предупреждение функциональных расстройств и заболеваний. В качестве критерия нормирования используются предельно допустимые уровни (ПДУ) шума.

Предельно допустимый уровень шума - это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течении всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

Нормирование шума производится по комплексу показателей с учетом их гигиенической значимости на основании Санитарных норм 2.2.4/2.1.8562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

Для постоянного шума нормируемой характеристикой являются уровни звукового давления в дБ в октавных полосах частот со среднегеометрическими значениями 31,5; 63; 125; 250; 500; 100; 2000; 4000; 8000 Гц.

Допускается также в качестве регламентируемой величины постоянного широкополосного шума на рабочих местах принимать уровень звука в дБА, измеренный по временной характеристики шумомера «медленно».

Нормируемой характеристикой непостоянного шума является эквивалентный (по энергии) уровень звука в дБА.

Эквивалентный (по энергии) уровень звука L A экв (в дБА) непостоянного шума - уровень звука постоянного широкополосного шума, который имеет тоже самое среднеквадратичное звуковое давление, что и данный постоянный шум в течение определенного интервала времени.

L A экв определяется по формуле:

L A экв =10lg

где p A (t) - текущее значение среднего квадратичного звукового давления, Па;

T - время действия шума, ч, или

L A экв =10lg ,

где Т - период наблюдения, ч; ф i - время воздействия шума с уровнем L i , ч;

L i - уровень звука в i промежуток времени, дБА; n - общее число промежутков времени действия шума.

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах устанавливаются с учетом напряженности и тяжести трудовой деятельности, определяемых в соответствии с руководством

«Гигиенические критерии оценки и классификация условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса» 2.2.755-99. Их значения на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности приведены в табл. 7.1 уровням звука в дБА, приведены в табл. 7.2.

шум звук трудовой допустимый

Таблица 7.1

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности, дБА

Тяжелый труд 1-й степени

Тяжелый труд 2-й степени

Тяжелый труд 3-й степени

Напряженность легкой степени

Напряженность средней степени

Напряженный труд 1-й степени

Напряженный труд 2-й степени

Таблица 7.2

ПДУ звукового давления в октавных полосах частот и уровни звука в дБА

Уровень звука в дБА

Уровни звукового давления, дБ в октавных полосах со среднегеометрическими частотами

Предельно допустимые уровни звукового давления в октавных полосах частот, уровни звука и эквивалентные уровни звука для некоторых наиболее типичных видов трудовой деятельности и рабочих мест, разработанные с учетом тяжести и напряженности труда, приведены в табл. 7.3

Предельно-допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука для основных наиболее типичных видов трудовой деятельности и рабочих мест по СН 2.2.4/2.1.8.562-96 (извлечение)

Вид трудовой деятельности, рабочее место (примеры)

Уровни звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц

Уровни звука и эквивалентные уровни звука, дБА

Творческая дея-тельность, научная деятельность, про-граммирование, преподавание и обучение

Высококвалифици-рованная работа, требующая сосредоточенности, административно-управленческая деятельность

Операторская работа по точному графику с инструкцией, диспетчерская работа

Работа, требующая сосредоточенности, в помещениях лабораторий с шумным оборудованием

Постоянные рабочие места в производственных помещениях и на территории предприятий

Приборы и методы контроля шума на производстве

Измерение шума в производственных помещениях и на территории предприятий на рабочих местах (или в рабочих зонах) осуществляется в соответствии с ГОСТ 12.1.050-86 (2001) «ССБТ. Методы измерения шума на рабочих местах».

Оценка шума для контроля соответствия фактических уровней шума на рабочих местах допустимым уровням проводится при работе не менее 2/3 установленных в данном помещении единиц технологического оборудования в наиболее часто реализуемом режиме его работы. Измерения проводятся в точках, соответствующих установленным постоянным местам; на непостоянных рабочих местах - в точках наиболее частого пребывания работающего.

При проведений измерений шума микрофон необходимо располагать на высоте 1,5 м над уровнем пола или рабочей площадки (если работа выполняется стоя) или на высоте уха человека, подвергающегося воздействию шума (если работа выполняется сидя). Микрофон должен быть удален не менее чем на 0,5 м от человека, проводящего измерения.

Для измерения уровня звука на рабочих местах используются шумомеры, состоящие из измерительного микрофона, усилителя электрической цепи с корректирующими фильтрами, измерительного прибора (детектора) с определенными вредными характеристиками (медленно, быстро и импульс).

В шумомерах звуковые колебание воспринимаются с помощью микрофона, назначение которого заключается в преобразовании переменного звукового давления в соответствующее ему переменное электрическое напряжение.

Наиболее широкое применение для измерения уровней шума в производственных условиях нашли микрофоны конденсаторного типа, имеющие малые размеры, хорошую линейность частотной характеристики.

Шумомеры должны иметь корректирующие фильтры для частотной характеристики А, и дополнительно - для частотных характеристик В, С, D и Лин - это зависимость показаний шумомера от частоты при постоянном уровне звукового давления синусоидального сигнала на входе микрофона шумомера, приведена к частоте 1000 Гц.

Частотные характеристики шумомера А, В, С соответствуют кривым равной громкости, т.е характеристикам чувствительности человеческого уха, вследствие чего показания шумомера отвечают субъективному восприятию уровня громкости шумов. Частотная характеристика А соответствует кривой малой громкости (~ 40 фон), В - средней громкости (~ 70 фон), С - большой громкости (~ 100 фон). При гигиенической оценке шумов достаточно частотной характеристики А. Фон - единица уровня громкости звука. Громкость для звука в 100 Гц (частота стандартного чистого тона) равно 1 фон, если его уровень звука давления равен 1 дБ.

Основные характеристики некоторых широко используемых в настоящие время приборов для измерения уровней шума на производстве приведены в табл. 7.4

Таблица 7.4

Приборы, используемые для измерения шума

Методы борьбы с шумом

Выбор мероприятий по ограничению неблагоприятного действия шума на человека производится исходя из конкретных условий: величины превышения ПДУ, характера спектра, источника излучения. Средства защиты работников от шума подразделяются на средства коллективной и индивидуальной защиты.

К средствам индивидуальной защиты относятся:

1. Уменьшение шума в источнике.

2. Изменение направленности излучения шума.

3. Рациональная планировка предприятий и цехов.

4. Акустическая обработка помещений:

· звукопоглощающие облицовки;

· штучные поглотители.

5. Уменьшение шума на пути его распространения от источника к рабочему месту:

· звукоизоляцией;

· глушителями.

Наиболее эффективным методом борьбы с шумом является его снижение в источнике возникновения за счет применения рациональных конструкций, новых материалов и гигиенически благоприятных технологических процессов.

Уменьшение уровней генерируемых шумов в источнике его образования основано на устранении причин возникновения звуковых колебаний, которыми могут служить механические, аэродинамические, гидродинамические и электрические явления.

Шум механического происхождения может быть вызван следующими факторами: соударения деталей в сочленениях в результате наличия зазоров; трения в соединениях деталей механизмов; ударные процессы; инерционные возмущающие силы, возникающие из-за движения деталей механизма с переменными ускорениями и др. Уменьшение механического шума может быть достигнуто: заменой ударных процессов и механизмов безударными; заменой зубчатой передачи клиноременной; использованием по возможности не металлических деталей, а пластмассовых или изготовленных из других незвучных материалов; применением балансировки вращающихся элементов машин и др. Гидродинамические шумы, возникающие в следствии различных процессов в жидкостях (кавитации, турбулентности потока, гидравлических ударов), могут быть снижены, например, улучшением гидродинамических характеристик насосов и выбором оптимальных режимов их работы. Снижение электромагнитного шума, имеющего место при эксплуатации электрического оборудования, может осуществляться в частности путем изготовления скошенных пазов якоря ротора, применением более плотной прессовки пакетов в трансформаторах, использованием демпфирующих материалов и др.

Разработка малошумного оборудования является весьма сложной технической задачей, меры по ослаблению шумов в источнике часто оказываются недостаточными, вследствие чего дополнительное, а иногда и основное снижение шума достигается применением других средств защиты, рассмотренных ниже. Многие источники шума излучают звуковую энергию неравномерно по всем направлениям, т.е. обладают определенной направленностью излучения. Источники направленного действия характеризуются коэффициентом направленности, определяемым отношением:

где I - интенсивность звуковой волны в данном направлении на некотором расстоянии r от источника направленного действия мощностью W, излучающего волновое поле в телесный угол Щ; - интенсивность волны на том же расстоянии при замене данного источника на источник ненаправленного действия той же мощности. Величина 10 lg Ф называется показателем направленности.

В ряде случаев величина показателя направленности достигает 10-15 дБ, в связи с чем определенная ориентация установок с направленным излучением позволяет существенно снизить уровень шума на рабочем месте.

Рациональная планировка предприятий и цехов так же является эффективным методом снижения шума, например, за счет увеличения расстояния от источника шума до объекта (шум снижается прямо пропорционально квадрату расстояния), расположением тихих помещений внутри здания вдали от шумных, расположения защищаемых объектов глухими стенами к источнику шума и др.

Акустическая обработка помещений заключается в установке в них средств звукопоглощения. Поглощение звука - это необратимый период звуковой энергии в другие формы, главным образом в теплоту.

Средства звукопоглощения применяют для снижения шума на рабочих местах, находящихся как в помещениях с источниками шума, так и в тихих помещениях, куда проникает шум из соседних шумных помещений. Акустическая обработка помещений преследует цель снизить энергию отраженных звуковых волн, поскольку интенсивность звука в какой-либо точке помещения складывается из интенсивностей прямого звука от отраженного пола, потолка и других ограждающих поверхностей. Для уменьшения отраженного звука применяют устройства, обладающие большими значениями коэффициента поглощения. Свойствами поглощения звука обладают все строительные материалы. Однако звукопоглощающими материалами и конструкциями называются только те, у которых коэффициент звукопоглощения на средних частотах больше 0,2. У таких материалов, как кирпич, бетон, величина коэффициента звукопоглощения равна 0,01-0,05. К средствам звукопоглощения относятся звукопоглощающие облицовки и штучные звукопоглотители. В качестве звукопоглощающей облицовки наиболее часто применяют пористые и резонансные звукопоглотители.

Пористые звукопоглотители изготавливают из таких материалов как ультратонкое стекловолокно, древесноволокнистые и минеральные плиты, пенопласт с открытыми порами, шерсть и др. Звукопоглощающие свойства пористого материала зависят от толщины слоя, частоты звука, наличия воздушного промежутка между слоем и стенкой, на которой он установлен.

Для увеличения поглощения на низких частотах и для экономии материала между пористым слоем и стенкой делают воздушную прослойку. Для предотвращения механических повреждений материала и высыпания применяются ткани, сетки, пленки и перфорированные экраны, которые существенно влияют на характер поглощения звука.

Резонансные поглотители имеют воздушную полость, соединенную открытым отверстием с окружающей средой. Дополнительное снижение шума при использовании таких звукопоглощающих конструкций происходит за счет взаимного погашения падающих и отраженных волн.

Пористые и резонансные поглотители крепят к стенам или потолкам изолированных объемов. Установка звукопоглощающих облицовок производственных помещениях позволяет снизить уровень шума на 6…10 дБ вдали от источника и на 2…3 дБ вблизи источника шума.

Звукопоглощение может производится путем внесения в изолированные объемы штучных звукопоглотителей, представляющих собой объемные тела, заполненные звукопоглощающим материалом, изготовленные, например, в виде куба или конуса и прикрепляемые чаще всего к потолку производственных помещений.

В случаях, когда необходимо существенно снизить интенсивность прямого звука на рабочих местах применяют средства звукоизоляции.

Звукоизоляция - уменьшение уровня шума с помощью защитного устройства, которое устанавливают между источником и приемником и имеет большую отражающую или поглощающую способность. Звукоизоляция дает больший эффект (30-50 дБ), чем звукопоглощение (6-10 дБ).

К средствам звукоизоляции относятся звукоизолирующие ограждения 1, звукоизолирующие кабины и пульты управления 2, звукоизолирующие кожухи 3 и акустические экраны 4.

Звукоизолирующие ограждения - это стены, перекрытия, перегородки, проемы, окна, двери.

Звукоизоляция ограждения тем выше, чем больше массой (1 м 2 ограждения) они обладают, так увеличение массы в два раза приводит к повышению звукоизоляции на 6 дБ. Для одного того же ограждения звукоизоляция возрастает с увеличением частоты, т.е. на высоких частотах эффект установки ограждения будет значительно выше, чем на низких.

Для облегчения ограждающих конструкций без уменьшения звукоизоляции применяются многослойные ограждения, чаще всего двойные, состоящие из двух однослойных ограждений, соединенные между собой упругими связями: воздушным слоем, звукопоглощающим материалом и ребрами жесткости, шпильками и другими конструктивными элементами.

Эффективным простым и дешевым методом снижения шума на рабочих местах является применение звукоизолирующих кожухов.

Для получения максимальной эффективности кожухи должны полностью закрывать оборудование, механизм и т.д. Конструктивно кожухи выполняются съемными, раздвижными или капотного типа, сплошными герметичными или неоднородной конструкции - со смотровыми окнами, открывающимися дверцами, проемами для ввода коммуникаций и циркуляции воздуха.

Кожухи изготавливают обычно из листовых несгораемых или трудносгораемых материалов (сталь, дюралюминий). Внутренние поверхности стенок кожухов обязательно облицовывают звукопоглощающим материалом, а сам кожух изолирован рот вибрации основания. С наружной стороны на кожух наносят слой вибродемпфирующего материала для уменьшения передачи вибрации от машины на кожух. Если защищаемое оборудование выделяет теплоту, то кожухи снабжают вентиляционными устройствами с глушителями.

Для защиты от непосредственного, прямого воздействия шума используют экраны и выгородки (соединенные отдельные секции - экраны). Акустический эффект экрана основан на образовании за ним области тени, куда звуковые волны проникают лишь частично. При низких частотах (менее 300 Гц) экраны малоэффективны, так как за счет дифракции звук их легко огибает. Важно также, чтобы расстояние от источника шума до приемника было как можно меньше. Наиболее часто применяются экраны плоской и П-образной формы. Изготавливают экраны из сплошных твердых листов (металлических и т.п.) толщиной 1,5-2 мм с обязательной облицовкой звукопоглощающими материалами поверхности, обращенной к источнику шума, а в ряде случаев и с противоположной стороны.

Звукоизолирующие кабины используют для размещения в них пультов дистанционного управления или рабочих мест в шумных помещениях. Используя звукоизолирующие кабины, можно обеспечить практически любое требуемое снижение шума. Обычно кабины изготавливают из кирпича, бетона и других подобных материалов, а также сборными из металлических панелей (стальных или из дюралюминия).

Для уменьшения шума различных аэрогазодинамических установок и устройств применяются глушители. Например, во время рабочего цикла ряда установок (компрессор, двигателей внутреннего сгорания, турбин и др.) через специальные отверстия происходит истечение отработавших газов в атмосферу и (или) всасывание воздуха из атмосферы, при этом генерируется сильный шум. В этих случаях для снижения шума используются глушители.

Конструктивно глушители состоят из активных и реактивных элементов.

Простейшим активным элементом является любой канал (труба), стенки которого внутри покрыты звукопоглощающим материалом. Трубопроводы, как правило, имеют повороты, которые снижают шум за счет поглощения и отражения осевых волн назад к источнику. Реактивный элемент представляет собой участок канала, на котором внезапно увеличивается площадь сечения, в результате чего происходит отражение звуковых волн обратно к источнику. Эффективность звукопоглощения растет с увеличением числа камер и длинны соединяющей трубы.

При наличии в спектре шума дисперсных составляющих высокого уровня применяют реактивные элементы резонаторного типа: кольцевые и ответвления. Такие глушители настроены на частоты наиболее интенсивных составляющих путем соответствующего расчета размеров элементов глушителей (объема камер, длинны ответвлений, площади отверстий и др.).

Если применение коллективных средств защиты не позволяет обеспечить требования нормативов, применяются средства индивидуальной защиты, к которым относятся вкладыши, наушники, шлемы.

Вкладыши - самое дешевое средство, но недостаточно эффективное (снижение шума 5…20 дБ). Они вставляются в наружный слуховой проход представляют собой различного рода заглушки из волокнистых материалов, воскообразных мастик, или пластинчатых слепков, изготовленных по конфигурации слухового прохода.

Наушники представляют собой чашки из пластмассы и металла, заполненные звукопоглотителем. Для плотности прилегания чашки наушников снабжены специальными уплотняющими кольцами, заполненными воздухом или специальными жидкостями. Степень глушения звука наушниками на высоких частотах составляет 20…38 дБ.

Шлемы используются для защиты от очень сильных шумов (более 120 дБ), так как звуковые колебания воспринимаются не только ухом, но и через кости черепа.

Заключение

Шум коварен, его вредное воздействие на организм совершается незримо, незаметно. Человек против шума практически беззащитен. В настоящее время врачи говорят о шумовой болезни, развивающейся в результате воздействия шума с преимущественным поражением слуха и нервной системы. Итак, шум оказывает свое разрушающее действие на весь организм человека. Его гибельной работе способствует и то обстоятельство, что против шума мы практически беззащитны. Ослепительно яркий свет заставляет нас инстинктивно зажмуриваться. Тот же инстинкт самосохранения спасает нас от ожога, отводя руку от огня или от горячей поверхности. А вот на воздействие шумов защитной реакции у человека нет. В связи с ростом шума можно представить состояние людей через 10 лет. Поэтому эта проблема даже быть обязательно рассмотрена, иначе последствия могут оказаться катастрофическими. Я почти не затронула проблемы воздействия шума на окружающую среду, а эта проблема так же сложна и многогранна, как и проблема воздействия шума на человека. Только защищая природу от вредных последствий своей деятельности, мы сможем сохранить и самих себя.

Список литературы

1. Алексеев С.В., Усенко В.Р. Гигиена труда./ Учебник. М.: «Медицина», 1988. - 576 с.

2. Безопасность жизнедеятельности. Безопасность технологических процессов и производств (охрана труда): Учебное пособие для вузов./ П.П. Кукин и др. - Из-во «Высшая школа», 2002. - 318 с.

3. Безопасность жизнедеятельности./ Под ред. Л.А. Муравья - М.: ЮНиГи - Дана, 2002. - 431 с.

4. Безопасность жизнедеятельности: Учебник для вузов./ Под общей редакцией С.В. Белова. М.: Выс. шк., 2001. - 485 с.

5. Безопасность жизнедеятельности: Учебник./ Под ред. Э.А. Арустамова. - М.: «Дашков и К», 2002. - 496 с.

6. Безопасность и охрана труда: Учебное пособие для вузов./ Под ред. О.Н. Русака. СПб: Из-во МАНЭБ, 2001. - 279 с.

7. Бобровников К.А. Охрана воздушной среды от пыли на предприятиях строительной индустрии. М.: Стройиздат, 1981. - 98 с.

8. Гигиенические критерии оценки условий труда и классификации рабочих мест при работах с источниками ионизирующего излучения./ Дополнение №1 к Р 2.2.755-99. - М.: Минздрав России, 2003. - 16 с.

9. Глебова Е.В. Производственная санитария и гигиена труда. Учеб. пособие для вузов. М.: «ИКФ «Каталог», 2003. - 344 с.

Размещено на Allbest.ru

Подобные документы

    Источники шума в помещениях с ЭВМ. Допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука на рабочих местах. Требования к параметрам микроклимата. Предельно допустимые уровни энергетической нагрузки электромагнитного поля.

    контрольная работа , добавлен 21.07.2011

    Шум - сочетание звуков различных по силе и частоте, способных оказывать воздействие на организм. Основные характеристики звука, расчет его интенсивности и уровня громкости. Влияние шума на организм человека, способы снижения уровня звукового загрязнения.

    реферат , добавлен 20.02.2012

    Основные понятия гигиены и экологии труда. Сущность шума и вибраций, влияние шума на организм человека. Допустимые уровни шума для населения, методы и средства защиты. Действие производственной вибрации на организм человека, методы и средства защиты.

    реферат , добавлен 12.11.2010

    Звук и его характеристики. Характеристики шума и его нормирование. Допустимые уровни шума. Средства коллективной защиты и средства индивидуальной защиты для людей от воздействия шума. Структурная схема шумомера и электронный имитатор источника шума.

    контрольная работа , добавлен 28.10.2011

    Приборы для измерения уровня шума в производственном помещении. Классификация шумов по характеру возникновения и спектру. Средства, снижающие шум на пути его распространения. Борьба с шумом в источнике его возникновения. Действие на организм человека.

    реферат , добавлен 28.04.2014

    Звук, инфразвук и ультразвук. Влияние инфразвука и ультразвука на организм человека. Шумовое загрязнение и уменьшение акустического фона. Допустимый уровень шума в квартире. Предельно допустимые уровни шума на рабочих местах в помещениях предприятий.

    реферат , добавлен 27.03.2013

    Градации действия шума на организм, поражения, обусловленные воздействием сверхинтенсивных шумов и звуков. Шум в цеху машиностроительного предприятия и методы его снижения. Методика установления научно обоснованных предельно допустимых норм шума.

    реферат , добавлен 23.10.2011

    Основное определение шума с физической точки зрения - беспорядочного сочетания звуков различной частоты и интенсивности (силы), возникающих при механических колебаниях в твердых, жидких и газообразных средах. Специфическое и неспецифическое действие шума.

    контрольная работа , добавлен 17.03.2011

    Шум как беспорядочное сочетание различных по силе и частоте звуков; способен оказывать неблагоприятное воздействие на организм, его основные характеристики. Допустимые значения шума. Основные меры по предупреждению воздействия шума на организм человека.

    курсовая работа , добавлен 11.04.2012

    Общие сведения о шуме, его источники и классификация. Измерение и нормирование уровня шума, эффективность некоторых альтернативных методов его снижения. Воздействие шума на организм человека. Вредное влияние повышенных уровней инфразвука и ультразвука.

На сегодняшний день используется просто огромное количество спец-технологических установок на производстве, а также различных энергетических приспособлений, которые непроизвольно издают шум и вибрации разных частот. Разная интенсивность звуков пагубно влияет на организм человека. Стоит отметить, что продолжительное воздействие шума и вибрации на работника производства уменьшает его трудоспособность, а также становится причиной возникновения профессиональных болезней.

Шум и вибрация как факторы производственной среды

Шумом можно назвать совокупность нежелательных звуков, которые оказывают пагубное действие на живые организмы, а также мешают полноценной работе и отдыху. Источником звука является любое колеблющееся тело, вследствие его прикосновения с окружающей средой образуются звуковые волны.

Итак, производственный шум – это комплекс звуков разных частот и насыщенности. Они хаотично преображаются во времени, и вызывают у работников нежелательные субъективные чувства.

Производственный шум отличается огромным спектром, составляющие которого это звуковые волны разных частот. При изучении производственного шума и вибрации привычным ощутимым диапазоном является 16гц-20 гц. Этот отрезок частот разбивают на полосы частот, а после оценивают звуковое давление. Также насыщенность и мощность, которая приходиться на все полосы частот. Если Вы хотите обследовать свое помещение на различные факторы можно обратиться в нашу лабораторию, где сможете провести ряд исследований, начиная от и заканчивая .

Что касается вибрации то ее понимание и ощущение напрямую зависит от частоты колебаний, а также их силы и диапазона амплитуды. Исследование вибрации так же, как и исследование частоты звука описывается в герцах. В ходе недавних экспериментов было исследовано, что вибрация так же, как и шум оказывает свое действие на организм человека, причем довольно активно. Стоит отметить, что вибрация будет ощущаться лишь при взаимосвязи с вибрирующим телом или же через инородные твердые тела, которые будут иметь связь с вибрирующим телом.

Вибрация на производстве считается угрожающим для здоровья фактором, ведь такие поверхности, касающиеся к телу человека, вызывают возбуждение многочисленных нервных окончаний в стенках кровеносных сосудов, и вызывают нарушения работы внутренних органов и разных систем. Все это представляется в виде немотивированных болей в руках, преимущественно по ночам, онемения, чувство "ползания мурашек", неожиданного побеления пальцев, снижения всех видов кожной чувствительности (болевой, температурной, касательной). Весь этот набор симптомов, типичный для воздействия вибрации, унаследовал название вибрационной болезни.

Шум на рабочих местах

В зависимости от рода деятельности к каждой профессии будут свои требования по соблюдению тишины. Если вы работаете в офисе нормы шума на рабочем месте будут ниже, чем у работающих в шумных цехах. Итак, норма шума при работе в офисе достигает всего 75 дБ, а вот норма шума на производстве 100 дБ.


Шум как вредный производственный фактор

К сожалению, на производстве больше подвергаться влиянию шума женщины и люди старших возрастных категорий. Повышение звукового давления может негативно сказаться на органе слуха. Поэтому, стоит отметить, что на производстве обязательно должны происходить замеры шума двушкальным шумомером. В цехах разрешен шум громкостью до 100 дБ. Что касается кузнечных цехов, то там норма шума может достигать отметки 140 дБ. Громкость, которая будет превышать этот порог у рабочих, вызовет болевой эффект. Также стоит отметить, что учеными обоснована теория о пагубном действии инфразвука и ультразвука на организм человека. Чтобы обезопасить своих рабочих стоит провести .

Эти колебания не могу вызывать болевых ощущений, но будут производить специфическое физиологическое воздействие на человеческий организм. Уровень производственного шума не должен быть выше 140 дБ, после преодоления этого порога уже будут возникать болевые ощущения, и шум несет неисправимый вред на здоровье человека. Если на производстве повышенный уровень шума, то у работника будет всегда повышенное кровеносное давление, учащённый пульс и дыхание, нарушения координации движения, а также ухудшение слуха.

Защита от производственного шума может быть в виде специальных глушителей аэродинамического шума, также возможно использовать индивидуальные средства защиты, также можно применить технические тонкости звукоизоляции и звукопоглощения.



Закажите бесплатно консультацию эколога

Классификация производственного шума

Итак, шум систематизируется по четырём основным критериям. По спектральным и временным характеристикам, по частоте, а также по природе возникновения.

По спектральным характеристикам выделяют широкополосный шум с непрерывным спектром больше одной октавы, а также тональный или, как еще его называют, дискретный. В его спектре содержится выражение дискретного тона.

По временным характеристикам есть постоянный шум, он длится больше восьми часов, и непостоянный. Стоит отметить, что непостоянные шумы еще разделяют на колеблющиеся, уровень звука у которых постоянно изменяется, а также прерывистые, уровень звука у таких изменяется ступенчато. Есть еще импульсные, они представляют собой простые звуковые импульсы, которые длятся не больше одной секунды.

По частоте выделяют акустические колебания, которые распределяют на инфразвук, ультразвук и просто звук. Что касается акустических колебаний звукового диапазона, то они подразделяются на низкочастотные, среднечастотные и высокочастотные. Низкочастотные звуки воспроизводят меньше 350 гц, среднечастотные же от 350 гц до 800гц, а высокочастотные выдают свыше 800 гц.

По природе возникновения шумы делятся на электромагнитные, аэродинамические, механические, гидравлические.


Производственный шум и вибрация пагубно влияют на человеческий организм. Из-за этого у людей, работающих на производстве, уменьшается работоспособность.

Шум на производстве является одним из неблагоприятных факторов для физического и психического здоровья индивида. Если вам кажется, что уровень шума превышает нормы или хотите провести другое лабораторное исследование () всегда можно обратиться в лабораторию "ЭкоТестЭкспресс", ее специалисты сделают все необходимые исследование и дадут заключение об уровне шума на рабочем месте.

Уровень шума на рабочем месте определяется в зависимости рода деятельности

Для человека, который работает на руководящей должности, имеет творческую профессию, или же просто работает в офисе, то разрешенный придел шума в этих случаях должен быть 50 дБ. А в лаборатории, или административном здании, где находятся кабинеты, уровень шума не может быть выше предела в 60 дБ.

Если рабочие места находятся в диспетчерской службе, машинописном бюро, в залах обработки информации на вычислительных машинах, уровень шума тут не может быть выше 65 дБ. В зданиях лабораторий с громким оборудованием, или же кабинетах с пультами управления шум должен быть не выше 75 дБ. В производственных зданиях на территории предприятия недопустимый уровень шума свыше 80 дБ.


На рабочем месте машиниста тепловоза или поезда уровень шума допускается до 80 дБ. В кабине же машиниста пригородного электропоезда придел шума должен быть 75 дБ. В комнатах для персонала вагонов и поездов шум может находиться в пределе 60 дБ. Что касается речного и морского транспорта, то у таких работников уровень шума колеблется от 80 дБ до 55 дБ в зависимости от места работы на корабле.

Вот уровень шума в производственных помещениях, где работают инженерно-технические работники, не должен превышать 60т дБ. В помещениях у операторов ЭВМ звуковой не допустимый диапазон свыше 65дб. А вот в помещениях, где находятся вычислительные агрегаты, уровень шума не должен быть больше 75 дБ. Человек, постоянно работающий в шумном помещении, привыкает к шуму, но продолжительное его воздействие вызывает частое утомление и ухудшение здоровья.

Нормирование производственного шума на рабочем месте осуществляется с учетом факторов человеческого организма. Стоит отметить, что в зависимости от частотной характеристики шума организм по-разному откликается на шум одинаковой интенсивности. Итак, при повышении частоты звука его влияние на нервную систему индивида будет сильнее, а степень вредоносности шума напрямую зависит от его спектрального состава.

Нормирование шума на рабочих местах осуществляют, принимая во внимание тот факт, что организм индивида, в зависимости от частотной характеристики, по-разному реагирует на шум одинаковой интенсивности. Чем выше частота звука, тем сильнее его действие на нервную систему человека, т. е. степень вредности шума, зависит от его спектрального состава. Влияние производственного шума на организм человека является пагубным. Спектр шума указывает, на какую область частот припадает самая большая доля всей звуковой энергии, что содержится в данном шуме.

Вы всегда можете обратиться в нашу лабораторию "ЭкоТестЭкспресс" для того, чтобы провести различные исследования, включая .

Производственные шумы и их влияние на организм животных

Животные обладают более острым слухом, поэтому более восприимчивы ко всем производственным шумам. Стоит отметить, что у кроликов шум реактивного самолета вызывает гибель. А кроты под воздействием производственного шума ощущают учащение пульса и дыхания. Производственные шумы угнетают условно рефлекторную деятельность организма животных.

Нормы шума на производстве, во всяком случае, никогда не должны превышаться, чтобы не наносить еще больший вред организму человека. Если же это случается, то необходимо проводить мероприятия по удалению повышенного шума.

Защита от производственного шума и вибрации заключается в установке различных шумопоглащающих приспособлений. Также стоит улучшить шумоизоляцию.

Шум как гигиенический фактор это совокупность звуков различной частоты и интенсивности, которые воспринимаются органами слуха человека и вызывают неприятное субъективное ощущение. Шум как физический фактор представляет собой волнообразно распространяющееся механическое колебательное движение упругой среды, носящее обычно случайный характер.

Производственным шумом называется шум на рабочих местах, на участках или на территориях предприятий, который возникает во время производственного процесса. Следствием вредного действия производственного шума могут быть профессиональные заболевания, повышение общей заболеваемости, снижение работоспособности, повышение степени риска травм и несчастных случаев, связанных с нарушением восприятия предупредительных сигналов, нарушение слухового контроля функционирования технологического оборудования, снижение производительности труда.

По характеру нарушения физиологических функций шум разделяется на такой, который мешает (препятствует языковой связи), раздражающий (вызывает нервное напряжение и вследствие этого снижения работоспособности, общее переутомление), вредный (нарушает физиологические функции на длительный период и вызывает развитие хронических заболеваний, которые непосредственно связаны со слуховым восприятием: ухудшение слуха, гипертония, туберкулез, язва желудка), травмирующий (резко нарушает физиологические функции организма человека).Характер производственного шума зависит от вида его источников. Механический шум возникает в результате работы различных механизмов с неуравновешенными массами вследствие их вибрации, а также одиночных или периодических ударов в сочленениях деталей сборочных единиц или конструкций в целом. Аэродинамический шум образуется при движении воздуха по трубопроводам, вентиляционным системам или вследствие стационарных или нестационарных процессов в газах. Шум электромагнитного происхождения возникает вследствие колебаний элементов электромеханических устройств (ротора, статора, сердечника, трансформатора и т. д.) под влиянием переменных магнитных полей. Гидродинамический шум возникает вследствие процессов, которые происходят в жидкостях (гидравлические удары, кавитация, турбулентность потока и т.д.).

Шум как физическое явление это колебание упругой среды. Он характеризуется звуковым давлением как функцией частоты и времени. Для человека область слышимых звуков определяется в интервале от 16 до 20 000 Гц. Наиболее чувствителен слуховой лизатор к восприятию звуков частотой 1000--3000 Гц (речевая зона).

ИСТОЧНИКИ ПРОИЗВОДСТВЕННОГО ШУМА

По природе возникновения шумы машин или агрегатов делятся на:

механические,

аэродинамические и гидродинамические

электромагнитные.

При работе различных механизмов, агрегатов, оборудования одновременно могут возникать шумы различной природы.

Механический шум

На ряде производств преобладает механический шум, основными источниками которого являются зубчатые передачи, механизмы ударного типа, цепные передачи, подшипники качения и т.п. Он вызывается силовыми воздействиями неуравновешенных вращающихся масс, ударами в сочленениях деталей, стуками в зазорах, движением материалов в трубопроводах и т.п. Спектр механического шума занимает широкую область частот. Определяющими факторами механического шума являются форма, размеры и тип конструкции, число оборотов, механические свойства материала, состояние поверхностей взаимодействующих тел и их смазывание. Машины ударного действия, к которым относится, например, кузнечно-прессовое оборудование, являются источником импульсного шума, причем его уровень на рабочих местах, как правило, превышает допустимый. На машиностроительных предприятиях наибольший уровень шума создается при работе металло- и деревообрабатывающих станков.

Аэродинамические и гидродинамические шумы:

шумы, обусловленные периодическим выбросом газа в атмосферу, работой винтовых насосов и компрессоров, пневматических двигателей, двигателей внутреннего сгорания;

шумы, возникающие из-за образования вихрей потока у твердых границ. Эти шумы наиболее характерны для вентиляторов, турбовоздуходувок, насосов, турбокомпрессоров, воздуховодов;

кавитационный шум, возникающий в жидкостях из-за потери жидкостью прочности на разрыв при уменьшении давления ниже определенного предела и возникновения полостей и пузырьков, заполненных парами жидкости и растворенными в ней газами.

Шумы электромагнитного происхождения

Шумы электромагнитного происхождения возникают в различных электротехнических изделиях (например при работе электрических машин). Их причиной является взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей. Электрические машины создают шумы с различными уровнями звука от 20?30 дБ (микромашины) до 100?110 дБ (крупные быстроходные машины).

ВРЕДНЫЕ ВОЗДЕЙСТВИЯ ШУМА НА ОРГАНИЗМ ЧЕЛОВЕКА

Длительное воздействие интенсивного шума (выше 80 дБА) на слух человека приводит к его частичной или полной потере. В зависимости от длительности и интенсивности воздействия шума происходит большее или меньшее снижение чувствительности органов слуха, выражающееся временным смещением порога слышимости, которое исчезает после окончания воздействия шума, а при большой длительности и (или) интенсивности шума происходят необратимые потери слуха (тугоухость), характеризуемые постоянным изменением порога слышимости.

Различают следующие степени потери слуха:

I степень (легкое снижение слуха) - потеря слуха в области речевых частот составляет 10 - 20 дБ, на частоте 4000 Гц - 20 - 60 дБ;

II степень (умеренное снижение слуха) - потеря слуха в области речевых частот составляет 21 - 30 дБ, на частоте 4000 Гц - 20 - 65 дБ;

III степень (значительное снижение слуха) - потеря слуха в области речевых частот составляет 31 дБ и более, на частоте 4000 Гц - 20 - 78 дБ.

Действие шума на организм человека не ограничивается воздействием на орган слуха. Через волокна слуховых нервов раздражение шумом передается в центральную и вегетативную нервные системы, а через них воздействует на внутренние органы, приводя к значительным изменениям в функциональном состоянии организма, влияет на психическое состояние человека, вызывая чувство беспокойства и раздражения. Человек, подвергающийся воздействию интенсивного (более 80 дБ) шума, затрачивает в среднем на 10 - 20% больше физических и нервно-психических усилий, чтобы сохранить выработку, достигнутую им при уровне звука ниже 70 дБ(А). Установлено повышение на 10 - 15% общей заболеваемости рабочих шумных производств. Воздействие на вегетативную нервную систему проявляется даже при небольших уровнях звука (40 - 70 дБ(А). Из вегетативных реакций наиболее выраженным является нарушение периферического кровообращения за счет сужения капилляров кожного покрова и слизистых оболочек, а также повышения артериального давления (при уровнях звука выше 85 дБА).

Воздействие шума на центральную нервную систему вызывает увеличение латентного (скрытого) периода зрительной моторной реакции, приводит к нарушению подвижности нервных процессов, изменению электроэнцефалографических показателей, нарушает биоэлектрическую активность головного мозга с проявлением общих функциональных изменений в организме (уже при шуме 50 - 60 дБА), существенно изменяет биопотенциалы мозга, их динамику, вызывает биохимические изменения в структурах головного мозга.

При импульсных и нерегулярных шумах степень воздействия шума повышается.

Изменения в функциональном состоянии центральной и вегетативной нервных систем наступают гораздо раньше и при меньших уровнях шума, чем снижение слуховой чувствительности.

В настоящее время "шумовая болезнь" характеризуется комплексом симптомов:

снижение слуховой чувствительности;

изменение функции пищеварения, выражающейся в понижении кислотности;

сердечнососудистая недостаточность;

нейроэндокринные расстройства.

Работающие в условиях длительного шумового воздействия испытывают раздражительность, головные боли, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, боли в ушах и т.д. Воздействие шума может вызывать негативные изменения эмоционального состояния человека, вплоть до стрессовых. Все это снижает работоспособность человека и его производительность, качество и безопасность труда. Установлено, что при работах, требующих повышенного внимания, при увеличении уровня звука от 70 до 90 дБА производительность труда снижается на 20%.

Ультразвуки (свыше 20000 Гц) также являются причиной повреждения слуха, хотя человеческое ухо на них не реагирует. Мощный ультразвук воздействует на нервные клетки головного мозга и спинной мозг, вызывает жжение в наружном слуховом проходе и ощущение тошноты.

Не менее опасными являются инфразвуковые воздействия акустических колебаний (менее 20 Гц). При достаточной интенсивности инфразвуки могут воздействовать на вестибулярный аппарат, снижая слуховую восприимчивость и повышая усталость и раздражительность, и приводят к нарушению координации. Особую роль играют инфрачастотные колебания с частотой 7 Гц. В результате их совпадения с собственной частотой альфа - ритма головного мозга наблюдаются не только нарушения слуха, но и могут возникать внутренние кровотечения. Инфразвуки (6 - 8 Гц) могут привести к нарушению сердечной деятельности и кровообращения.

ХАРАКТЕРИСТИКИ И ВИДЫ ПРОИЗВОДСТВЕННЫХ ШУМОВ

Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот.

При исследовании шумов обычно слышимый диапазон 16 Гц - 20 кГц разбивают на полосы частот и определяют звуковое давление, интенсивность или звуковую мощность, приходящиеся на каждую полосу.

Как правило, спектр шума характеризуется уровнями названных величин, распределенными по октавным полосам частот.

Полоса частот, верхняя граница которой превышает нижнюю в два раза, т.е. f2 = 2 f1 , называется октавой.

Для более детального исследования шумов иногда используются третьеоктавные полосы частот, для которых

шум звук слух акустика

f2 = 21/3 f1 = 1, 26 f1 .

Октавная или третьеоктавная полоса обычно задается среднегеометрической частотой:

КЛАССИФИКАЦИЯ ШУМОВ

Способ классификации

Характеристика шума

По характеру спектра шума

широкополосные

Непрерывный спектр шириной более одной октавы

тональные

В спектре которого имеются явно выраженные дискретные тона

По временным характеристикам

постоянные

Уровень звука за 8 часовой рабочий день изменяется не более чем на 5 дБ(А)

непостоянные:

колеблющиеся во времени

прерывистые

импульсные

Уровень звука за 8 часовой рабочий день изменяется более чем на 5 дБ(А)

Уровень звука непрерывно изменяется во времени

Уровень звука изменяется ступенчато не более чем на 5 дБ(А), длительность интервала 1с и более

Состоят из одного или нескольких звуковых сигналов, длительность интервала меньше 1с

ИЗМЕРЕНИЕ ШУМА. ШУМОМЕРЫ

Шумоизмерительные приборы - шумомеры - состоят, как правило, из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора (самописца или магнитофона) и индикатора, показывающего уровень измеряемой величины в дБ. Шумомеры снабжены блоками частотной коррекции с переключателями А, В, С, D и временных характеристик c переключателями F (fast) - быстро, S (slow) - медленно, I (pik) - импульс. Шкалу F применяют при измерениях постоянных шумов, S - колеблющихся и прерывистых, I - импульсных.

Стандартные частотные характеристики А, В, С, D

А - характеристика, приближающаяся к частотной характеристике чувствительности человеческого уха;

В, С - характеристики, использующиеся при измерении громких звуков, для которых чувствительность человеческого уха меньше изменяется в зависимости от частоты;

D - характеристика, используемая при измерении шумов самолетов.

По точности шумомеры делятся на четыре класса 0, 1, 2 и 3. Шумомеры класса 0 используются как образцовые средства измерения; приборы класса 1 - для лабораторных и натурных измерений; 2 - для технических измерений; 3 - для ориентировочных измерений. Каждому классу приборов соответствует диапазон измерений по частотам: шумомеры классов 0 и 1 рассчитаны на диапазон частот от 20 Гц до 18 кГц, класса 2 - от 20 Гц до 8 кГц, класса 3 - от 31, 5 Гц до 8 кГц.

Для измерения эквивалентного уровня шума при усреднении за длительный период времени применяются интегрирующие шумомеры.

Приборы для измерения шума строятся на основе частотных анализаторов, состоящих из набора полосовых фильтров и приборов, показывающих уровень звукового давления в определенной полосе частот.

В зависимости от вида частотных характеристик фильтров анализаторы подразделяются на октавные, третьеоктавные и узкополосные.Частотная характеристика фильтра К(f) =Uвых /Uвх представляет собой зависимость коэффициента передачи сигнала со входа фильтра Uвх на его выход Uвых от частоты сигнала f. Частотная характеристика типового октавного полосового фильтра показана на рис.3.6. Полосовой фильтр характеризуется полосой пропускания B = f2 - f1, т.е. областью частот между двумя частотами f1 и f2, на которых частотная характеристика К(f) имеет значение (затухание) не более 3 дБ.

f1 и f2 - частоты среза фильтра, f0 = (f1 * f2)1/2 - центральная частота фильтра

Для измерения производственных шумов преимущественно используется прибор ВШВ-003-М2, относящийся к шумомерам I класса точности и позволяющий измерять корректированный уровень звука по шкалам А, В, С; уровень звукового давления в диапазоне частот от 20 Гц до 18 кГц и октавных полосах в диапазоне среднегеометрических частот от 16 до 8 кГц в свободном и диффузном звуковых полях. Прибор предназначен для измерения шума в производственных помещениях и жилых кварталах в целях охраны здоровья; при разработке и контроле качества изделий; при исследованиях и испытаниях машин и механизмов

НОРМИРОВАНИЕ ШУМА

Шум оказывает негативное влияние на весь организм человека. Шумы средних уровней (менее 80 дБА) не вызывают потери слуха, но тем не менее оказывают утомляющее неблагоприятное влияние, которое складывается с аналогичными влияниями других вредных факторов и зависит от вида и характера трудовой нагрузки на организм.

Нормирование шума призвано предотвратить нарушение слуха и снижение работоспособности и производительности труда работающих.

Для разных видов шумов применяются различные способы нормирования.

Для постоянных шумов нормируются уровни звукового давления LPi (дБ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Для ориентировочной оценки шумовой характеристики рабочих мест допускается за шумовую характеристику принимать уровень звука L в дБ(А), измеряемый по временной характеристике шумомера "S - медленно".

Нормируемыми параметрами прерывистого и импульсного шума в расчетных точках следует считать эквивалентные (но энергии) уровни звукового давления Lэкв в дБ в октавных полосах частот со среднегеометрическими частотами 63, 125, 500, 1000, 2000, 4000 и 8000 Гц.

Для непостоянных шумов нормируется так же эквивалентный уровень звука в дБ(А).

Допустимые уровни звукового давления для рабочих мест служебных помещений и для жилых и общественных зданий и их территорий различны.

Нормативным документом, регламентирующим уровни шума для различных категорий рабочих мест служебных помещений является ГОСТ 12.1.003-83 "ССБТ. Шум. Общие требования безопасности".

Допустимые уровни звукового давления (эквивалентные уровни звукового давления) в дБ в октавных полосах частот, уровни звука и эквивалентные уровни звука в дБА для жилых и общественных зданий и их территорий следует принимать в соответствии со СНиП 11-12-88 "Защита от шума".

ЗАЩИТА ОТ ШУМА

Слух позволяет человеку воспринимать звуковую информацию. Вместе с тем, насыщение окружающего пространства шумами повышенной интенсивности может привести к искажению звуковой информации и нарушению слуховой активности человека.

Проявление вредного воздействия шума на организм человека весьма разнообразно.

Наиболее опасно длительное воздействие интенсивного шума на слух человека, которое может привести к частичной или полной потере слуха. Медицинская статистика показывает, что тугоухость в последние годы выходит на ведущее место в структуре профессиональных заболеваний и не имеет тенденции к снижению.

Поэтому важно знать особенности восприятия звука человеком, допустимые с точки зрения обеспечения здоровья, высокой производительности и комфортности уровни шума, а также средства и способы борьбы с шумом.

Эффективная защита работающих от неблагоприятного влияния шума требует осуществления комплекса организационных, технических и медицинских мер на этапах проектирования, строительства и эксплуатации производственных предприятий, машин и оборудования. В целях повышения эффективности борьбы с шумом введены обязательный гигиенический контроль объектов, генерирующих шум, регистрация физических факторов, оказывающих вредное воздействие на окружающую среду и отрицательно влияющих на здоровье людей.

Эффективным путем решения проблемы борьбы с шумом является снижение его уровня в самом источнике за счет изменения технологии и конструкции машин. К мерам этого типа относятся замена шумных процессов бесшумными, ударных -- безударными, например замена клепки -- пайкой, ковки и штамповки обработкой давлением; замена металла в некоторых деталях незвучными материалами, применение виброизоляции, глушителей, демпфирования, звукоизолирующих кожухов и др. При невозможности снижения шума оборудование, являющееся источником повышенного шума, устанавливают в специальные помещения, а пульт дистанционного управления размещают в малошумном помещении. В некоторых случаях снижение уровня шума достигается применением звукопоглощающих пористых материалов, покрытых перфорированными листами алюминия, пластмасс. При необходимости повышения коэффициента звукопоглощения в области высоких частот звукоизолирующие слои покрывают защитной оболочкой с мелкой и частой перфорацией, применяют также штучные звукопоглотители в виде конусов, кубов, закрепленных над оборудованием, являющимся источником повышенного шума. Большое значение в борьбе с шумом имеют архитектурно-планировочные и строительные мероприятия. В тех случаях, когда технические способы не обеспечивают достижения требований действующих нормативов, необходимо ограничение длительности воздействия шума и применение противошумов.

Противошумы - средства индивидуальной защиты органа слуха и предупреждения различных расстройств организма, вызываемых чрезмерным шумом. Их используют в основном тогда, когда технические средства борьбы с шумом не обеспечивают снижения его до безопасных пределов. Противошумы подразделяют на три типа: вкладыши, наушники и шлемы.

Противошумные вкладыши вводят в наружный слуховой проход. Вкладыши бывают многократного и однократного пользования. К вкладышам многократного пользования относятся многочисленные варианты заглушек в виде колпачков различной конструкции и формы из резины, каучука и других пластичных полимерных материалов, в некоторых случаях надетых на железные стержни. Противошумные вкладыши многократного использования выпускают нескольких типов и размеров; вес их не регламентируется и колеблется в пределах до 10 г. "Беруши" - коммерческое название отечественных противошумных вкладышей однократного пользования из органического перхлорвинилового фильтрующего шумопоглощающего материала.

Противошумные наушники представляют собой чаши, по форме близкие к полусфере, из легких металлов или пластмасс, наполненные волокнистыми или пористыми звукопоглотителями, удерживаемые с помощью оголовья. Для удобного и плотного прилегания к околоушной области они снабжаются уплотняющими валиками из синтетических тонких пленок, часто заполненных воздухом или жидкими веществами с большим внутренним трением (глицерин, вазелиновое масло и др.). Уплотняющий валик одновременно демпфирует колебания самого корпуса наушника, что существенно при низкочастотных звуковых колебаниях.

Противошумные шлемы - самые громоздкие и дорогостоящие из индивидуальных средств противошумной защиты. Они используются при высоких уровнях шумов, часто применяются в комбинации с наушниками или вкладышами. Расположенный по краю шлема уплотняющий валик обеспечивает плотное прилегание его к голове. Имеются конструкции шлемов с поддутием валика воздухом для надежного облегания головы.

Важное значение в предупреждении развития шумовой патологии имеют предварительные при поступлении на работу и периодические медицинские осмотры. Таким осмотрам подлежат лица, работающие на производствах, где шум превышает предельно допустимый уровень (ПДУ) в любой октавной полосе.



Понравилась статья? Поделитесь ей
Наверх