Периодический закон Д.Менделеева, его современная формулировка. В чем её отличие от той, которая была дана Д.И.Менделеевым? Поясните, чем обусловлено такое изменение формулировки закона? В чем заключается физический смысл Периодического закона? Поясните п

: как образно заметил известный русский химик Н. Д. Зелинский , Периодический закон явился «открытием взаимной связи всех атомов в мироздании».

История

Поиски основы естественной классификации и систематизации химических элементов начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX века число известных химических элементов было мало, а принятые значения атомных масс многих элементов неверны.

Триады Дёберейнера и первые системы элементов

В начале 60-х годов XIX века появилось сразу несколько работ, которые непосредственно предшествовали Периодическому закону.

Спираль де Шанкуртуа

Октавы Ньюлендса

Таблица Ньюлендса (1866)

Вскоре после спирали де Шанкуртуа английский учёный Джон Ньюлендс сделал попытку сопоставить химические свойства элементов с их атомными массами . Расположив элементы в порядке возрастания их атомных масс, Ньюлендс заметил, что сходство в свойствах проявляется между каждым восьмым элементом. Найденную закономерность Ньюлендс назвал законом октав по аналогии с семью интервалами музыкальной гаммы. В своей таблице он располагал химические элементы в вертикальные группы по семь элементов в каждой и при этом обнаружил, что (при небольшом изменении порядка некоторых элементов) сходные по химическим свойствам элементы оказываются на одной горизонтальной линии.

Джон Ньюлендс, безусловно, первым дал ряд элементов, расположенных в порядке возрастания атомных масс, присвоил химическим элементам соответствующий порядковый номер и заметил систематическое соотношение между этим порядком и физико-химическими свойствами элементов. Он писал, что в такой последовательности повторяются свойства элементов, эквивалентные веса (массы) которых отличаются на 7 единиц, или на значение, кратное 7, т. е. как будто бы восьмой по порядку элемент повторяет свойства первого, как в музыке восьмая нота повторяет первую. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически.

Таблицы Одлинга и Мейера

Проявления периодического закона в отношении энергии сродства к электрону

Периодичность значений энергий сродства атомов к электрону объясняется, естественно, теми же самыми факторами, которые уже были отмечены при обсуждении ионизационных потенциалов (см. определение энергии сродства к электрону).

Наибольшим сродством к электрону обладают p -элементы VII группы. Наименьшее сродство к электрону у атомов с конфигурацией s² ( , , ) и s²p 6 ( , ) или с наполовину заполненными p -орбиталями ( , , ) :

Проявления периодического закона в отношении электроотрицательности

Строго говоря, элементу нельзя приписать постоянную электроотрицательность . Электроотрицательность атома зависит от многих факторов, в частности от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов , составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселенности, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остается необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.

Периодичность атомной электроотрицательности является важной составной частью периодического закона и легко может быть объяснена, исходя из непреложной, хотя и не совсем однозначной, зависимости значений электроотрицательности от соответствующих значений энергий ионизации и сродства к электрону .

В периодах наблюдается общая тенденция роста электроотрицательности, а в подгруппах - её падение. Наименьшая электроотрицательность у s-элементов I группы, наибольшая - у p-элементов VII группы.

Проявления периодического закона в отношении атомных и ионных радиусов

Рис. 4 Зависимость орбитальных радиусов атомов от порядкового номера элемента.

Периодический характер изменения размеров атомов и ионов известен давно. Сложность здесь состоит в том, что из-за волновой природы электронного движения атомы не имеют строго определенных размеров. Так как непосредственное определение абсолютных размеров (радиусов) изолированных атомов невозможно, в данном случае часто используют их эмпирические значения. Их получают из измеренных межъядерных расстояний в кристаллах и свободных молекулах, разбивая каждое межъядерное расстояние на две части и приравнивая одну из них к радиусу первого (из двух связанных соответствующей химической связью) атома, а другую - к радиусу второго атома. При таком разделении учитывают различные факторы, включая природу химической связи, степени окисления двух связанных атомов, характер координации каждого из них и т. д . Таким способом получают так называемые металлические, ковалентные, ионные и ван-дер-ваальсовы радиусы. Ван-дер-ваальсовы радиусы следует рассматривать как радиусы несвязанных атомов; их находят по межъядерным расстояниям в твердых или жидких веществах, где атомы находятся в непосредственной близости друг от друга (например, атомы в твердом аргоне или атомы из двух соседних молекул N 2 в твердом азоте), но не связаны между собой какой-либо химической связью.

Но, очевидно, лучшим описанием эффективных размеров изолированного атома является теоретически рассчитанное положение (расстояние от ядра) главного максимума зарядовой плотности его наружных электронов . Это так называемый орбитальный радиус атома. Периодичность в изменении значений орбитальных атомных радиусов в зависимости от порядкового номера элемента проявляется довольно отчетливо (см. рис. 4), и основные моменты здесь состоят в наличии очень ярко выраженных максимумов, приходящихся на атомы щелочных металлов, и таких же минимумов, отвечающих благородным газам. Уменьшение значений орбитальных атомных радиусов при переходе от щелочного металла к соответствующему (ближайшему) благородному газу носит, за исключением ряда - , немонотонный характер, особенно при появлении между щелочным металлом и благородным газом семейств переходных элементов (металлов) и лантаноидов или актиноидов . В больших периодах в семействах d- и f- элементов наблюдается менее резкое уменьшение радиусов, так как заполнение орбиталей электронами происходит в пред- предвнешнем слое. В подгруппах элементов радиусы атомов и однотипных ионов в общем увеличиваются.

Проявления периодического закона в отношении энергии атомизации

Следует подчеркнуть, что степень окисления элемента, будучи формальной характеристикой, не дает представления ни об эффективных зарядах атомов этого элемента в соединении, ни о валентности атомов, хотя степень окисления часто называют формальной валентностью. Многие элементы способны проявлять не одну, а несколько различных степеней окисления. Например, для хлора известны все степени окисления от −1 до +7, хотя четные очень неустойчивы, а для марганца - от +2 до +7. Высшие значения степени окисления изменяются в зависимости от порядкового номера элемента периодически, но эта периодичность имеет сложный характер. В простейшем случае в ряду элементов от щелочного металла до благородного газа высшая степень окисления возрастает от +1 ( F) до +8 ( О 4). В других случаях высшая степень окисления благородного газа оказывается меньше ( +4 F 4), чем для предшествующего галогена ( +7 О 4 −). Поэтому на кривой периодической зависимости высшей, степени окисления от порядкового номера элемента максимумы приходятся или на благородный газ, или на предшествующий ему галоген (минимумы - всегда на щелочной металл). Исключение составляет ряд - , в котором ни для галогена (), ни для благородного газа () вообще неизвестны высокие степени окисления, а наибольшим значением высшей степени окисления обладает средний член ряда - азот; поэтому в ряду - изменение высшей степени окисления оказывается проходящим через максимум. В общем случае возрастание высшей степени окисления в ряду элементов от щелочного металла до галогена или до благородного газа происходит отнюдь не монотонно, главным образом по причине проявления высоких степеней окисления переходными металлами. Например, возрастание высшей степени окисления в ряду - от +1 до +8 «осложняется» тем, что для молибдена, технеция и рутения известны такие высокие степени окисления, как +6 ( О 3), +7 ( 2 О 7), +8 ( O 4).

Проявления периодического закона в отношении окислительного потенциала

Одной из очень важных характеристик простого вещества является его окислительный потенциал , отражающий принципиальную способность простого вещества к взаимодействию с водными растворами, а также проявляемые им окислительно-восстановительные свойства . Изменение окислительных потенциалов простых веществ в зависимости от порядкового номера элемента также носит периодический характер. Но при этом следует иметь в виду, что на окислительный потенциал простого вещества оказывают влияние различные факторы, которые иногда нужно рассматривать индивидуально. Поэтому периодичность в изменении окислительных потенциалов следует интерпретировать очень осторожно.

/Na + (aq) /Mg 2+ (aq) /Al 3+ (aq)
2,71В 2,37В 1,66В
/K + (aq) /Ca 2+ (aq) /Sc 3+ (aq)
2,93В 2,87В 2,08В

Можно обнаружить некоторые определенные последовательности в изменении окислительных потенциалов простых веществ. В частности, в ряду металлов при переходе от щелочного к следующим за ним элементам происходит уменьшение окислительных потенциалов ( + (aq) и т. д. - гидратированный катион):

Это легко объясняется увеличением энергии ионизации атомов с увеличением числа удаляемых валентных электронов. Поэтому на кривой зависимости окислительных потенциалов простых веществ от порядкового номера элемента имеются максимумы, отвечающие щелочным металлам. Но это не единственная причина изменения окислительных потенциалов простых веществ.

Внутренняя и вторичная периодичность

s - и р -элементы

Выше рассмотрены общие тенденции в характере изменения значений энергии ионизации атомов , энергии сродства атомов к электрону , электроотрицательности , атомных и ионных радиусов, энергии атомизации простых веществ, степени окисления , окислительных потенциалов простых веществ от атомного номера элемента. При более глубоком изучении этих тенденций можно обнаружить, что закономерности в изменении свойств элементов в периодах и группах значительно сложнее. В характере изменения свойств элементов по периоду проявляется внутренняя периодичность, а по группе - вторичная периодичность (открыта Е. В. Бироном в 1915 году).

Так, при переходе от s-элемента I группы к р -элементу VIII группы на кривой энергии ионизации атомов и кривой изменения их радиусов имеются внутренние максимумы и минимумы (см. рис. 1, 2, 4).

Это свидетельствует о внутреннепериодическом характере изменения этих свойств по периоду. Объяснение отмеченных закономерностей можно дать с помощью представления об экранировании ядра.

Эффект экранирования ядра обусловлен электронами внутренних слоев, которые, заслоняя ядро, ослабляют притяжение к нему внешнего электрона. Так, при переходе от бериллия 4 к бору 5 , несмотря на увеличение заряда ядра, энергия ионизации атомов уменьшается:

Рис. 5 Схема строения последних уровней бериллия, 9.32 эВ (слева) и бора, 8,29 эВ (справа)

Это объясняется тем, что притяжение к ядру -электрона атома бора ослаблено за счет экранирующего действия 2s -электронов.

Понятно, что экранирование ядра возрастает с увеличением числа внутренних электронных слоев. Поэтому в подгруппах s - и р -элементов наблюдается тенденция к уменьшению энергии ионизации атомов (см. рис. 1).

Уменьшение энергии ионизации от азота 7 N к кислороду 8 О (см. рис. 1) объясняется взаимным отталкиванием двух электронов одной и той же орбитали:

Рис. 6 Схема строения последних уровней азота, 14,53 эВ (слева) и кислорода, 13,62 эВ (справа)

Эффектом экранирования и взаимного отталкивания электронов одной орбитали объясняется также внутреннепериодический характер изменения по периоду атомных радиусов (см. рис. 4).

Рис. 7 Вторичнопериодическая зависимость радиусов атомов внешних p-орбиталей от атомного номера

Рис. 8 Вторичнопериодическая зависимость первой энергии ионизации атомов от атомного номера

Рис. 9 Радиальное распределение электронной плотности в атоме натрия

В характере изменения свойств s - и р -элементов в подгруппах отчетливо наблюдается вторичная периодичность (рис. 7). Для её объяснения привлекается представление о проникновении электронов к ядру. Как показано на рисунке 9, электрон любой орбитали определенное время находится в области, близкой к ядру. Иными словами, внешние электроны проникают к ядру через слои внутренних электронов. Как видно из рисунка 9, внешний 3s -электрон атома натрия обладает весьма значительной вероятностью находиться вблизи ядра в области внутренних К - и L -электронных слоев.

Концентрация электронной плотности (степень проникновения электронов) при одном и том же главном квантовом числе наибольшая для s -электрона, меньше - для р -электрона, ещё меньше - для d -электрона и т. д. Например, при n = 3 степень проникновения убывает в последовательности 3s >3p >3d (см. рис. 10).

Рис. 10 Радиальное распределение вероятности нахождения электрона (электронной плотности) на расстоянии r от ядра

Понятно, что эффект проникновения увеличивает прочность связи внешних электронов с ядром. Вследствие более глубокого проникновения s -электроны в большей степени экранируют ядро, чем р -электроны, а последние - сильнее, чем d -электроны, и т. д.

Пользуясь представлением о проникновении электронов к ядру, рассмотрим характер изменения радиуса атомов элементов в подгруппе углерода. В ряду - - - - проявляется общая тенденция увеличения радиуса атома (см. рис. 4, 7). Однако это увеличение имеет немонотонный характер. При переходе от Si к Ge внешние р -электроны проникают через экран из десяти 3d -электро-нов и тем самым упрочняют связь с ядром и сжимают электронную оболочку атома. Уменьшение размера 6p -орбитали Pb по сравнению с 5р -орбиталью Sn обусловлено проникновением 6p -электронов под двойной экран десяти 5d -электронов и четырнадцати 4f -электронов. Этим же объясняется немонотонность в изменении энергии ионизации атомов в ряду C-Pb и большее значение её для Pb по сравнению с атомом Sn (см. рис. 1).

d -Элементы

Во внешнем слое у атомов d -элементов (за исключением ) находятся 1-2 электрона (ns -состояние). Остальные валентные электроны расположены в (n-1)d -состоянии, т. е. в предвнешнем слое.

Подобное строение электронных оболочек атомов определяет некоторые общие свойства d -элементов . Так, их атомы характеризуются сравнительно невысокими значениями первой энергии ионизации. Как видно на рисунке 1, при этом характер изменения энергии ионизации атомов по периоду в ряду d -элементов более плавный, чем в ряду s - и p -элементов. При переходе от d -элемента III группы к d -элементу II группы значения энергии ионизации изменяются немонотонно. Так, на участке кривой (рис. 1) видны две площадки, соответствующие энергии ионизации атомов, в которых заполняются Зd -орбитали по одному и по два электрона. Заполнение 3d -орбиталей по одному электрону заканчивается у (3d 5 4s 2), что отмечается некоторым повышением относительной устойчивости 4s 2 -конфигурации за счет проникновения 4s 2 -электронов под экран 3d 5 -конфигурации. Наибольшее значение энергии ионизации имеет (3d 10 4s 2), что находится в соответствии с полным завершением Зd -подслоя и стабилизацией электронной пары за счет проникновения под экран 3d 10 -конфигурации.

В подгруппах d -элементов значения энергии ионизации атомов в общем увеличиваются. Это можно объяснить эффектом проникновения электронов к ядру. Так, если у d -элементов 4-го периода внешние 4s -электроны проникают под экран 3d -электронов, то у элементов 6-го периода внешние 6s -электроны проникают уже под двойной экран 5d - и 4f -электронов. Например:

22 Ti …3d 2 4s 2 I = 6,82 эВ
40 Zr …3d 10 4s 2 4p 6 4d 2 5s 2 I = 6,84 эВ
72 Hf… 4d 10 4f 14 5s 2 5p 6 5d 2 6s 2 I = 7,5 эВ

Поэтому у d -элементов 6-го периода внешние бs -электроны связаны с ядром более прочно и, следовательно, энергия ионизации атомов больше, чем у d -элементов 4-го периода.

Размеры атомов d -элементов являются промежуточными между размерами атомов s - и p -элементов данного периода. Изменение радиусов их атомов по периоду более плавное, чем для s - и p -элементов.

В подгруппах d -элементов радиусы атомов в общем увеличиваются. Важно отметить следующую особенность: увеличение атомных и ионных радиусов в подгруппах d -элементов в основном отвечает переходу от элемента 4-го к элементу 5-го периода. Соответствующие же радиусы атомов d -элементов 5-го и 6-го периодов данной подгруппы примерно одинаковы. Это объясняется тем, что увеличение радиусов за счет возрастания числа электронных слоев при переходе от 5-го к 6-му периоду компенсируется f -сжатием, вызванным заполнением электронами 4f -подслоя у f -элементов 6-го периода. В этом случае f -сжатие называется лантаноидным . При аналогичных электронных конфигурациях внешних слоев и примерно одинаковых размерах атомов и ионов для d -элементов 5-го и 6-го периодов данной подгруппы характерна особая близость свойств.

Отмеченным закономерностям не подчиняются элементы подгруппы скандия. Для этой подгруппы типичны закономерности, характерные для соседних подгрупп s -элементов.

Периодический закон - основа химической систематики

См. также

Примечания

Литература

  1. Ахметов Н. С. Актуальные вопросы курса неорганической химии. - М.: Просвещение, 1991. - 224 с - ISBN 5-09-002630-0
  2. Корольков Д. В. Основы неорганической химии. - М.: Просвещение, 1982. - 271 с.
  3. Менделеев Д. И. Основы химии, т. 2. М.: Госхимиздат, 1947. 389 c.
  4. Менделеев Д.И. // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Периодический закон сформулирован Д. И. Менделеевым в \(1869\) году. К этому времени было известно \(63\) химических элемента. В качестве основного свойства элементов Менделеев выбрал относительную атомную массу . Учитывал также состав, физические и химические свойства образованных элементом простых и сложных веществ.

Расположив все известные химические элементы в порядке возрастания атомных масс, Менделеев обнаружил, что свойства повторяются через определённое число элементов.

Повторим действия Менделеева с учётом того факта, что благородные газы в его время ещё не были известны. Расположим элементы по возрастанию атомной массы (вторая строчка таблицы), укажем металлические и неметаллические свойства, формулы и свойства высших оксидов и гидроксидов, а также формулы газообразных водородных соединений.

Если внимательно проанализировать полученные последовательности, то можно увидеть повторяемость металлических и неметаллических свойств, состава и свойств соединений. Через семь элементов от щелочного металла лития в ряду располагается щелочной металл натрий, а через семь элементов от галогена фтора - галоген хлор. Через семь элементов появляются одинаковые формулы оксидов и водородных соединений, так как повторяются значения валентностей в соединениях с кислородом и водородом. Можем составить их общие формулы.

Формулы высших оксидов: R 2 O , RO , R 2 O 3 , R O 2 , R 2 O 5 , R O 3 , R 2 O 7 .

Летучие водородные соединения (для неметаллов): R H 4 , R H 3 , R H 2 , RH .

Таким образом Менделеев установил периодичность изменения свойств с возрастанием атомной массы. В статье «Периодическая закономерность химических элементов» Д. И. Менделеев дал следующую формулировку периодического закона:

«Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от атомного веса».

В переводе на современный научный язык это звучит так:

«Свойства простых веществ, а также состав и свойства соединений элементов находятся в периодической зависимости от относительных атомных масс».

Все элементы Менделеев разделил на периоды.

Период - ряд элементов, расположенных в порядке возрастания относительной атомной массы, начинающийся щелочным металлом и заканчивающийся галогеном и инертным газом.

В периоде:

  • постепенно ослабляются металлические свойства простых веществ и усиливаются неметаллические;
  • высшая валентность элементов по кислороду возрастает от I (у щелочных металлов) до VII (у галогенов);
  • валентность элементов неметаллов в летучих водородных соединениях уменьшается от IV до I (у галогенов);
  • свойства высших оксидов и гидроксидов постепенно изменяются от основных через амфотерные до кислотных.

Периодический закон получил дальнейшее развитие после изучения физиками строения атома. Оказалось, что главной характеристикой химического элемента является не относительная атомная масса, а заряд ядра атома. Современная формулировка периодического закона несколько изменена:

«Свойства химических элементов и их соединений находятся в периодической зависимости от зарядов атомных ядер».

Периодический закон химических элементов - фундаментальный закон природы, устанавливающий периодичность изменения свойств химических элементов по мере увеличения зарядов ядер их атомов. Датой открытия закона считается 1 марта (17 февраля по старому стилю) 1869 г., когда Д. И. Менделеев завершил разработку «Опыта системы элементов, основанной на их атомном весе и химическом сходстве». Термин «периодический закон» («закон периодичности») ученый впервые употребил в конце 1870 г. По словам Менделеева, открытию периодического закона способствовали «три рода данных». Во-первых, наличие достаточно большого числа известных элементов (63); во-вторых, удовлетворительная изученность свойств большинства из них; в-третьих, то, что атомные веса многих элементов были определены с хорошей точностью, благодаря чему химические элементы можно было расположить в естественный ряд сообразно увеличению их атомных весов. Решающим условием открытия закона Менделеев считал сравнение всех элементов по величинам атомных весов (ранее сравнивались лишь химически сходные элементы).

Классическая формулировка периодического закона, данная Менделеевым в июле 1871 г., гласила: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Эта формулировка сохраняла силу на протяжении более 40 лет, но периодический закон оставался лишь констатацией фактов и не имел физического обоснования. Оно стало возможным лишь в середине 1910-х гг., когда была разработана ядерно-планетарная модель атома (см. Атом) и установлено, что порядковый номер элемента в периодической системе численно равен заряду ядра его атома. В итоге стала возможной физическая формулировка периодического закона: «Свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от величин зарядов ядер (Z) их атомов». Она широко используется до сих пор. Сущность периодического закона может быть выражена и другими словами: «Конфигурации внешних электронных оболочек атомов периодически повторяются по мере роста Z»; это своеобразная «электронная» формулировка закона.

Существенная особенность периодического закона заключается в том, что, в отличие от некоторых других фундаментальных законов природы (например, закона всемирного тяготения или закона эквивалентности массы и энергии), он не имеет количественного выражения, т. е. не может быть записан в виде какой-либо математической формулы или уравнения. Между тем и сам Менделеев, и другие ученые пытались искать математическое выражение закона. В виде формул и уравнений могут быть количественно выражены различные закономерности построения электронных конфигураций атомов в зависимости от значений главного и орбитального квантовых чисел. Что же касается периодического закона, то он имеет наглядное графическое отражение в виде периодической системы химических элементов, представленной главным образом различными видами таблиц (см. вклейку).

Периодический закон - универсальный закон для всей Вселенной, проявляющийся везде, где существуют материальные структуры атомного типа. Однако периодически изменяются по мере роста Z не только конфигурации атомов. Оказалось, что строение и свойства атомных ядер также изменяются периодически, хотя сам характер периодического изменения здесь много сложнее, чем в случае атомов: в ядрах происходит закономерное построение протонных и нейтронных оболочек. Ядра, в которых эти оболочки заполнены (в них содержится 2, 8, 20, 50, 82, 126 протонов или нейтронов), получили название «магических» и рассматриваются как своеобразные границы периодов периодической системы атомных ядер.

ВВЕДЕНИЕ

Пенза


Введение

1. Периодический закон Д. И. Менделеева.

2. Структура периодической системы.

3. Семейства элементов.

4. Размеры атомов и ионов.

5.Энергия ионизации – количественная мера восстановительных свойств атомов.

6. Сродство к электрону – количественная мера окислительных свойств атома.

7. Электроотрицательность атома – количественная мера окислительно-восстановительных свойств элемента.

Заключение.

Литература:

1. Коровин Н.В. Общая химия. Учебник. – М.: Высшая школа, 1998. – с. 27 - 34.

Учебно – материальное обеспечение:

1. Мультимедийный проектор.

2. Короткопериодный и длиннопериодный варианты таблиц периодической системы Д.И. Менделеева.

3. Таблица электроотрицательностей элементов по Полингу.

Цель занятия:

Знать: 1.Периодический закон Д.И. Менделеева (формулировка Д.И. Менделеева и современная формулировка). Структура периодической системы. Порядковый номер элемента, период, группа, подгруппа. S -, p-, d-, f- электронные свойства элементов.

2.Атомные радиусы, энергия ионизации и сродство к электрону, электроотрицательность элементов, их изменение по периодам и группам.

Организационно-методические указания:

1.Проверить наличие обучаемых и их готовность к занятиям, устранить недостатки.

2.Объявить тему и цель занятия, учебные вопросы, литературу.

3.Обосновать необходимость изучения данной темы.

4.Рассмотреть учебные вопросы с применением кадров презентации и таблицы периодической системы.

5.По каждому учебному вопросу и в конце занятия подвести итоги.

6.В конце занятия выдать задание на самоподготовку.


Фундаментальным законом природы и теоретической базой химии является периодический закон, открытый Д.И Менделеевым в 1969 г. на основе глубоких знаний в области химии и гениальной интуиции. Позднее закон получил теоретическую интерпретацию на основе моделей строения атома.

Первый вариант периодического закона был предложен Менделеевым в 1869 году, а окончательно сформулирован в 1871 году.

Формулировка периодического закона Д.И. Менделеева:

Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

В 1914 году Мозли, изучая рентгеновские спектры атомов, пришел к выводу, что порядковый номер элемента в ПС совпадает с зарядом ядра его атома.

Современная формулировка периодического закона

Свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда ядра атомов элементов.

Физический смысл периодического закона (его связь со строением атома):

Строение и свойства элементов и их соединений находятся в периодической зависимости от заряда ядра атомов и определяются периодически повторяющимися однотипными конфигурациями их атомов.

Периодический закон – основной закон химии – был открыт в 1869 году Д.И. Менделеевым. В то время атом еще считался неделимым и ничего не было известно о его внутреннем строении.

Атомные массы (тогда – атомные веса ) и химические свойства элементов были положены в основу Периодического закона Д.И. Менделеева. Д.И. Менделеев, расположив 63 известных в то время элемента в порядке возрастания их атомных масс, получил естественный (природный) ряд химических элементов, где он отметил периодическую повторяемость химических свойств. Например, типичного неметалла фтор F повторялись у элементов хлор Сl, бром Br, йод I, свойства типичного металла литий Li – у элементов натрий Na и калий К и т.д.

Для некоторых элементов Д.И. Менделеевым не было обнаружено химических аналогов (у алюминия Al и кремния Si, например), в сиу того что в то время такие аналоги известны еще не были. В таблице им предназначались пустые места, но на основе периодической повторяемости ученый предсказал их химические свойства). После открытия соответствующих элементов предсказания Д.И. Менделеева полностью подтвердились (аналог алюминия – галлий Ga, аналог кремния – германий Ge ).

Периодический закон в формулировке Д.И. Менделеева представлен так: в периодической зависимости от величины атомных весов элементов находятся свойства простых тел, а также формы и свойства соединений элементов.

Современная формулировка Периодического закона Д.И. Менделеева звучит следующим образом: свойства элементов находятся в периодической зависимости от порядкового номера.

Периодический закон Д.И. Менделеева стал базой для создания ученым Периодической системы химических элементов . Она представлена 7 периодами и 8 группами.

Периодами называются горизонтальные ряды таблицы, которые делятся на малые и большие. 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды) находятся в малых периодах, а в больших периодах находятся 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й период), 7-й период пока остается незавершенным. Каждый период с типичного металла начинается и заканчивается типичным неметаллом и благородным газом.

Группами элементов называются вертикальные столбцы. Каждая группа представлена двумя подгруппами – главной и побочной . Подгруппой называется совокупность элементов, которые являются полными химическими аналогами; часто элементы подгруппы имеют высшую степень окисления, соответствующую номеру группы. Например, высшая степень окисления (+ II) отвечает элементам подгруппы бериллия и цинка (главная и побочная подгруппы II группы), а элементам подгруппы азота и ванадия (V группа) отвечает высшая степень окисления (+ V).

Химические свойства элементов в главных подгруппах могут меняться от неметаллических до металлических (в главной подгруппе V группы азот – неметалл, а висмут – метал) – в широком диапазоне. Свойства элементов в побочных подгруппах меняются, но не столь резко; например, элементы побочной группы IV группы – цирконий, титан, гафний – очень похожи по своим свойствам (особенно цирконий и гафний ).

В Периодической системе в I группе (Li – Fr), II (Mg – Ra) и III (In, Tl) расположены типичные металлы. Неметаллы расположены в группах VII (F – At), VI (O – Te) , V (N – As) , IV (C, Si) и III (B). Некоторые элементы главных групп (Be, Al, Ge, Sb, Po ), а также многие элементы побочных групп могут проявлять и металлические, и неметаллические свойства. Это явление получило название амфотерности .

Для некоторых главных групп применяют групповые названия: VIII (Не – Rn) – благородные газы , VII (F – At) – галогены , IV (О – Ро) – халькогены , II (Са – Ra) – щелочноземельные металлы , I (Li – Fr) – щелочные металлы .

Форма Периодической системы, которую предложил Д.И. Менделеев, получила название короткопериодной , или классической . В современной химии все шире используется другая форма – длиннопериодная , в которой все периоды – малые и большие – вытянуты в длинные ряды, начинающиеся щелочным металлом и заканчивающиеся благородным газом.

Периодический закон Д.И. Менделеева и Периодическая система элементов Д.И. Менделеева стали основой современной химии.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.



Понравилась статья? Поделитесь ей
Наверх