Процессы образования возбужденных частиц при радиолизе. Химия Процесс ионизации неспаренных электронов


Открытия радиоактивности подтвердило сложность строения не только атомов, а и их ядер. В 1903 г. Э. Резерфорд и Ф. Содди предложили теорию радиоактивного распада, которая коренным образом изменила старые взгляды на строение атомов. В соответствии с этой теорией, радиоактивные элементы самочинно распадаются с выпусканием α- или β-частинок и образованием атомов новых элементов, химически отличных от исходных. При этом сохраняется стабильность массы как исходных атомов, так и тех, которые образовались вследствие хода процесса распада. Э. Резерфорд в 1919 г. впервые исследовало искусственное преобразование ядер. Во время бомбардировки атомов азота с α-частинками он выделил ядра атомов водорода (протоны) и атомы нуклида кислорода. Такие преобразования называют ядерными реакциями, поскольку из ядер атомов одного элемента получаются ядра атомов других элементов. Ядерные реакции записывают с помощью уравнений. Так, рассмотренную выше ядерную реакцию можно записать так:

Определения явления радиоактивности можно дать, использовав понятие об изотопах: радиоактивностью называется преобразование нестойких ядер атомов одного химического элемента на ядра атомов другого элемента, которое сопровождается выпусканием элементарных частичек. Радиоактивность, которую проявляют изотопы элементов, которые существуют в природе, называется естественной радиоактивностью. Скорость радиоактивных преобразований разная для разных изотопов. Она характеризуется постоянной радиоактивного распада, которая показывает, сколько атомов радиоактивного нуклида распадается за 1 с. Установлено, что количество атомов радиоактивного нуклида, которое распадается за единицу времени, пропорциональная общему количеству атомов этого нуклида и зависит от величины постоянной радиоактивного распада. Например, если на протяжении некоторого периода распалась половина общего количества атомов радиоактивного нуклида, то в следующий такой самый период распадется половина остатка, то есть вдвое меньше, чем за предыдущий период, и т.д.

Продолжительность жизни радиоактивного нуклида характеризуют периодом полураспада, то есть таким промежутком времени, на протяжении которого распадается половина начального количества этого нуклида. Например, период полураспада Радона составляет 3,85 суток, Радия - 1620 лет, Урана - 4,5 миллиарда лет. Известные такие типы радиоактивных преобразований: α-распад, β-распад, спонтанный (самочинный) деление ядер. Эти типы радиоактивных преобразований сопровождаются выпусканием α-частичек, электронов, позитронов, γ-луч. В процессе α-распада ядро атома радиоактивного элемента выпускает ядро атома Гелия, вследствие чего заряд ядра атома исходного радиоактивного элемента уменьшается на две единицы, а массовое число - на четырех. Например, преобразования атома Радия на атом Радона можно записать уравнением

Ядерную реакцию β-распада, который сопровождается выпусканием электронов, позитронов или увлечением орбитальных электронов, также можно записать уравнением

где е - -электрон; hν - квант γ-излучения; ν o - антинейтрино (элементарная частичка, масса покоя которой и заряд равняются нулю).

Возможность β-распада связана с тем, что, в соответствии с современными представлениями, нейтрон может превращаться при определенных условиях на протон, выпуская при этом электрон и антинейтрино. Протон и нейтрон - два состояния одной и той самой ядерной частички - нуклона. Этот процесс можно изобразить схемой

Нейтрон -> Протон + Электрон + Антинейтрино

В процессе β-распада атомов радиоактивного элемента один из нейтронов, который входит в состав ядра атома, выпускает электрон и антинейтрино, превращаясь на протон. В этом случае положительный заряд ядра увеличивается на единицу. Такой вид радиоактивного распада называется электронным - распадом (β - -распадом). Итак, если ядро атома радиоактивного элемента выпускает одну α-частицу, получается ядро атома нового элемента с протонным числом на две единицы меньшим, а при выпускании β-частички - ядро нового атома с протонным числом на единицу большим, чем у исходного. В этом и состоит суть закона смещения Содди-Фаянса. Ядра атомов некоторых нестабильных изотопов могут выпускать частички, которые имеют положительный заряд +1 и массу, близкую к массе электрона. Эта частичка называется позитроном. Итак, возможное преобразование протона на нейтрон согласно с схемой:

Протон → Нейтрон + Позитрон + Нейтрино

Преобразования протона на нейтрон наблюдается лишь в том случае, когда нестабильность ядра вызванная избыточным содержимым в нем протонов. Тогда один из протонов превращается в нейтрон, а позитрон и нейтрино, которые возникают при этом, вылетают за границы ядра; заряд ядра уменьшается на единицу. Такой тип радиоактивного распада называется позитронным -распадом (β+-распадом). Итак, вследствие β-розпаду ядра атома радиоактивного элемента получается атома элемента, смещенного на одно место вправо (β-розпад) или влево (β+-распад) от исходного радиоактивного элемента. Уменьшения заряда ядра радиоактивного атома на единицу может быть вызвано не только β+-распадом, а и электронным увлечением, вследствие чего один из электронов ближайшего к ядру электронного шара захватывается ядром. Этот электрон с одним из протонов ядра образовывает нейтрон: е - + р → n

Теорию строения ядра атома разработали в 30-х годах XX ст. украинские ученые Д.Д. Иваненко и Е.М. Гапон, а также немецкий ученый В. Гейзенберг. В соответствии с этой теорией, ядра атомов состоят из положительно заряженных протонов и электронейтральных нейтронов. Относительные массы этих элементарных частичек почти одинаковые (масса протона 1,00728, масса нейтрона - 1,00866). Протоны и нейтроны (нуклоны) содержатся в ядре очень крепкими ядерными силами. Ядерные силы действуют только на очень маленьких расстояниях - порядка 10 -15 м.

Энергия, которая выделяется во время образования ядра из протонов и нейтронов, называется энергией связи ядра и характеризует ее стабильность.



Спаренные электроны

Если на орбитали находится один электрон, то он называется неспаренным, а если два – то это спаренные электроны .

Четыре квантовых числа n, l, m, m s полностью характеризуют энергетическое состояние электрона в атоме.

Рассматривая строение электронной оболочки многоэлектронных атомов различных элементов, необходимо учитывать три основных положения:

· принцип Паули,

· принцип наименьшей энергии,

· правило Гунда .

Согласно принципу Паули в атоме не может быть двух электронов с одинаковыми значениями всех четырех квантовых чисел.

Принцип Паули определяет максимальное число электронов на одной орбитали, уровне и подуровне. Так как АО характеризуется тремя квантовыми числами n , l , m , то электроны данной орбитали могут различаться только спиновым квантовым числом m s . Но спиновое квантовое число m s может иметь только два значения + 1 / 2 и – 1 / 2 . Следовательно, на одной орбитали может находиться не более двух электронов с различными значениями спиновых квантовых чисел.

Рис. 4.6. Максимальная емкость одной орбитали – 2 электрона.

Максимальное число электронов на энергетическом уровне определяется как 2n 2 , а на подуровне – как 2(2l + 1). Максимальное число электронов, размещающихся на различных уровнях и подуровнях, приведено в табл. 4.1.

Таблица 4.1.

Максимальное число электронов на квантовых уровнях и подуровнях

Энергети-ческий уровень Энергети-ческий подуровень Возможные значения магнитного квантового числа m Число орбиталей на Максимальное число электронов на
подуровне уровне подуровне уровне
K (n =1) s (l =0)
L (n =2) s (l =0) p (l =1) –1, 0, 1
M (n =3) s (l =0) p (l =1) d (l =2) –1, 0, 1 –2, –1, 0, 1, 2
N (n =4) s (l =0) p (l =1) d (l =2) f (l =3) –1, 0, 1 –2, –1, 0, 1, 2 –3, –2, –1, 0, 1, 2, 3

Последовательность заполнения электронами орбиталей осуществляется в соответствии с принципом наименьшей энергии .

Согласно прнципу наименьшей энергии электроны заполняют орбитали в порядке повышения их энергии.

Очередность заполнения орбиталей определяется правилом Клечковского: увеличение энергии и, соответственно, заполнение орбиталей происходит в порядке возрастания суммы главного и орбитального квантовых чисел (n + l), а при равной сумме (n + l) – в порядке возрастания главного квантового числа n.



Например, энергия электрона на подуровне 4s меньше, чем на подуровне 3d , так как в первом случае сумма n + l = 4 + 0 = 4 (напомним, что для s -подуровня значение орбитального квантового числа l = = 0), а во втором n + l = 3 + 2= 5 (d - подуровень, l = 2). Поэтому, сначала заполняется подуровень 4s , а затем 3d (см. рис. 4.8).

На подуровнях 3d (n = 3, l = 2) , 4р (n = 4, l = 1) и 5s (n = 5, l = 0) сумма значений п и l одинаковы и равны 5. В случае равенства значений сумм n и l сначала заполняется подуровень с минимальным значением n , т.е. подуровень 3d .

В соответствии с правилом Клечковского энергии атомных орбиталей возрастает в ряду:

1s < 2s < 2р < 3s < 3р < 4s < 3d < 4р < 5s < 4d < 5p < 6s < 5d »

»4f < 6p < 7s ….

В зависимости от того, какой подуровень в атоме заполняется в последнюю очередь, все химические элементы делятся на 4 электронных семейства: s-, p-, d-, f-элементы.

4f

4 4d

3 4s

3p

3s

1 2s

Уровни Подуровни

Рис. 4.8. Энергия атомных орбиталей.

Элементы, у атомов которых в последнюю очередь заполняется s-подуровень внешнего уровня, называются s-элементами . У s -эле-ментов валентными являются s-электроны внешнего энергетического уровня.

У р-элементов последним заполняется р-подуровень внешнего уровня. У них валентные электроны расположены на p - и s -под-уровнях внешнего уровня. У d -элементов в последнюю очередь заполняется d -подуровень предвнешнего уровня и валентными являются s -электроны внешнего и d -электроны предвнешнего энергетического уровней.

У f-элементов последним заполняется f -подуровень третьего снаружи энергетического уровня.

Порядок размещения электронов в пределах одного подуровня определяется правилом Гунда:

в пределах подуровня электроны размещаются таким образом, чтобы сумма их спиновых квантовых чисел имела бы максимальное значение по абсолютной величине.

Иными словами, орбитали данного подуровня заполняются сначала по одному электрону с одинаковым значением спинового квантового числа, а затем по второму электрону с противоположным значением.

Например, если в трех квантовых ячейках необходимо распределить 3 электрона, то каждый из них будет располагаться в отдельной ячейке, т.е. занимать отдельную орбиталь:


m s = ½ – ½ + ½ = ½.

Порядок распределения электронов по энергетическим уровням и подуровням в оболочке атома называется его электронной конфигурацией, или электронной формулой. Составляя электронную конфигурацию номер энергетического уровня (главное квантовое число) обозначают цифрами 1, 2, 3, 4…, подуровень (орбитальное квантовое число) – буквами s , p , d , f . Число электронов на подуровне обозначается цифрой, которая записывается вверху у символа подуровня.

Электронная конфигурация атома может быть изображена в виде так называемой электронно-графической формулы . Эта схема размещения электронов в квантовых ячейках, которые являются графическим изображением атомной орбитали. В каждой квантовой ячейке может быть не более двух электронов с различными значениями спиновых квантовых чисел.

Чтобы составить электронную или электронно-графическую формулу любого элемента следует знать:

1. Порядковый номер элемента, т.е. заряд его ядра и соответствующее ему число электронов в атоме.

2. Номер периода, определяющий число энергетических уровней атома.

3. Квантовые числа и связь между ними.

Так, например, атом водорода с порядковым номером 1 имеет 1 электрон. Водород - элемент первого периода, поэтому единственный электрон занимает находящуюся на первом энергетическом уровне s -орбиталь, имеющую наименьшую энергию. Электронная формула атома водорода будет иметь вид:

1 Н 1s 1 .

Электронно-графическая формула водорода будет иметь вид:

Электронная и электронно-графическая формулы атома гелия:

2 Не 1s 2

2 Не 1s

отражают завершенность электронной оболочки, что обусловливает ее устойчивость. Гелий – благородный газ, характеризующийся высокой химической устойчивостью (инертностью).

Атом лития 3 Li имеет 3 электрона, это элемент II периода, значит, электроны расположены на 2-х энергетических уровнях. Два электрона заполняют s - подуровень первого энергетического уровня и 3-й электрон расположен на s - подуровне второго энергетического уровня:

3 Li 1s 2 2s 1

Валентность I

У атома лития электрон, находящийся на 2 s -подуровне, менее прочно связан с ядром, чем электроны первого энергетического уровня, поэтому в химических реакциях атом лития может легко отдавать этот электрон, превращаясь в ион Li + (ион - электрически заряженная частица ). В этом случае ион лития приобретает устойчивую завершенную оболочку благородного газа гелия:

3 Li + 1s 2 .

Следует заметить, что, число неспаренных (одиночных) электронов определяет валентность элемента, т.е. его способность образовывать химические связи с другими элементами.

Так, атом лития имеет один неспаренный электрон, что обусловливает его валентность, равную единице.

Электронная формула атома бериллия:

4 Bе 1s 2 2s 2 .

Электронно-графическая формула атома бериллия:

2 Валентность в основном

Состоянии равна 0

Легче других у бериллия отрываются электроны подуровня 2s 2 , образуя ион Be +2:

Можно заметить, что атом гелия и ионы лития 3 Li + и бериллия 4 Bе +2 имеют одинаковое электронное строение, т.е. характеризуются изоэлектронным строением.


От строения атома зависит его радиус, энергия ионизации, сродство к электрону, электроотрицательность и другие параметры атома. Электронные оболочки атомов определяют оптические, электрические, магнитные, а главное - химические свойства атомов и молекул, а также большинство свойств твердых тел.

Магнитные характеристики атома

Электрон обладает собственным магнитным моментом , который квантуется по направлению параллельно или противоположно приложенному магнитному полю. Если два электрона, занимающие одну орбиталь, имеют противоположно направленные спины (согласно принципу Паули), то они гасят друг друга. В этом случае говорят, что электроны спаренные . Атомы, имеющие только спаренные электроны, выталкиваются из магнитного поля. Такие атомы называются диамагнитными . Атомы, имеющие один или несколько неспаренных электронов, втягиваются в магнитное поле. Они называются диамагнитными.

Магнитный момент атома, характеризующий интенсивность взаимодействия атома с магнитным полем, практически пропорционален числу неспаренных электронов.

Особенности электронной структуры атомов различных элементов отражаются в таких энергетических характеристиках, как энергия ионизации и сродство к электрону.

Энергия ионизации

Энергия (потенциал) ионизации атома E i - минимальная энергия, необходимая для удаления электрона из атома на бесконечность в соответствии с уравнением

Х = Х + + е

Ее значения известны для атомов всех элементов Периодической системы. Например, энергия ионизации атома водорода соответствует переходу электрона с 1s -подуровня энергии (−1312,1 кДж/моль) на подуровень с нулевой энергией и равна +1312,1 кДж/моль.

В изменении первых потенциалов ионизации, соответствующих удалению одного электрона, атомов явно выражена периодичность при увеличении порядкового номера атома:

При движении слева направо по периоду энергия ионизации, вообще говоря, постепенно увеличивается, при увеличении порядкового номера в пределах группы - уменьшается. Минимальные первые потенциалы ионизации имеют щелочные металлы, максимальные - благородные газы.

Для одного и того же атома вторая, третья и последующие энергии ионизации всегда увеличиваются, так как электрон приходится отрывать от положительно заряженного иона. Например, для атома лития первая, вторая и третья энергии ионизации равны 520,3, 7298,1 и 11814,9 кДж/моль, соответственно.

Последовательность отрыва электронов - обычна обратная последовательности заселения орбиталей электронами в соответствии с принципом минимума энергии. Однако элементы, у которых заселяются d -орбитали, являются исключениями - в первую очередь они теряют не d -, а s -электроны.

Сродство к электрону

Сродство атома к электрону A e - способность атомов присоединять добавочный электрон и превращаться в отрицательный ион. Мерой сродства к электрону служит энергия, выделяющая или поглощающаяся при этом. Сродство к электрону равно энергии ионизации отрицательного иона Х − :

Х − = Х + е

Наибольшим сродством к электрону обладают атомы галогенов. Например, для атома фтора присоединение электрона сопровождается выделением 327,9 кДж/моль энергии. Для ряда элементов сродство к электрону близко к нулю или отрицательно, что значит отсутствие устойчивого аниона для данного элемента.

Обычно сродство к электрону для атомов различных элементов уменьшается параллельно с ростом энергии их ионизации. Однако для некоторых пар элементов имеются исключения:

Элемент E i , кДж/моль A e , кДж/моль
F 1681 −238
Cl 1251 −349
N 1402 7
P 1012 −71
O 1314 −141
S 1000 −200

Объяснение этому можно дать, основываясь на меньших размерах первых атомов и большем электрон-электронном отталкивании в них.

Электроотрицательность

Электротрицательность характеризует способность атома химического элемента смещать в свою сторону электронное облако при образовании химической связи (в сторону элемента с более высокой электроотрицательностью). Американский физик Малликен предложил определять электроотрицательность как среднеарифметическую величину между потенциалом ионизации и сродством к электрону:

χ = 1/2 (E i + A e )

Трудность применения такого способа состоит в том, что значения сродства к электрону известны не для всех элементов.

Магнитные характеристики атома

Электрон обладает собственным магнитным моментом , который квантуется по направлению параллельно или противоположно приложенному магнитному полю. В случае если два электрона, занимающие одну орбиталь, имеют противоположно направленные спины (согласно принципу Паули), то они гасят друг друга. В этом случае говорят, что электроны спаренные . Атомы, имеющие только спаренные электроны, выталкиваются из магнитного поля. Такие атомы называются диамагнитными . Атомы, имеющие один или несколько неспаренных электронов, втягиваются в магнитное поле. Οʜᴎ называются диамагнитными.

Магнитный момент атома, характеризующий интенсивность взаимодействия атома с магнитным полем, практически пропорционален числу неспаренных электронов.

Особенности электронной структуры атомов различных элементов отражаются в таких энергетических характеристиках, как энергия ионизации и сродство к электрону.

Энергия (потенциал) ионизации атома E i - минимальная энергия, необходимая для удаления электрона из атома на бесконечность в соответствии с уравнением

Х = Х + + е

Ее значения известны для атомов всœех элементов Периодической системы. К примеру, энергия ионизации атома водорода соответствует переходу электрона с 1s -подуровня энергии (−1312,1 кДж/моль) на подуровень с нулевой энергией и равна +1312,1 кДж/моль.

В изменении первых потенциалов ионизации, соответствующих удалению одного электрона, атомов явно выражена периодичность при увеличении порядкового номера атома:

Рисунок 13

При движении слева направо по периоду энергия ионизации, вообще говоря, постепенно увеличивается, при увеличении порядкового номера в пределах группы - уменьшается. Минимальные первые потенциалы ионизации имеют щелочные металлы, максимальные - благородные газы.

Для одного и того же атома вторая, третья и последующие энергии ионизации всœегда увеличиваются, так как электрон приходится отрывать от положительно заряженного иона. К примеру, для атома лития первая, вторая и третья энергии ионизации равны 520,3, 7298,1 и 11814,9 кДж/моль, соответственно.

Последовательность отрыва электронов - обычна обратная последовательности заселœения орбиталей электронами в соответствии с принципом минимума энергии. При этом элементы, у которых заселяются d -орбитали, являются исключениями - в первую очередь они теряют не d -, а s -электроны.


  • - Энергия ионизации

    Магнитные характеристики атома Электрон обладает собственным магнитным моментом, который квантуется по направлению параллельно или противоположно приложенному магнитному полю. Если два электрона, занимающие одну орбиталь, имеют противоположно направленные спины... [читать подробенее]


  • - Энергия ионизации

    Процесс ионизации выражается схемой: Э - n Эn+. Причем ионизация может происходить многократно. Ионизация атома определяет способность атома к отдаче электрона и процессу окисления. Это свойство (Еиониз.) определяет характер и прочность химической связи. Процесс... [читать подробенее]


  • - Энергия ионизации атомов.

    Характеристики атома. Запитання для самоперевірки Речовини, які за тих самих умов не розпадаються на іони і не проводять електричний струм, називаються неелектролітами. Електроліти і неелектроліти Відомо, що одні речовини в розчиненому чи розплавленому... [читать подробенее]



  • - Периодический характер изменения свойств атомов элементов: радиус, энергия ионизации, энергия сродства к электрону, относительная электроотрицательность.

    Для энергетической характеристики электрона в атоме необходимо указать значения четырех квантовых чисел: главного, побочного, магнитного и спинового квантовых чисел. Разберем их в отдельности. 1) Главное квантовое число “n” характеризует энергию электрона в атоме,...



  • Понравилась статья? Поделитесь ей
    Наверх