Отличается мейоз 1 мейоза 2. Стадии мейоза. Что мы узнали

Подробно изучить процесс прохождения одной из форм деления диплоидной клетки, а именно со схемой мейоза, поможет данная статья. В ней вы узнаете из скольких фаз состоит данный процесс, какие особенности имеет каждая фаза, в какой фазе происходит конъюгация хромосом, что такое кроссинговер и какая результативность каждого этапа деления.

Значение понятия «мейоз»

Данная форма деления в основном характерна для клеток половой системы, а именно яичников и сперматозоидов. С помощью мейоза из материнской диплоидной клетки образуются четыре гаплоидные гаметы с n набором хромосом.

Состоит процесс из двух стадий:

  • Редукционная, мейоз 1 - состоит из четырёх фаз: профаза, метафаза, анафаза и телофаза. Первое деление мейоза заканчивается образованием из диплоидной клетки двух гаплоидных.
  • Еквационная стадия, мейоз 2 , процессуально схожа с митозом. Для этого этапа характерно разделение сестринских хромосом и расхождение их к разным полюсам.

Каждый этап состоит из четырёх последовательных фаз, которые плавно переходят одна в другую. Между двумя стадиями деления интерфаза практически отсутствует, поэтому повторный процесс репликации ДНК не происходит.

Рис. 1. Схема первого деления мейоза.

Особенностью первой стадии деления является профаза 1, которая состоит из отдельных пяти этапов. Объяснение процессов, которые происходят на каждом из них, вы найдёте далее в таблице. В ходе профазы 1 хромосомы укорачиваются за счёт спирализации. Гомологичные хромосомы так плотно соединяются друг с другом, что происходит процесс конъюгации (сближение и слияние участков хромосом).

В это время некоторые участки несестринских хромосом могут обменяться друг с другом, такой процесс называется кроссинговером.

Рис. 2. Схема второго мейотического деления.

Таблица по фазам мейоза

Фаза

Особенности

Профаза 1

Состоит из пяти этапов:

  • Лептотена (тонкие нити) - вместо гранул хроматина появляются тонкие нити хромосом;
  • Зиготена (объединение нитей) - происходит процесс конъюгации;
  • Пахитена (толстые нити) - характерен кроссинговер участков хромосом;
  • Диплотена (двойные нити) - просматриваются хиазмы и хроматиды;
  • Диакинез – укорачиваются хромосомы, центромеры отталкиваются друг от друга, растворяются ядерные мембраны и ядрышко, формируется веретено деления.

Метафаза 1

Хромосомы выстраиваются на экваторе веретена деления, при этом ориентация центромер к полюсам абсолютно случайная.

Анафаза 1

Гомологичные хромосомы отходят к разным полюсам, при этом сестринские хромосомы всё ещё соединены центромерой.

Телофаза 1

Конец телофазы обозначен деспирализацией хромосом и образованием новой ядерной оболочки.

Профаза 2

Восстанавливается новое веретено деления, ядерная мембрана растворяется.

Метафаза 2

Хромосомы выстраиваются в экваториальной части веретена.

Анафаза 2

Центромеры расщепляются и хроматиды движутся к противоположным полюсам.

Телофаза 2

Из одного гаплоидного ядра образуются два с гаплоидным набором, внутри которых находится одна хроматида.

В результате такого деления из одной диплоидной клетки образуется четыре гаметы с гаплоидным набором. Генетически у каждой из четырёх клеток своё особенное генетическое содержимое.

ТОП-4 статьи которые читают вместе с этой

Рис. 3. Схема гаметогенеза.

Процесс кроссинговер мейозу 2 не характерен, так как обмен участками между хромосомами происходит в профазе первого деления.

Что мы узнали?

Деление клеток половых желёз происходит с помощью мейоза, который состоит из двух этапов деления. Каждая стадия имеет четыре фазы: профазу, метафазу, анафазу и телофазу. Особенностью первого этапа деления является образование двух клеток с гаплоидным набором хромосом. В результате второго деления количество образованных гамет равно четырём.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 206.

Мейоз (греч. meiosis – уменьшение, убывание) или редукционное деление. В результате мейоза происходит уменьшение числа хромосом, т.е. из диплоидного набора хромосом (2п) образуется гаплоидный (n).

Мейоз состоит из 2-х последовательных делений:
I деление называется редукционное или уменьшительное.
II деление называется эквационное или уравнительное, т.е. идет по типу митоза (значит число хромосом в материнской и дочерних клетках остается прежним).

Биологический смысл мейоза заключается в том, что из одной материнской клетки с диплоидным набором хромосом образуется четыре гаплоидные клетки, таким образом количество хромосом уменьшается в два раза, а количество ДНК в четыре раза. В результате такого деления образуются половые клетки (гаметы) у животных и споры у растений.

Фазы называются также как и в митозе, а перед началом мейоза клетка также проходит интерфазу.

Профаза I – самая продолжительная фаза и ее условно делят на 5 стадий:
1) Лептонема (лептотена) – или стадия тонких нитей. Идет спирализация хромосом, хромосома состоит из 2-х хроматид, на еще тонких нитях хроматид видны утолщения или сгустки хроматина, которые называются – хромомерами.
2) Зигонема (зиготена, греч. сливающиеся нити) - стадия парных нитей. На этой стадии попарно сближаются гомологичные хромосомы (одинаковые по форме величине), они притягиваются и прикладываются друг к другу по всей длине, т.е. коньюгируют в области хромомеров. Это похоже на замок «молния». Пару гомологичных хромосом называют биваленты. Число бивалентов равно гаплоидному набору хромосом.
3) Пахинема (пахитена , греч. толстая) – стадия толстых нитей. Идет дальнейшая спирализация хромосом. Затем каждая гомологичная хромосома расщепляется в продольном направлении и становится хорошо видно, что каждая хромосома состоит из двух хроматид такие структуры называют тетрадами, т.е. 4 хроматиды. В это время идет кроссинговер, т.е. обмен гомологичными участками хроматид.
4) Диплонема (диплотена) – стадия двойных нитей. Гомологичные хромосомы начинают отталкиваться, отходят друг от друга, но сохраняют взаимосвязь при помощи мостиков – хиазм, это места где произойдет кроссинговер. В каждом соединении хроматид (т.е. хиазме), осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.
5) Диакинез – стадия обособленных двойных нитей. На этой стадии хромосомы полностью уплотнены и интенсивно окрашиваются. Ядерная оболочка и ядрышки разрушаются. Центриоли перемещаются к полюсам клетки и образуют нити веретена деления. Хромосомный набор профазы I составляет - 2n4c.
Таким образом, в профазу I происходит:
1. конъюгация гомологичных хромосом;
2. образование бивалентов или тетрад;
3. кроссинговер.

В зависимости от конъюгирования хроматид могут быть различные виды кроссинговера: 1 – правильный или неправильный; 2 – равный или неравный; 3 – цитологический или эффективный; 4 – единичный или множественный.

Метафаза I – спирализация хромосом достигает максимума. Биваленты выстраиваются вдоль экватора клетки, образуя метафазную пластинку. К центромерам гомологичных хромосом крепятся нити веретена деления. Биваленты оказываются соединенными с разными полюсами клетки.
Хромосомный набор метафазы I составляет - 2n4c.

Анафаза I – центромеры хромосом не делятся, фаза начинается с деления хиазм. К полюсам клетки расходятся целые хромосомы, а не хроматиды. В дочерние клетки попадает только по одной из пары гомологичных хромосом, т.е. идет их случайное перераспределение. На каждом полюсе, оказывается, по набору хромосом - 1п2с, а в целом хромосомный набор анафазы I составляет - 2n4c.

Телофаза I – по полюсам клетки находится целые хромосомы, состоящие из 2-х хроматид, но количество их стало в 2 раза меньше. У животных и некоторых растений хроматиды деспирализуются. Вокруг них на каждом полюсе формируется ядерная мембрана.
Затем идет цитокинез
. Хромосомный набор образовавшихся после первого деления клеток составляет - n2c.

Между I и II делениями нет S-периода и не идет репликация ДНК, т.к. хромосомы уже удвоены и состоят из сестринских хроматид, поэтому интерфазу II называют интеркинезом – т.е. происходит перемещение между двумя делениями.

Профаза II – очень короткая и идет без особых изменений, если в телофазу I не образуется ядерная оболочка, то сразу образуются нити веретена деления.

Метафаза II – хромосомы выстраиваются вдоль экватора. Нити веретена деления крепятся к центромерам хромосом.
Хромосомный набор метафазы II составляет - n2c.

Анафаза II – центромеры делятся и нити веретена деления разводят хроматиды к разным полюсам. Сестринские хроматиды называются дочерними хромосомами(или материнские хроматиды это и будут дочерние хромосомы).
Хромосомный набор анафазы II составляет - 2n2c.

Телофаза II – хромосомы деспирализуются, растягиваются и после этого плохо различимы. Образуются ядерные оболочки, ядрышки. Телофаза II завершается цитокинезом.
Хромосомный набор после телофазы II составляет – nc.

Схема мейотического деления

Половое размножение животных, растений и грибов связано с формированием специализированных половых клеток.
Мейоз - особый тип деления клеток, в результате которого образуются половые клетки.
В отличии от митоза , при котором сохраняется число хромосом, получаемых дочерними клетками, при мейозе число хромосом в дочерних клетках уменьшается вдвое.
Процесс мейоза состоит из двух последовательных клеточных делений - мейоза I (первое деление) и мейоза II (второе деление).
Удвоение ДНК и хромосом происходит только перед мейозом I .
В результате первого деления мейоза, называемого редукционным , образуются клетки с уменьшенным вдвое числом хромосом. Второе деление мейоза заканчивается образованием половых клеток. Таким образом, все соматические клетки организма содержат двойной, диплоидный (2n) , набор хромосом, где каждая хромосома имеет парную, гомологичную хромосому. Зрелые половые клетки имеют лишь одинарный, гаплоидный (n) , набор хромосом и соответственно вдвое меньшее количество ДНК.

Фазы мейоза

Во время профазы I мейоза двойные хромосомы хорошо видны в световой микроскоп. Каждая хромосомы состоит из двух хромотид, которые связаны вместе одной центромерой. В процессе спирализации двойные хромосомы укорачиваются. Гомологичные хромосомы тесно соединяются друг с другом продольно (хроматида к хроматиде), или, как говорят, конъюгируют . При этом хроматиды нередко перекрещиваются или перекручиваются одна вокруг другой. Затем гомологичные двойные хромосомы начинают как бы отталкиваться друг от друга. В местах перекреста хроматид происходят поперечные разрыва и обмены их участками. Это явление называют перекрестом хромосом. Одновременно, как и при митозе, распадется ядерная оболочка, исчезает ядрышко, образуются нити веретена. Отличие профазы I мейоза от профазы митоза состоит в конъюгации гомологичных хромосом и взаимном обмене участками в процессе перекреста хромосом.
Характерный признак метафазы I - расположение в экваториальной плоскости клетки гомологичных хромосом, лежащих парами. Вслед за этим наступает анафаза I , во время которой целые гомологичные хромосомы, каждая состоящая из двух хроматид, отходят к противоположным полюсам клетки. Очень важно подчеркнуть одну особенность расхождения хромосом на этой стадии мейоза: гомологичные хромосомы каждой пары расходятся в стороны случайным образом, независимо от хромосом других пар. У каждого полюса оказывается вдвое меньше хромосом, чем было в клетке при начале деления. Затем наступает телофаза I , во время которой образуются две клетки с уменьшенным вдвое числом хромосом.
Интерфаза короткая, так как синтеза ДНК не происходит. Далее следует второе мейотическое деление (мейоз II ). Оно отличается от митоза только тем, что количество хромосом в метафазе II вдвое меньше, чем количество хромосом в метафазе митоза у того же организма. Поскольку каждая хромосома состоит из двух хроматид, то в метафазе II центромеры хромосом делятся, и к полюсам расходятся хроматиды, которые становятся дочерними хромосомами. Только теперь наступает настоящая интерфаза. Из каждой исходной клетки возникают четыре клетки с гаплоидным набором хромосом.

Разнообразие гамет

Рассмотри мейоз клетки, имеющей три пары хромосом (2n = 6 ). В этом случае после двух мейотических делений образуются четыре клетки с гаплоидным набором хромосом (n = 3 ). Поскольку хромосомы каждой пары расходятся в дочерние клетки независимо от хромосом других пар, равновероятно образование восьми тиров гамет с различным сочетанием хромосом, присутствовавших в исходной материнской клетке.
Еще большее разнообразие гамет обеспечивается конъюгацией и перекрестом гомологичных хромосом в профазе мейоза, что имеет очень большое общебиологическое значение.

Биологическое значение мейоза

Если бы в процессе мейоза не происходило уменьшения числа хромосом, то в каждом следующем поколении при слиянии ядер яйцеклетки и сперматозоида число хромосом увеличивалось бы бесконечно. Благодаря мейозу зрелые половые клетки получают гаплоидное (n) число хромосом, при оплодотворении же восстанавливается свойственное данному виду диплоидное (2n) число. При мейозе гомологичные хромосомы попадают в разные половые клетки, а при оплодотворении парность гомологичных хромосом восстанавливается. Следовательно, обеспечивается постоянных для каждого вида полных диплоидный набор хромосом и постоянное количество ДНК.
Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом определяют закономерности наследственной передачи признака от родителей потомству. Из каждой пары двух гомологичных хромосом (материнской и отцовской), входивших в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится лишь одна хромосома. Она может быть:

  • отцовской хромосомой;
  • материнской хромосомой;
  • отцовской с участком материнской;
  • материнской с участком отцовской.
Эти процессы возникновения большого количества качественно различных половых клеток способствуют наследственной изменчивости .
В отдельных случаях вследствие нарушения процесса мейоза, при нерасхождении гомологичных хромосом, половые клетки могут не иметь гомологичной хромосомы или, наоборот, иметь обе гомологичные хромосомы. Это приводит к тяжелым нарушениям в развитии организма или к его гибели.

Профаза 2 (1n2c ). Короче профазы 1, хроматин конденсирован, нет конъюгации и кроссинговера, происходят процессы, обычные для профазы – распад ядерных мембран на фрагменты, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n2c ). Двухроматидные хромосомы выстраиваются в экваториальной плоскости клетки, формируется метафазная пластинка.
Создаются предпосылки для третьей рекомбинации генетического материала – многие хроматиды мозаичные и от их расположения на экваторе зависит, к какому полюсу они в дальнейшем отойдут. К центромерам хроматид прикрепляются нити веретена деления.

Анафаза 2 (2n2с). Происходит деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами),происходит третья рекомбинация генетического материала.

Телофаза 2 (1n1c в каждой клетке). Хромосомы деконденсируются, образуются ядерные оболочки, разрушаются нити веретена деления, появляются ядрышки, происходит деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

5. Отличие мейоза I от мейоза II

1.Первому делению предшествует ннтерфаза с редупликацией хромомом, при втором делении редпликации генетического материала нет, то есть отсутствует синтетическая стадия.

2.Профаза первого деления длительная.

3.В первом делении происходит конъюгация хромосом и
кроссинговер.

4.В первом делении к полюсам расходятся гомологичные хромосомы (биваленты, состоящие из пары хроматид), а во втором – хроматиды.

Мейоз: 1 - лептотена; 2 - зиготена; 3 - пахитена; 4 - диплотена; 5 - диакинез; 6 - метафаза 1; 7 - анафаза 1; 8 - телофаза 1; 9 - профаза 2; 10 - метафаза 2; 11 - анафаза 2; 12 - телофаза 2.

6. Отличия мейоза от митоза

1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двуххроматидные хромосомы). Это приводит к рекомбинации и редукции.

4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

5. После митоза получается две клетки, а после мейоза – четыре.

6. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

7. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

8. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения обеспечивает постоянство числа хромосом).

7. Биологическое значение мейоза

Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. С его помощью поддерживается постоянство хромосомного набора – после слияния гамет не происходит его удвоения. Благодаря мейозу образуются генетически различные клетки, т.к. в процессе мейоза трижды происходит перекомбинация генетического материала: за счет кроссинговера (профаза 1), за счет случайного, независимого расхождения гомологичных хромосом (анафаза 1) и за счет случайного расхождения хроматид (анафаза 2).

8. Способы размножения организмов

9. Отличие полового размножения от бесполого

10. Основные формы бесполого размножения: деление на два (митоз), множественное деление (шизогония), почкование, фрагментация, спорообразование, вегетативное размножение, полиэмбриония).

Бесполое размножение – процесс возникновения дочерних особей из одно или группы соматических клеток материнского организма. Этот способ размножения более древний. В его основе лежит митотическое деление клеток. Значение бесполого размножения заключается в быстром увеличении числа особей, почти не различающихся между собой. Различают следующие формы бесполого размножения:

1.Деление надвое – приводит к возникновению из одного родительского организма двух дочерних. Является преобладающей формой деления у прокариот и простейших. Различные одноклеточные животные делятся по-разному. Так, жгутиковые делятся продольно, а инфузории – поперечно. Такое деление встречается и у многоклеточных животных – кишечнополостных (продольное деление у медуз) и червей (поперечное деление у кольчатых червей).

3.Почкование – на теле материнского организма возникает скопление клеток, которое растет и постепенно приобретает сходство с материнской особью. Затем дочерняя особь отделяется и начинает вести самостоятельное существование. Такое размножение распространено среди низших многоклеточных (губки, кишечнополостные, мшанки, некоторые черви и оболочники). Иногда дочерние особи не отделяются полностью от родительской, что приводит к образованию колоний.

4.Фрагментация – происходит распад тела многоклеточного организма на части, которые в дальнейшем превращаются в самостоятельные особи (плоские черви, иглокожие).

5.Спорами – дочерний организм развивается из специализированной клетки-споры.

Различают две основные формы бесполого размножения растений: вегетативное размножение и спорообразование. Вегетативное размножение одноклеточных растений осуществляется простым делением одной клетки на две. У грибов формы его более разнообразны – спорообразование (плесневые грибы, шляпочные) и почкование (дрожжи). У покрытосеменных растений вегетативное размножение происходит за счет вегетативных (неполовых) органов – корня, стебля, листа.

У некоторых видов животных наблюдается полиэмбриония – бесполое размножение зародыша, образовавшегося путем полового размножения. Например, у броненосцев на стадии бластулы происходит разделение клеточного материала первоначально одного зародыша между 4–8 зародышами, из которых в последствии развиваются полноценные особи. В результате полиэмбрионии у человека рождаются однояйцовые близнецы.

11. Основные формы полового размножения у одноклеточных организмов (конъюгация, копуляция) и у многоклеточных организмов (без оплодотворения (партеногенез) и с оплодотворением).

Половое размножение – наблюдается в жизненных циклах всех основных групп организмов. Распространенность полового размножения объясняется тем, что оно обеспечивает значительное генетическое разнообразие и, следовательно, фенотипическую изменчивость потомства.

В основе полового размножения лежит половой процесс, суть которого сводится к объединению в наследственном материале для развития потомка генетической информации от двух разных источников – родителей.

Одной из форм полового процесса является конъюгация. При этом происходит временное соединение двух особей с целью обмена (рекомбинации) наследственным материалом, например, у инфузорий. В результате появляются особи генетически отличные от родительских организмов, которые в дальнейшем осуществляют бесполое размножение. Число инфузорий после конъюгации не изменяется, поэтому говорить в прямом смысле о размножении в этом случае нельзя.

У простейших половой процесс может осуществляться и в форме копуляции – слияния двух особей в одну, объединение и рекомбинация наследственного материала. Далее такая особь размножается делением.

Для участия в половом размножении в родительских организмах вы-рабатываются гаметы – клетки, специализированные к обеспечению генеративной функции. Слияние материнской и отцовской гамет приводит к возникновению зиготы – клетки, представляющей собой дочернюю особь на первой, наиболее ранней стадии индивидуального развития.

У некоторых организмов зигота образуется в результате объединения гамет, которые не отличаются по строению – явление изогамии. У большинства же видов половые клетки по структурным и функциональным признакам делятся на материнские (яйцеклетки) и отцовские (сперматозоиды).

Иногда развитие дочернего организма происходит из неоплодотворенной яйцеклетки. Это явление называют девственным развитием или партеногенезом. Источником наследственного материала для развития потомка в этом случае обычно служит ДНК яйцеклетки – явление гиногенеза. Реже наблюдается андрогенез – развитие потомка из клетки с цитоплазмой ооцита и ядром сперматозоида. Ядро женской гаметы в случае андрогенеза погибает.

12. Биологическое значение полового размножения

На определенном этапе эволюции у многоклеточных организмов половой процесс как способ обмена генетической информацией между особями в пределах вида оказался связанным с размножением. При половом размножении возникающие новые особи обычно отличаются от родительских и друг от друга комбинацией аллелей генов. Новые сочетания хромосом и генов проявляются у потомков новым сочетанием признаков. В результате возникает большое разнообразие особей в пределах одного вида. Таким образом, биологическое значение полового размножения заключается не только в самовоспроизведении, но и в обеспечении исторического развития видов, то есть жизни как таковой. Это позволяет считать половое размножение биологически более прогрессивным, чем бесполое.

13. Сперматогенез

Процесс образования мужских половых клеток – сперматогенез. В результате образуются сперматозоиды.

В сперматогенезе различают 4 периода: размножение, рост, созревание (мейоз) и формирование (рис. 3).

В период размножения исходные недифференцированные половые клетки сперматогонии , или гонии делятся путем обычного митоза. Проделав несколько таких делений, они вступают в период роста. На этой стадии их называют сперматоцитами I порядка (или цитами I ). Они усиленно ассимилируют питательные вещества, укрупняются, претерпевают глубокую физико-химическую перестройку, в результате которой подготавливаются к третьему периоду – созреванию, или мейозу .

В мейозе сперматоциты I проходят два процесса клеточного деления. В первом делении (редукционном) происходит уменьшение числа хромосом (редукция). В результате из одного цита I возникает две равновеликие клетки – сперматоциты II порядка, или циты II. Затем наступает второе деление созревания. Оно протекает как обычный соматический митоз, но при гаплоидном числе хромосом. Такое деление называется эквационным («эквацио» – равенство), так как образуются две тождественные, т.е. полностью равноценные клетки, которые называются сперматидами.

В четвертом периоде – формирования – округлая сперматида приобретает форму зрелой мужской половой клетки: у нее вырастает жгутик, уплотняется ядро, образуется оболочка. В результате всего процесса сперматогенеза из каждой исходной недифференцированной сперматогонии получается 4 зрелых половых клетки, содержащих по гаплоидному набору хромосом.

На рис. 4 представлена схема процессов сперматогенеза и спермиогенеза у человека. Сперматогенез происходит в извитых семенных канальцах семенников.Развитие сперматозоидов начинается в период пренатального развития при закладке генеративных тканей, затем возобновляется в период наступления половозрелости и продолжается до старости.

Мужские половые клетки не развиваются одиночно, они растут в клонах и объединены между собой цитоплазматическими мостиками. Цитоплазматические мостики имеются между сперматогониями, сперматоцитами и сперматидами. В конце фазы формирования сперматозоиды освобождаются от цитоплазматических мостиков. У человека максимум дневной продуктивности сперматозоидов 108, продолжительность существования сперматозоида во влагалище до 2,5 ч, а в шейке матки до 48 ч.

14. Овогенез. Понятие о менструальном цикле

Процесс развития женских половых клеток называется овогенезом (оогенезом).

В овогенезе различают 3 периода: размножение, рост и созревание.

Недифференцированные женские половые клетки – овогонии – размножаются так же, как и сперматогонии, путем обычного митоза.

После деления они становятся овоцитами I порядка и переходят в период роста. Рост овоцитов длится очень долго – недели, месяцы и даже годы.

Затем овоцит I порядка вступает в период созревания, или мейоз. Здесь тоже совершаются редукционное и эквационное деления. Процессы деления в ядре протекают так же, как при мейозе сперматоцитов, но судьба цитоплазмы совершенно иная. При редукционном делении одно ядро увлекает с собой бульшую часть цитоплазмы , а на долю другого остается лишь незначительная ее часть. Поэтому образуется только одна полноценная клетка – овоцит II порядка, и вторая крошечная – направительное, или редукционное, тельце, которое может делиться на два редукционных тельца.

При втором, эквационном делении несимметричное распределение цитоплазмы повторяется и опять образуется одна крупная клетка – овотида и третье полярное тельце. Овотида по составу ядра и функционально является вполне зрелой половой клеткой.

Период формирования, в отличие от сперматогенеза, в овогенезе отсутствует.

Таким образом, в овогенезе из одной овогонии возникает только одна зрелая яйцеклетка. Полярные тельца остаются недоразвитыми и вскоре погибают и фагоцитируются другими клетками. Зрелые женские гаметы называют яйцеклетками или яйцами, а отложенные в воду – икрой.

Развитие женских половых клеток происходит в яичниках. Период размно-жения наступает у оогоний еще у зародыша и прекращается к моменту рождения девочки.

Период роста при оогенезе более продолжительный, т.к. кроме подготовки к мейозу осуществляется накопление запаса питательных веществ, которые будут необходимы в дальнейшем для первых дроблений зиготы. В фазе малого роста происходит образование большого количества разных типов РНК.

В период большого роста фолликулярные клетки яичника образуют несколько слоев вокруг ооцита I порядка, что способствует переносу питательных веществ, синтезированных в других местах, в цитоплазму ооцита.

У человека период роста ооцитов может составлять 12–50 лет. После завершения периода роста ооцит I порядка вступает в период созревания.

В результате при оогенезе получается 4 клетки, из которых только одна станет в дальнейшем яйцеклеткой, а остальные 3 (полярные тельца) редуцируются. Биологическая значимость этого этапа оогенеза – сохранить все накопленные вещества цитоплазмы около одного гаплоидного ядра для обеспечения нормального питания и развития оплодотворенной яйцеклетки.

При оогенезе у женщин на стадии второй метафазы образуется блок, который снимается во время оплодотворения, и фаза созревания заканчивается только после проникновения сперматозоида в яйцеклетку.

Процесс оогенеза у женщин – это циклический процесс, повторяющийся примерно через каждые 28 дней (начиная с периода роста и заканчивая период только после оплодотворения). Этот цикл называется менструальным.

Отличительные особенности сперматогенеза и овогенеза у человека представлены в таблице 3.



Понравилась статья? Поделитесь ей
Наверх