Нервная и гуморальная регуляция сердечной деятельности. Общая емкость легких. Их изменение при динамической и статической работе

В этой части речь идет о нервной и гуморальной регуляции деятельности сердца: об эфферентной иннервации сердца, о влиянии блуждающего и симпатического нервов на сердце, о механизме влияния блуждающего и симпатического нервов на сердце, о тонусе центров сердечных нервов, о рефлекторной регуляции деятельности сердца, о гуморальной регуляции деятельности сердца.

Нервная и гуморальная регуляция деятельности сердца.

Влияния нервной системы для сердца не имею пускового действия. Обладая автоматией, сердце сокращается без воздействия внешних раздражителей. Но тем не менее влияния нервной системы на сердце очень важны и существенны. Благодаря им деятельность сердца меняется в зависимости от состояния организма и тем в значительной мере обеспечивается его приспособление в каждый данный момент к воздействиям внешней среды.

Эфферентная иннервация сердца.

Работа сердца регулируется двумя нервами: блуждающим (или вагусом), относящимся к парасимпатической нервной системе, и симпатическим.

Блуждающий и симпатический нервы образованы двумя нейронами - преганглионарным и постганглионарным. Ядро блуждающего нерва расположено в продолговатом мозге на дне четвертого желудочка. Отсюда начинается его преганглионарный путь: блуждающий нерв идет к сердцу вместе с сосудами вдоль шеи с правой и левой стороны и подходит к ганглиям, лежащим в сердце (интрамуральным). Волокна правого блуждающего нерва в основном подходят к области синусного узла, здесь заканчивается преганглионарная часть блуждающего нерва и начинается постганглионарный путь. Последний представлен особыми длинноаксонными нейронами - нейроцитами (клетки Догеля I типа), отростки которых идут к мышечным волокнам предсердий и к атриовентрикулярному узлу. Волокна левого блуждающего нерва подходят главным образом к области атриовентрикулярного узла.

Центральные нейроны симпатической нервной системы, регулирующие деятельность сердца, лежат в боковых рогах I-V грудных сегментов. Отсюда преганглионарные волокна идут к шейным и верхним грудным узлам симпатической цепочки. Здесь же располагаются тела постганглионарных нейронов - длинноаксонные нейроциты - клетки Догеля I типа, отростки которых образуют симпатические нервы, идущие к сердцу. Большая часть волокон направляется к сердцу от звездчатого ганглия. Нервы, идущие от правого симпатического ствола, в основном подходят к синусному узлу и к мышцам предсердий, а нервы левой стороны - к атриовентрикулярному узлу и мышцам желудочков. Окончания эффекторных нервов представляют собой тонкие безмиелиновые веточки с большими концевыми утолщениями.

В сердце имеются и рецепторные образования. Они представлены свободными древовидными окончаниями или инкапсулированными в виде клубочков и луковицеобразных телец. Они располагаются в соединительной ткани, на мышечных клетках и в стенке венечных сосудов. Тела чувствительных нейронов лежат в нижнем шейном ганглии и в спинномозговых узлах (от 7-го шейного до 6-го грудного). Их миелинизированные аксоны идут в продолговатый мозг к ядру блуждающего нерва, откуда могут переключаться на другие нейроны, достигающие коры больших полушарий.

Влияние блуждающего и симпатического нервов на сердце.

В 1845 году браться Веберы наблюдали при раздражении продолговатого мозга в области ядра блуждающего нерва останову сердца. После перерезки блуждающих нервов этот эффект отсутствовал. Отсюда был сделан вывод, что блуждающий нерв тормозит деятельность сердца. Дальнейшими исследованиями многих ученых были расширены представления о тормозящем влиянии блуждающего нерва. Была показано, что при его раздражении уменьшаются частота и сила сердечных сокращений, возбудимость и проводимость сердечной мышцы. После перерезки блуждающих нервов, вследствие снятия их тормозящего влияния, наблюдалось увеличение амплитуды и частоты сердечных сокращений.

Влияние блуждающего нерва на сердце зависит от интенсивности раздражения. При слабой силе раздражения прежде всего уменьшается частота сердечных сокращений, что было названо отрицательным хоронотропным эффектом . Вместе с этим уменьшается амплитуда сердечных сокращений (отрицательный инотропный эффект ), понижается возбудимость сердечной мышцы (отрицательный батмотропный эффект ) и уменьшается скорость проведения возбуждения (отрицательный дромотропный эффект ). При раздражении блуждающего нерва наступает также уменьшение тонуса сердечной мышцы (отрицательный тонотропный эффект ), т.е. блуждающий нерв тормозит все стороны деятельности сердца. При сильном его раздражении наступает остановка сердца.

Первые детальные исследования влияний симпатической нервной системы на деятельность сердца принадлежат братьям Цион (1867 г.), а затем И.П.Павлову (1887 г.).

Браться Цион наблюдали увеличение частоты сердечных сокращений при раздражении спинного мозга в области расположения нейронов, регулирующих деятельность сердца. После перерезки симпатических нервов такое же раздражение спинного мозга не вызывало изменений деятельности сердца. Было установлено, что симпатические нервы, иннервирующие сердце, оказывают положительное влияние на все стороны деятельности сердца. Они вызывают положительные хронотропный, инотропный, батмотропный, дромотропный и тонотропный эффекты.

Дальнейшими исследованиями И.П.Павлова было показано, что нервные волокна, входящие в состав симпатического и блуждающего нервов, влияют на разные стороны деятельности сердца: одни изменяют частоту, а другие - силу сердечных сокращений. Веточки симпатического нерва, при раздражении которых наступает увеличение силы сердечных сокращений, были названы усиливающим нервом Павлова . Было установлено, что усиливающее влияние симпатических нервов связано с повышением уровня обмена веществ.

В составе блуждающего нерва также были найдены волокна, влияющие только на частоту и только на силу сердечных сокращений.

На частоту сердечных сокращений влияют волокна блуждающего и симпатического нервов, подходящие к синусному узлу, а сила сокращений изменяется под влиянием волокон, подходящих к атриовентрикулярному узлу.

Блуждающий нерв легко адаптируется к раздражению, и поэтому его эффект может исчезнуть, несмотря на продолжающиеся раздражение. Это явление получило название "ускользание сердца от влияния вагуса". Блуждающий нерв обладает более высокой возбудимостью, вследствие чего он реагирует на меньшую силу раздражения, чем симпатический, и коротким латентным периодом.

Поэтому при одинаковых условиях раздражения эффект блуждающего нерва появляется раньше, чем симпатического.

Механизм влияния блуждающего и симпатического нервов на сердце.

В 1921 году исследованиями О.Леви было показано, что влияние блуждающего нерва на сердце передается гуморальным путем. В опытах Леви наносилось сильное раздражение на блуждающий нерв и наблюдалась остановка сердца. Затем из сердца брали кровь и действовали ею на сердце другого животного, при этом возникал тот же эффект - торможение деятельности сердца. Точно так же можно перенести и эффект симпатического нерва на сердце другого животного. Эти опыты говорят о том, что при раздражении нервов в их окончаниях выделяются активно действующие вещества, которые или тормозят, или стимулируют деятельность сердца: в окончаниях блуждающего нерва выделяется ацетилхолин, а симпатического - норадреналин (симпатин).

При раздражении сердечных нервов под влиянием медиатора изменяется мембранный потенциал мышечных волокон сердечной мышцы.

При раздражении блуждающего нерва происходит гиперполяризация мембраны, т.е. увеличивается мембранный потенциал. В основе гиперполяризации сердечной мышцы лежит увеличение проницаемости мембраны по отношению к ионам калия.

Влияние симпатического нерва передается с помощью медиатора норадреналина, который вызывает деполяризацию постсинаптической мембраны по отношению к ионам калия.

Влияние симпатического нерва передается с помощью медиатора норадреналина, который вызывает деполяризацию постсинаптической мембраны. Деполяризация связана с увеличением проницаемости мембраны по натрию.

Зная, что блуждающий нерв гиперполяризует мембрану, а симпатический деполяризует ее, можно объяснить все эффекты действия этих нервов на сердце. Поскольку при раздражении блуждающего нерва увеличивается мембранный потенциал, то требуется большая сила раздражения для достижения критического уровня деполяризации и получения ответной реакции, а это говорит об уменьшении возбудимости (это отрицательный батмотропный эффект).

Отрицательный хронотропный эффект связан с тем, что при большой силе раздражения вагуса гиперполяризация мембраны столь велика, что возникающая спонтанная деполяризация не может достичь критического уровня и ответ не возникает - наступает остановка сердца.

При малой частоте или силе раздражения блуждающего нерва степень гиперполяризации мембраны меньше и спонтанная деполяризация постепенно достигает критического уровня, вследствие чего наступают редкие сокращения сердца (отрицательный дромотропный эффект).

При раздражении симпатического нерва даже небольшой силой возникает деполяризация мембраны, которая характеризуется уменьшением величины мембранного и порогового потенциалов, что свидетельствует о повышении возбудимости (положительный батмотропный эффект).

Поскольку под влиянием симпатического нерва мембрана мышечных волокон сердца деполяризуется, то время спонтанно деполяризации, необходимое для достижения критического уровня и возникновения потенциала действия, уменьшается, что приводит к увеличению частоты сердечных сокращений.

Тонус центров сердечный нервов.

Нейроны центральной нервной системы, регулирующие деятельность сердца, находятся в тонусе, т.е. определенной степени деятельности. Поэтому от них постоянно поступают импульсы к сердцу. Особенно ярко выражен тонус центра блуждающих нервов. Тонус центров симпатических нервов выражен слабо, а иногда отсутствует.

Наличие тонических влияний, идущих от центров, можно наблюдать в опыте с перерезкой нервов. Если перерезать оба блуждающих нерва, то наступает значительное увеличение частоты сердечных сокращений. У человека можно выключить влияние блуждающего нерва действием атропина, после чего также наблюдается учащение сердцебиений. О наличии постоянного тонуса центров блуждающих нервов говорят и опыты с регистрацией потенциалов нерва в момент отсутствия раздражения. Следовательно, в естественных условиях по блуждающим нервам из центральной нервной системы поступают импульсы, тормозящие деятельность сердца.

После перерезки симпатических нервов наблюдается небольшое уменьшение числа сердечных сокращений, что говорит о постоянном стимулирующем влиянии на сердце центров симпатических нервов.

Тонус центров сердечных нервов поддерживается различными рефлекторными и гуморальными влияниями. Особенно существенное значение имею импульсы, поступающие от сосудистых рефлексогенных зон, расположенных в области дуги аорты и каротидного синуса (места разветвления сонной артерии на наружную и внутреннюю). После перерезки нервов, идущих от этих зон в центральную нервную систему, уменьшается тонус центров блуждающих нервов, вследствие чего наступает учащение сердечных сокращений.

На состояние сердечных центров влияют импульсы, приходящие с любых других интеро- и экстерорецепторов, особенно с рецепторов кожи и некоторых внутренних органов (например, кишечника) и др.

Обнаружен ряд гуморальных факторов, влияющих на тонус сердечных центров. Например, гормон надпочечников адреналин повышает тонус центров блуждающих нервов. Таким же действием обладают ионы кальция.

При введении ионов калия в продолговатый мозг наблюдается учащение сердечных сокращений.

На состояние тонуса сердечных центров влияют и вышележащие отделы центральной нервной системы.

Рефлекторная регуляция деятельности сердца.

В естественных условиях деятельности организма частота и сила сердечных сокращений постоянно изменяются в зависимости от воздействия различных факторов внешней среды. К ним относятся выполнение физической нагрузки, передвижение тела в пространстве, влияние температуры, изменение состояния внутренних органов и др.

В основе приспособительных изменений сердечной деятельности в ответ на различных внешние воздействия лежат рефлекторные механизмы. Возбуждение, возникшее в рецепторах, по афферентным путям приходит к различных отделам центральной нервной системы, влияет на регуляторные механизмы сердечной деятельности. Установлено, что нейроны, регулирующие деятельность сердца, располагаются не только в продолговатом мозге, но и в коре больших полушарий (в моторной и премоторной зонах), промежуточном мозге (гипоталамусе) и мозжечке. От них импульсы идут в продолговатый и спинной мозг и изменяют состояние центров парасимпатической и симпатической регуляции сердца. Отсюда импульсы поступают по блуждающим и симпатическим нервам к сердцу и вызывают замедление ослабление или учащение и усиление его деятельности. Поэтому говорят о вагальных (тормозных) и симпатических (стимулирующих) рефлекторных влияниях на сердце.

Постоянные коррективы в работу сердца вносят влияния с сосудистых рефлексогенных зон - аортальной и синокаротидной. Расположенные в них рецепторы возбуждаются при изменении давления крови в сосудах (прессорецепторы) или под влиянием изменяющегося химического состава крови (хеморецепторы). При повышении кровяного давления в аорте или сонной артерии раздражаются прессорецепторы. Возникшее в них возбуждение приходит в центральную нервную систему и повышает возбудимость центра блуждающих нервов, вследствие чего увеличивается количество идущих по ним тормозящих импульсов, что приводит к замедлению и ослаблению сердечных сокращений. А поэтому уменьшается количество крови, выбрасываемой сердцем в сосуды, и давление.

К вагальным рефлексам относится глазо-сердечный рефлекс Ашнера, рефлекс Гольца и др. Рефлекс Ашнера выражается в возникающем при надавливании на глазные яблоки рефлекторном уменьшении числа сердечных сокращений (на 10-20 в минуту). Рефлекс Гольца заключается в том, что при нанесении механического раздражения на кишечник лягушки (сдавливание пинцетом, поколачивание) возникает остановка или замедление деятельности сердца. Остановку сердца можно наблюдать и у человека при ударе по животу. Эта же реакция возникает и в тот момент, когда человек опускается в холодную воду (вагальный рефлекс с рецепторов кожи).

Симпатические сердечные рефлексы возникают при различных эмоциональных влияниях, болевых раздражениях и физической работе. При этом улучшение сердечной деятельности может наступить не только вследствие усиления влияния симпатических нервов, но и в результате понижения тонуса центров блуждающих нервов.

Возбудителем хеморецепторов сосудистых рефлексогенных зон может быть повышенное содержание в крови различных кислот (углекислого газа, молочной кислоты и др.) и колебание активной реакции крови. При этом наступает рефлекторное усиление деятельности сердца, обеспечивающее быстрейшее удаление этих веществ из организма и восстановление нормального состава крови.

Гуморальная регуляция деятельности сердца.

Химические вещества, непосредственное влияющие на деятельность сердца, делятся на две группы: парасимпатикотропные (или ваготропные), действующие подобно вагусу, и симпатикотропные - подобно симпатическим нервам.

К парасимпатикотропным веществам относятся ацетилхолин и ионы калия. При увеличении их содержания в крови наступает торможение деятельности сердца.

К симпатикотропным веществам относятся адреналин, норадреналин, симпатин и ионы кальция. При увеличении их содержания в крови наступает усиление и учащение сердечных сокращений.

Сердце находится под постоянным действием нервной системы и гуморальных факторов. Организм находится в разных условиях существования. Результатом работы сердца - нагнетание крови в большой и малый круги кровообращения.

Оценивается минутным объемом крови. В нормальном состоянии за 1 минуту - 5л крови выталкивают оба желудочка. Таким образом мы можем оценить работу сердцу.

Систолический объем крови и частота сердечных сокращений - минутный объем крови.

Для сопоставления у разных людей - введен сердечный индекс - какое количество крови в минуту приходится на 1 квадратный метр тела.

Для того чтобы изменять величину объема - нужна менять данные показатели, это происходит за счет механизмов регуляции сердца.

Минутный объем крови(МОК)=5л/мин

Сердечный индекс=МОК/Sм2=2,8-3,6л/мин/м2

МОК=систолический объем*частота/мин

Механизмы регуляции сердца

  1. Внутрисердечные(интракардиальные)
  2. Внесердечные(Экстракардиальные)

К внутрисердечным механизмам относятся наличие плотных контактов между клетками рабочего миокарда, проводящая система сердца координирует отдельную работу камер, внутрисердечные нервные элементы, гидродинамическое взаимодействие между отдельными камерами.

Внесердечные - нервный и гуморальный механизм , который изменяют работу сердца и приспосабливают работу сердца к запросам организма.

Нервная регуляция сердце осуществляется автономной нервной системой . Сердце получает иннервацию и от парасимпатического (блуждающий) и симпатических (боковые рога спинного мозга T1-T5) нервов.

Ганглии парасимпатической системы лежат внутри сердца и там преганглионарное волокна переключаются на постганглионарные. Ядра преганглионарных - продолговатый мозг.

Симпатические - прерываются в звездчатом ганглии, где уже будут располагаться постганглионары, которые идут к сердцу.

Правый блуждающий нерв - иннервирует сино-атриальный узел, правое предсердие,

Левый блуждающий нерв к атрио-вентрикулярному узлу и правому предсердию

Правый симпатический нерв - к синусному узлу, правому предсердию и желудочку

Левый симпатический нерв - к атриовентрикулярному узлы и к левой половине сердца.

В ганглиях ацетилхолин действует на N - холинорецепторы

Симпатические выделяют норадреналин, который действует на адренорецепторы(B1)

Парасимпатические - ацетилхолин на М-холино рецепторы(мускарино)

Влияние на работу сердца.

  1. Хронотропное влияние (на частоту сердечных сокращений)
  2. Инотропное (на силу сердечных сокращений)
  3. Батмотропное влияние (на возбудимость)
  4. Дромотропное (на проводимость)

1845 - братья Веберы - открыли влияние блуждающего нерва . Они перерезали нерв на шее. При раздражении правого блуждающего нерва - уряжалась частота сокращений, а могла и остановиться - отрицательный хронотропный эффект (подавление автоматии синусного узла). Если раздражался левый блуждающий нерв - ухудшалась проводимость. Атриовентрикулярный нерв отвечает за задержку возбуждения.

Блуждающие нервы понижают возбудимость миокарда и понижают частоту сокращений.

Под действием блуждающего нерва - замедление диастолической деполяризации p - клеток, водителей ритма. Увеличивается выход калия. Хотя блуждающий нерв вызывает остановку сердца, полностью этого сделать нельзя. Происходит возобновление сокращения сердца - ускользание из под влияния блуждающего нерва и возобновление работы сердца связано с тем, что автоматия от синусного узла переходит к атриовентрикулярному узлу, который и возвращает работу сердца с частотой в 2 раза реже.

Симпатические влияния - изучили братья Ционы - 1867 год. При раздражении симпатических нервов Ционы обнаружили что симпатические нервы дают положительный хронотропный эффект . Дальше изучал Павлов. В 1887 году он опубликовал свою работу по влиянию нервов на работу сердца. В своих исследованиях о обнаружил, что отдельные веточки не меняя частоты увеличивают силу сокращений - положительный инотропный эффект . Дальше были открыты бамотропный и дромотропный эффект.

Положительные влияния на работу сердца идет за счет влияния норадреналин на бета 1 адрено рецепторы, который активируют аденилатциклазу, способствуют образованию циклического АМФ, повышается ионная проницаемость мембраны. Диастолическая деполяризация происходит с большей скоростью и это вызывает более частый ритм. Симпатические нервы увеличивают распад гликогена, АТФ, тем самым они предоставляют миокарду энергетические ресурсы, повышается возбудимость сердца. Минимальная продолжительность потенциала действия в синусном узле установлена 120 мс, т.е. теоретически сердце могло бы дать нам число сокращений - 400 в минуту, но атривентрикулярный узел не способен провести более 220. Желудочки максимально сокращаются с частотой 200-220. Участи медиаторов в передаче возбуждения на сердца - установил Отто Леви в 1921. Он использовал 2 изолированных сердца лягушки, причем эти сердце питались из 1ой канюли. В одном сердце сохранялись нервные проводники. При раздражении одного сердца он наблюдал что происходило в другом. При раздражении блуждающего нерва выделялся ацетилхолин - через жидкость он оказывал влияние на работу другого сердца.

Выделение норадреналина усиливает работу сердца. Открытие этого медиаторного возбуждения принесло Леви нобелевскую премию.

Нервы сердца находятся в состоянии постоянного возбуждения - тонуса. В состоянии покоя особенно хорошо выражен тонус блуждающего нерва. При перерезке блуждающего нерва наблюдается учащение работы сердца в 2 раза. Блуждающие нервы постоянно угнетают автоматию синусного узла. Нормальная частота - 60-100 сокращений. Выключение блуждающих нервов(перерезка, блокаторы холино-рецепторов(атропин)) вызывают учащение работы сердца. Тонус блуждающих нервов определяется тонусом его ядер. Возбуждение ядер поддерживается рефлекторно за счет импульсов, которые приходят с барорецепторов кровеносных сосудов в продолговатый мозг от дуги аорты и каротидного синуса. На тонус блуждающих нервов влияет и дыхание. В связи с дыханием - дыхательная аритмия, когда на выдохе происходит уряжение работы сердца.

Тонус симпатических нервов сердца в состоянии покоя выражен слабо. Если перерезать симпатические нервы - частота сокращений уменьшается на 6-10 ударов в минуту. Этот тонус увеличивается при физической нагрузке, увеличивается при различных заболеваниях. Тонус хорошо выражен у детей, у новорожденных(129-140 ударов в минуту)

Сердце еще подвержено действию гуморального фактора - гормоны(надпочечеников - адреналин, норадареналин, щитовидной железы - тироксин и медиатор ацетилхолин)

Гормоны оказывают + влияние на все 4 свойства сердца. На сердце влияет электролитный состав плазмы и изменяется работа сердца при изменении концентрации калия и кальция. Гиперкалимия - повышенное содержания калия в крови - очень опасное состояние, это может приводить к остановке сердца в диастолу. Гипокалими я - мене опасное состояние на кардиограмме изменение расстояния PQ, извращение зубца T. Сердце останавливается в систолу. На сердце оказывает влияние и температура тела - повышение температуры тела на 1 градус - увеличение работы сердца - на 8-10 ударов в минуту.

Систолический объем

  1. Преднагрузка(степень растяжения кардиомиоцитов перед их сокращением. Степень растяжения будет определяться тем объемом крови, что будет находится в желудочках.)
  2. Сократимость(Растяжение кардиомиоцитов, где меняется длина саркомера. Обычно толщина 2 мкм. Максимальная сила сокращения кардиомиоцитов до 2,2 мкм. Это оптимальное соотношение между мостиками миозина и актиновых нитей, когда их взаимодействие максимально. Это определяет силу сокращения дальнейшее растяжение до 2,4 уменьшает сократимость. Это приспосабливает сердце к притоку крови, при его увеличение - большая сила сокращения. Сила сокращения миокарда может меняться без изменения количества крови, за счет гормонов адреналина и норадреналина, ионов кальция и пр. - увеличивается сила сокращениямиокарда)
  3. Постнагрузка(Постнагрузка это то напряжение миокарда, которое должно возникнуть в систолу для открытия полулунных клапанов. Величина постнагрузки определяется величиной систолического давления в аорте и легочном стволе)

Закон Лапласа

Степень напряжения стенки желудочка = Внутрижелудочное давление * радиус / толщина стенки. Чем больше внутрижелудочковое давление и чем больше радиус(величина просвета желудочка), тем напряжение стенки желудочка больше. Увеличение толщины - влияет обратнопропорционално. T=P*r/W

Величина кровотока зависит не только от минутного объема, но и она определяется величиной периферического сопротивления, возникающего в сосудах.

Кровеносные сосуды оказывают мощное влияние на кровоток. Все кровеносные сосуды выстланы эндотелием. Дальше эластический каркас, а в мышечных еще и гладко мышечные клетки и коллагеновые волокна. Стенка сосудов подчиняется закону Лапласа. Если внутри сосуда имеется внутрисосудистое давление и давление вызывает растяжение в стенке сосуда, то в стенке - состояние напряжения. Также влияет радиус сосудов. Напряжение будет определяться произведением давления на радиус. В сосудах мы можем различить базальный тонус сосудов. Тонус сосудов который определяется степенью сокращения.

Базальный тонус - определяется степенью растяжения

Нейрогуморальный тонус - влияние нервных и гуморальных факторов на тонус сосудов.

Увеличенный радиус дает больше напряжения в стенки сосудов чем в баллончике, где радиус меньше. Для того, чтобы осуществлялся нормальный кровоток и обеспечивалось адекватное кровоснабжение существуют механизмы регуляции сосудов.

Они представлены 3мя группами

  1. Местная регуляция кровотока в ткани
  2. Нервная регуляция
  3. Гуморальная регуляция

Тканевой кровоток обеспечивает

Доставку кислорода клеткам

Доставку питательных веществ(глюкоза, аминокислоты, жирные кислоты и др.)

Удаление CO2

Удаление протонов H+

Регуляция кровотока - краткосрочная(несколько секунд или минут в результате локальных изменений в тканях) и долгосрочная(происходит в течении часов, дней и даже недель. Эта регуляция связана с образование в тканях новых сосудов)

Образование новых сосудов связано с увеличением объема ткани, увеличение интенсивности обмена веществ в ткани.

Ангеогенез - образование сосудов. Это идет под действием факторов роста - сосудистый эндотелиальный фактор роста. Фактор роста фибробласта и ангиогенин

Гуморальная регуляция сосудов

  1. 1. Вазоактивные метаболиты

а. Расширение сосудов обеспечивают - уменьшение pO2, Увеличение - CO2, t, K+ молочной кислоты, аденозина, гистамина

б.сужение сосудов вызывают - увеличение серотонина и уменьшение температуры.

2. Влияние эндотелия

Эндотелины(1,2,3). - сужение

Оксид азота NO - расширение

Образование оксида азота(NO)

  1. Освобождение Ach, брадикинина
  2. Открытие Ca+ каналов в эндотелии
  3. Связывание Ca+ с кальмодулином и его активация
  4. Активация фермента (синтетазы оксида азота)
  5. Превращение L фргинина в NO

Механизм действия NO

NO - активирует гуанилциклазу ГТФ - цГМФ- открытие К каналов - выход K+ - гиперполяризация - снижение проницаемости кальция-расширение гладких мышц и расширение сосудов.

Обладает цитотоксическим действием на бактерии и клетки опухоли при выделение из лейкоцитов

Является медиатором передачи возбуждеия в некотоырх нейронах головного мозга

Медиатор парасимпатических постганглионарных волокон для сосудов полового члена

Возможно принимает участие в механизмах памяти и мышления

А.Брадикинин

Б.Каллидин

Кининоген с ВМВ - брадикинин(при Плазменный калликреине)

Кининоген с YVD - каллидин(при тканевом калликреине)

Кинины образуются при активной деятельности потовых желез, слюнных желез и поджелудочной железы.

Регуляция работы сердца осуществляется как нервными, так и гуморальными путями. Нервную регуляцию работы сердца осуществляет вегетативная нервная система. Она может изменять частоту сокращений сердца - хронотропное действие, влиять на скорость атривентрикулярного проведения - дромотропное действие, на возбудимость сердечной мышцы - батмотропное влияние и изменять силу сокращений - инотропное воздействие. Замедление частоты сокращений сердца называется брадикардией, а учащение - тахикардией.

Парасимпатическая иннервация представлена блуждающими нервами, а симпатическая - волокнами симпатической нервной системы.

Блуждающие нервы идут к сердцу от ядер, расположенных в продолговатом мозге на дне IV желудочка. Симпатические нервы подходят к сердцу от ядер, локализованных в боковых рогах спинного мозга (I--V грудные сегменты). Блуждающие и симпатические нервы оканчиваются в синоаурикулярном и атриовентрикулярном узлах, также в мускулатуре сердца. В результате при возбуждении этих нервов наблюдаются изменения в автоматии синоаурикулярного узла, скорости проведения возбуждения по проводящей системе сердца, в интенсивности сердечных сокращений.

Парасимпатические волокна блуждающих нервов берут начало в продолговатом мозге и дают ветви к сердцу. Блуждающие нервы тормозят работу сердца. Они оказывают отрицательное хроно-, ино-, дромо- и батмотропное влияние.

Правый блуждающий нерв иннервирует преимущественно правое предсердие и особенно интенсивно синоатриальный узел. К атриовентрикулярному узлу подходят, главным образом, волокна от левого блуждающего нерва. Вследствие этого правый блуждающий нерв влияет преимущественно на частоту сокращений, а левый - на атривентрикулярное проведение. Парасимпатическая иннервация желудочков выражена слабо и оказывает свое влияние косвенно - за счет торможения симпатических эффектов.

Симпатическая иннервация действует противоположно парасимпатической. Она вызывает усиление и учащение сокращений сердца. Симпатическая иннервация в отличие от блуждающих нервов практически равномерно распределена по всем отделам сердца. Преганглионарные симпатические сердечные волокна берут начало в боковых рогах верхних грудных сегментов спинного мозга. Преганглионарные волокна переключаются на постганглионарные нейроны в шейных и в верхних грудных ганглиях симпатического ствола, в частности в звездчатом ганглии. Отростки постганглионарных нейронов подходят к сердцу в составе нескольких сердечных нервов.

У человека деятельность желудочков контролируется преимущественно симпатическими нервами. Что касается предсердий и особенно синоатриального узла, то они находятся под постоянными антагонистическими воздействиями со стороны блуждающих и симпатических нервов. Так, при выключении парасимпатических влияний частота сокращений сердца возрастает. При подавлении же симпатической активности частота сердечных сокращений падает. Эти постоянные влияния блуждающих и симпатических нервов связаны с их тонусом.

Парасимпатические и симпатические нервы действуют на сердце согласованно. Во время сна усиливается влияние блуждающих нервов, и деятельность сердца замедляется. Влияние симпатических нервов в это время ослабевает.

Факторами гуморальной регуляции являются:

К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное влияние на работу сердца. При избытке Ca может произойти остановка сердца в момент систолы, так как нет полного расслабления. Ионы Na способны оказывать умеренное стимулирующее влияние на деятельность сердца. Ионы K в больших концентрациях оказывают тормозное влияние на работу сердца вследствие гиперполяризации.

Гормон надпочечников адреналин увеличивает силу и частоту сердечных сокращений и вызывает эффект, аналогичный действию симпатической нервной системы. При чрезмерных физических нагрузках, а также при психических нагрузках в кровь поступают большие количества адреналина.

Тироксин (гормон щитовидной железы) усиливает работу сердца.

Минералокортикоиды (альдостерон) стимулируют реабсорбцию Na и выведение K из организма.

Глюкагон повышает уровень глюкозы в крови за счет расщепления гликогена, приводя к положительному инотропному эффекту.

Половые гормоны в отношении к деятельности сердца являются синергистами и усиливают работу сердца.

Вещества местного действия действуют там, где вырабатываются.

Работа сердца связана и с деятельностью других органов. Если возбуждение в центральную нервную систему передается от работающих органов, то из центральной нервной системы оно передается на нервы, усиливающие функцию сердца. Так рефлекторным путем устанавливается соответствие между деятельностью различных органов и работой сердца.

Именно этот орган является незаменимым и важным для человеческого организма. Именно при его полноценной работе происходит обеспечение постоянной и полноценной деятельности всех органов, систем, клеток. Сердце подает к ним питательные вещества и кислород, гарантирует очистку организма от веществ, образующихся в результате обмена веществ.

В некоторых ситуациях нарушается регуляция работы сердца. Рассмотрим вопросы, связанные с осуществлением деятельности главного органа человеческого организма.

Особенности функционирования

Как осуществляется регуляция работы сердца и кровеносных сосудов? Данный орган является сложным насосом. В его составе есть четыре различных отдела, называемых камерами. Два именуют левым и правым предсердиями, а два называют желудочками. Сверху располагаются довольно тонкостенные предсердия, основная масса сердца распределена на мышечные желудочки.

Регуляция работы сердца связана с перекачиванием крови при ритмичных сокращениях и расслаблениями мышц этого органа. Время сокращения называют систолами, промежуток, соответствующий расслаблениям, называют диастолами.

Кровообращение

Сначала осуществляется сокращение предсердий в систолу, потом функционируют предсердия. Венозная кровь собирается по организму, поступает в правое предсердие. Здесь жидкость выталкивается, проходит в правый желудочек. Участок будет нагнетать кровь, направляя ее в Именно так именуют сосудистую сеть, пронизывающую легкие. На данном этапе происходит газообмен. Кислород воздуха поступает в кровь, насыщает ее, из крови выделяется углекислый газ. Обогащенная кислородом кровь направляется к левому предсердию, затем она поступает внутрь левого желудочка. Именно эта часть сердца является самой сильной и крупной. В ее обязанности входит выталкивание крови через аорту в большой круг кровообращения. Она поступает по организму, выводя из него углекислый газ.

Особенности функционирования сосудов и сердца

Регуляция работы сердца и сосудов связана с электрической системой. Именно она обеспечивает ритмичное биение сердца, его периодичное сокращение, расслабление. Поверхность этого органа покрыта многочисленными волокнами, способными генерировать, передавать разные электрические импульсы.

Сигналы зарождаются внутри синусового узла, называемого «водителем ритма». Данный участок находится на поверхности правого основного предсердия. Вырабатываясь в нем, сигнал проходит через предсердия, являясь причиной сокращений. Затем импульс подразделяется на желудочки, создавая ритмичное сокращение волокон мышц.

Колебания сокращений сердечной мышцы составляют у взрослого человека диапазон от шестидесяти до восьмидесяти сокращений за минуту. Именно их и называют сердечным импульсом. Для фиксации активности электрической системы сердца периодически проводят электрокардиограммы. С помощью таких исследований можно увидеть формирование импульса, а также его передвижение по сердцу, выявить нарушения в подобных процессах.

Нервно-гуморальная регуляция работы сердца связана с внешними и внутренними факторами. Например, учащенные сердцебиения наблюдаются при серьезном эмоциональном напряжении. В процессе работы происходит регулировка гормона адреналина. Именно он способен увеличивать частоту сердечных сокращений. работы сердца позволяет выявлять различные проблемы с нормальным сердцебиением, своевременно их устранять.

Нарушения в работе

Медицинские работники под такими сбоями подразумевают разнообразные нарушения полноценного сокращения ритма сердца. Подобные проблемы могут быть вызваны разнообразными факторами. Например, регуляция работы сердца происходит при электролитических и эндокринных недугах, вегетативных заболеваниях. Кроме того, проблемы появляются и при интоксикации некоторыми медикаментами.

Распространенные виды нарушений

Нервная регуляция работы сердца связана с сокращениями мышцы. Синусная тахикардия вызывает учащения сокращений сердца. Кроме того, возможны такие ситуации, при которых количество сокращений сердца уменьшается. Такое заболевание в медицине называют синусовой брадикардией. Среди опасных нарушений, связанных с деятельностью сердца, отметим параксизамальную тахикардию. При ее наличии происходит внезапный рост количества биений сердца до ста в минуту. Пациента необходимо поместить в горизонтальном положение, срочно вызвать врача.

Регуляция работы сердца связана с мерцательной аритмией, экстрасистолией. Любые нарушения в нормальном сердечном ритме должны стать сигналом для обращения к кардиологу.

Автоматика функционирования

В состоянии покоя сердечная мышца сокращается за одни сутки примерно сто тысяч раз. Оно за этот временной промежуток перекачивает порядка десяти тонн крови. Сократительная обеспечивается сердечной мышцей. Она относится к поперечнополосатой мышце, то есть имеет специфическое строение. В ней присутствуют определенные клетки, в которых появляется возбуждение, оно передается на стенки мышц желудочков и предсердий. Сокращения отделов сердца происходят поэтапно. Сначала осуществляется сокращение предсердий, потом желудочков.

Автоматией называют способность сердца сокращаться ритмично под воздействием импульсов. Именно эта функция гарантирует независимость между нервной системой и функционированием сердца.

Цикличность работы

Зная, что среднее количество сокращений в минуту составляет 75 раз, можно вычислить продолжительность одного сокращения. В среднем оно длится около 0,8 секунды. Полный цикл состоит из трех фаз:

  • в течение 0,1 секунды осуществляется сокращение обоих предсердий;
  • 0,3 секунды длится сокращение левого и правого желудочков;
  • около 0,4 секунды идет общее расслабление.

Расслабление желудочков происходит примерно за 0,4 секунды, для предсердий такой временной промежуток составляет 0,7 секунды. Этого времени вполне достаточно для того, чтобы в полной мере восстановить работоспособность мышцы.

Факторы, влияющие на работу сердца

Сила и частота сердечных сокращений связаны с внешней и внутренней средой человеческого организма. При резком увеличении количества сокращений наблюдается выработка сосудистой системой огромного количества крови за единицу времени. При уменьшении силы и частоты сердцебиений снижается выброс крови. В обоих случаях возникает изменение снабжения кровью человеческого организма, что негативно отражается на его состоянии.

Регулировка работы сердца осуществляется рефлекторно, в ней участвует автономная нервная система. Импульсы, которые приходят к сердцу по парасимпатическим нервным клеткам, будут замедлять, ослаблять сокращения. Усиление и учащение сердцебиений обеспечивается симпатическими нервами.

Гуморальная работа «человеческого мотора» связана с функционированием биологически активных веществ и ферментов. К примеру, адреналин (гормон надпочечников), соединения кальция способствуют учащению и усилению сердечных сокращений.

Соли калия, напротив, способствуют снижению числа сокращений. Для приспособления сердечно-сосудистой системы к внешним условиям применяют гуморальные факторы и функционирование нервной системы.

Во время выполнения физической работы наблюдается поступление импульсов от рецепторов сухожилий и мышц в центральную нервную систему, регулирующую работу сердца. В итоге наблюдается усиление притока к сердцу импульсов по симпатическим нервам, в кровь выбрасывается адреналин. Из-за роста числа сердечных сокращений организм нуждается в дополнительном количестве питательных веществ и кислороде.

нерв сердце сосуд сокращение

Деятельность сердца регулируется двумя парами нервов: блуждающими и симпатическими. Блуждающие нервы берут начало в продолговатом мозге, а симпатические нервы отходят от шейного симпатического узла. Блуждающие нервы тормозят сердечную деятельность. Под влиянием импульсов, поступающих к сердцу по симпатическим нервам, учащается ритм сердечной деятельности и усиливается каждое сердечное сокращение. Изменение просвета кровеносных сосудов происходит под влиянием импульсов, предающихся на стенки сосудов по симпатическим сосудосуживающим нервам. Ритм и сила сердечных сокращений меняются в зависимости от эмоционального состояния человека, выполняемой им работы. Состояние человека влияет и на кровеносные сосуды, меняет их просвет. При страхе, гневе, физическом напряжении из-за изменения просвета кровеносных сосудов человек бледнеет или краснеет. Раздражением любых чувствительных окончаний можно рефлекторно вызвать урежение или учащение сокращений сердца. Тепло, холод, укол и другие раздражения вызывают в окончаниях центростремительных нервов возбуждение, которое передается в центральную нервную систему и оттуда по блуждающему или симпатическому нерву достигает сердца. Центробежные нервы сердца получают импульсы не только из продолговатого и спинного мозга, но и от вышележащих отделов центральной нервной системы, в том числе и от коры больших полушарий головного мозга. Известно, что боль вызывает учащение сердечных сокращений. Импульсы из центральной нервной системы предаются одновременно по нервам к сердцу и из сосудодвигательного центра по другим нервам к кровеносным сосудам. Поэтому обычно на раздражение, поступившее из внешней или внутренней среды организма, рефлекторно отвечают и сердце, и сосуды.

Движение крови по сосудам обусловлено градиентом давления в артериях и венах. Оно подчинено законам гидродинамики и определяется двумя силами: давлением, влияющим на движение крови, и сопротивлением, которое она испытывает при трении о стенки сосудов. Силой, создающей давление в сосудистой системе, является работа сердца, его сократительная способность. Сопротивление кровотоку зависит прежде всего от диаметра сосудов, их длины и тонуса, а также от объема циркулирующей крови и ее вязкости. При уменьшении диаметра сосуда в два раза сопротивление в нем возрастает в 16 раз. Сопротивление кровотоку в артериолахв 106 раз превышает сопротивление ему в аорте. Различают объемную и линейную скорости движения крови. Объемной скоростью кровотока называют количество крови, которое протекает за 1 минуту через всю кровеносную систему. Эта величина соответствует МОК и измеряется в миллилитрах в 1 мин. Как общая, так и местная объемные скорости кровотока непостоянны и существенно меняются при физических нагрузках. Линейной скоростью кровотока называют скорость движения частиц крови вдоль сосудов. Эта величина, измеренная в сантиметрах в 1 с, прямо пропорциональна объемной скорости кровотока и обратно пропорциональна площади сечения кровеносного русла. Линейная скорость неодинакова: она больше в центре сосуда и меньше около его стенок, выше в аорте и крупных артериях и ниже в венах. Самая низкая скорость кровотока в капиллярах, общая площадь сечения которых в 600-800 раз больше площади сечения аорты. О средней линейной скорости кровотока можно судить по времени полного кругооборота крови. В состоянии покоя оно составляет 21 -23 с, при тяжелой работе снижается до 8-10 с. При каждом сокращении сердца кровь выбрасывается в артерии под большим давлением. Вследствие сопротивления кровеносных сосудов ее передвижению в них создается давление, которое называют кровяным давлением. Величина его неодинакова в разных отделах сосудистого русла. Наибольшее давление в аорте и крупных артериях. В мелких артериях, артериолах, капиллярах и венах оно постепенно снижается; в полых венах давление крови меньше атмосферного. На протяжении сердечного цикла давление в артериях неодинаково: оно выше в момент систолы и ниже при диастоле, Наибольшее давление называют систолическим (максимальным), наименьшее -- диастолическим (минимальным). Колебания кровяного давления при систоле и диастоле сердца происходят лишь в аорте и артериях; в артериолах и венах давление крови постоянно на всем протяжении сердечного цикла. Среднее артериальное давление представляет собой ту величину давления, которое могло бы обеспечить течение крови в артериях без колебаний давления при систоле и диастоле. Это давление выражает энергию непрерывного течения крови, показатели которого близки к уровню диастолического давления. Величина артериального давления зависит от сократительной силы миокарда, величины МОК, длины, емкости и тонуса сосудов, вязкости крови. Уровень систолического давления зависит, в первую очередь, от силы сокращения миокарда. Отток крови из артерий связан с сопротивлением в периферических сосудах, их тонусом, что в существенной мере определяет уровень диастолического давления. Таким образом, давление в артериях будет тем выше, чем сильнее сокращения сердца и чем больше периферическое сопротивление (тонус сосудов). Артериальное давление у человека может быть измерено прямым и косвенным способами. В первом случае в артерию вводится полая игла, соединенная с манометром. Это наиболее точный способ, однако, он мало пригоден для практических целей. Второй, так называемый манжеточный способ, был предложен Рива-Роччив 1896 г. и основан на определении величины давления, необходимой для полного сжатия артерии манжетой и прекращения в ней тока крови. Этим методом можно определить лишь величину систолического давления. Для определения систолического и диастолического давления применяется звуковой или аускультативный способ. При этом способе также используется манжета и манометр, о величине давления судят по возникновению и исчезновению звуков, выслушиваемых на артерии ниже места наложения манжеты (звуки возникают лишь тогда, когда кровь течет по сжатой артерии). В последние годы для измерения артериального давления у человека на расстоянии используются радиотелеметрические приборы. В состоянии покоя у взрослых здоровых людей систолическое давление в плечевой артерии составляет 110-120 ммрт. ст., диастолическое -- 60-ЗОммрт. ст. Артериальное давление до 140/90 мм рт. ст. является нормотоническим, выше этих величин -- гипертоническим, а ниже 100/60 мм рт. ст. -- гипотоническим. Разница между систолическим и диастолическим давлениями называется пульсовым давлением или пульсовой амплитудой; ее величина в среднем равна 40-50 мм рт. ст. В капиллярах происходит обмен веществ между кровью и тканями, поэтому количество капилляров в организме человека очень велико. Оно больше там, где интенсивнее метаболизм. Кровяное давление в разных капиллярах колеблется от 8 до 40 мм рт. ст.; скорость кровотока в них небольшая -- 0.3-0.5 мм * с"1. В начале венозной системы давление крови равно 20-30 мм рт. ст., в венах конечностей -- 5-10 мм рт. ст. и в полых венах оно колеблется около 0. Стенки вен тоньше, и их растяжимость в 100-200раз больше, чем у артерий. Поэтому емкость венозного сосудистого русла может возрастать в 5-6 раз даже при незначительном повышении давления в крупных венах. В этой связи вены называют емкостными сосудами в отличие от артерий, которые оказывают большое сопротивление току крови и называются резистивными сосудами (сосудами сопротивления). Линейная скорость кровотока даже в крупных венах меньше, чем в артериях. Например, в полых венах скорость движения крови почти в два раза ниже, чем в аорте. Участие дыхательных мышц в венозном кровообращении образно называется дыхательным насосом, скелетных мышц-- мышечным насосом. При динамической работе мышц движению крови в венах способствуют оба этих фактора. При статических усилиях приток крови к сердцу снижается, что приводит к уменьшению сердечного выброса, падению артериального давления и ухудшению кровоснабжения головного мозга. В легких имеется двойное кровоснабжение. Газообмен обеспечивается сосудами малого круга кровообращения, т. е. легочными артериями, капиллярами и венами. Питание легочной ткани осуществляется группой артерий большого круга -- бронхиальными артериями, отходящими от аорты. Сопротивление току крови в сосудах малого круга кровообращения примерно в 10раз меньше, чем в сосудах большого круга. Это в значительной мере обусловлено широким диаметром легочных артериол. В связи с пониженным сопротивлением правый желудочек сердца работает с небольшой нагрузкой и развивает давление в несколько раз меньшее, чем левый. Систолическое давление в легочной артерии составляет 25-30 мм рт. ст., диастолическое -- 5-10 мм рт. ст. Капиллярная сеть малого круга кровообращения имеет поверхность около 140м2. Одномоментно в легочных капиллярах находится от 60 до 90 мл крови Эритроциты проходят через легкие за 3-5 с, находясь в легочных капиллярах (где происходит газообмен) в течение 0.7 с, при физической работе -- 0.3с. Большое количество сосудов в легких приводит к тому, что кровоток здесь в 100 раз выше, чем в других тканях организма. Кровоснабжение сердца осуществляется коронарными, или венечными, сосудами. В сосудах сердца кровоток происходит преимущественно во время диастолы. В период систолы желудочков сокращение миокарда настолько сдавливает расположенные в нем артерии, что кровоток в них резко снижается. В покое через коронарные сосуды протекает в 1 минуту 200-250 мл крови, что составляет около 5% МОК. Во время физической работы коронарный кровоток может возрасти до 3-4 л -мин"1. Кровоснабжение миокрада в 10-15 раз интенсивнее, чем тканей других органов. Через левую венечную артерию осуществляется 85% коронарного кровотока, через правую--15%. Венечные артерии являются концевыми и имеют мало анастомозов, поэтому их резкий спазм или закупорка приводят к тяжелым последствиям. Наиболее распространенными сердечно-сосудистыми заболеваниями являются три: стенокардия, или ишемическая болезнь сердца, гипертония, характеризующаяся стойким повышением кровяного давления, и атеросклероз -- патологические изменения стенок кровеносных сосудов (Г. И. Косицкий, 1971). Стенокардия (грудная жаба) -- заболевание, связанное в большинстве случаев с атеросклеротическими изменениями коронарных сосудов и нарушением кровоснабжения сердечной мышцы. Выше уже указывалось, что сердце нуждается в обильном кровоснабжении, т. е. в постоянном поступлении в сердечную мышцу значительных количеств энергосодержащих веществ и кислорода. Сужение же венечных сосудов вследствие атеросклеротических изменений, а также спазмы сосудов нервно-рефлекторного порядка, вызванные перенапряжением нервной системы, ухудшают обмен веществ и энергии в сердечной мышце. Субъективно это выражается в приступообразных болях, возникающих в области сердца. Длительное нарушение кровоснабжения сердца может вызвать омертвение -- некроз его отдельных участков, и тогда развивается особо опасное поражение сердца -- инфаркт миокарда. Гипертоническая болезнь в большинстве случаев имеет нейрогенную природу и связана с нарушением нервной регуляции сосудистого тонуса. Дело в том, что мышечные клетки, входящие в состав сосудистой стенки, постоянно находятся в состоянии некоторого напряжения -- тонуса. Это тоническое напряжение мышц сосудов, а соответственно и величина кровяного давления поддерживаются на определенном уровне благодаря деятельности головного мозга, в том числе и его высшего отдела -- коры больших полушарий. Вот почему нервно-психическое напряжение, сопровождающееся возбуждением коры головного мозга и его подкорковых образований, одновременно вызывает и повышение кровяного давления. Действие на нервную систему чрезвычайных факторов может повредить ее регуляторные механизмы, нарушить нормальную регуляцию сосудистого тонуса и способствовать развитию гипертонической болезни, которая в свою очередь является причиной склеротических изменений сосудов. Атеросклероз («ржавчина» сосудов) -- склеротические изменения сосудов меняют их функциональные свойства, они становятся хрупкими, теряют свою эластичность и прочность. Это нередко приводит к разрыву сосудов и массивным кровоизлияниям в органы со смертельным исходом. Склеротические изменения сосудистой стенки сопровождаются также сужением просвета отдельных сосудов вплоть до их полной закупорки, что нарушает кровоснабжение органов. При атеросклерозе наблюдается и явление внутрисосудистого тромбообразования, характеризующееся повышением свертывающей способности крови. Вопрос о внутрисосудистом тромбообразовании является одним из самых актуальных в современной медицине и биологии и ввиду своей сложности и важности требует специального рассмотрения.

Сосуды снабжены нервами, регулирующими их просвет и вызывающими сужение или расширение их. Сосудосуживающие нервы - вазоконстрикторы - относятся к симпатической нервной системе. Существование этих нервов было впервые обнаружено в 1842 г. в опытах на лягушках, а затем Кл. Бернаром (1852) в экспериментах на ухе кролика. Если раздражать симпатический нерв на шее кролика, то соответствующее ухо бледнеет вследствие сужения его, артерий и артериол, а температура и объем уха уменьшаются. Главными сосудосуживающими нервами органов брюшной полости являются симпатические волокна. К конечностям симпатические сосудосуживающие волокна идут, во-первых, в составе спинномозговых смешанных нервов, раздражение которых, как правило, суживает сосуды конечностей, во-вторых, по стенкам артерий (в их адвентиции). Перерезка сосудосуживающих симпатических нервов вызывает расширение сосудов в той области, которая иннервируется этими нервами. Доказательством этого служит опыт Кл. Бернара с перерезкой симпатического нерва на одной стороне шеи, что вызывает расширение сосудов, проявляющееся в покраснении и потеплении уха оперированной стороны. Равным образом после перерезки п. 8р1апсЬ.шсиз кровоток через органы брюшной полости, лишенной сосудосуживающей симпатической иннервации, резко увеличивается. Описанные опыты показывают, что кровеносные сосуды находятся под непрерывным сосудосуживающим влиянием симпатических нервов, поддерживающим постоянный уровень сокращения мышечных стенок артерии (артериальный тонус). Если после перерезки симпатических нервов раздражать периферический конец их, то можно восстановить нормальный уровень артериального тонуса. Для этого достаточно раздражать симпатические нервные волокна с частотой 1-2 импульса в секунду (Б. Фолков, В. М. Хаютин). Изменение частоты импульсов, поступающих к артериям, может вызвать их сужение (при учащении импульсации) или расширение (при урежении импульсации). Сосудорасширяющие эффекты - вазодилятацию - впервые обнаружили при раздражении нескольких нервных веточек, относящихся к парасимпатической нервной системе. В некоторых органах, например в скелетной мускулатуре, расширение артерий и артериол происходит при раздражении симпатических нервов, в составе которых имеются, кроме вазоконстрикторов, также и вазодилятаторы. В большинстве случаев раздражение симпатических нервов вызывает сужение сосудов, и лишь в особых условиях, например после введения яда - эрготоксина, парализующего симпатические вазоконстрикторы, возникает расширение сосудов. Расширение сосудов (главным образом кожи) можно вызвать, кроме того, раздражением периферических концов задних корешков спинного мозга, в составе которых проходят афферентные (чувствительные) волокна. Расширение сосудов наступает при этом в тех областях кожи, чувствительные нервные волокна которых проходят в раздражаемом корешке. Вопрос о механизме действия сосудорасширяющих нервов недостаточно выяснен. В последние годы доказано, что расширение сосудов обусловлено при раздражении сосудорасширяющих нервов образованием сосудорасширяющих веществ. Так, при раздражении симпатических вазодилататоров скелетной мускулатуры в их окончаниях образуется ацетилхолин; расширяющий артериолы. При раздражении задних корешков спинного мозга сосудорасширяющие вещества, по-видимому, образуются не в стенке сосуда, а вблизи его. Сосудодвигательные центры Сужение или расширение сосудов наступает под влиянием импульсов из центральной нервной системы. Было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла, - сосудодвигательный центр находящийся в продолговатом мозгу. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или у кошки выше четверохолмия, то кровяное давление не изменяется. Если же перерезать мозг между продолговатым и спинным, максимальное давление крови в сонной артерии понижается с нормальных 100 - 120 до 60 - 70 мм рт. ст. Отсюда следует, что сосудосуживающий центр локализован в продолговатом мозгу, и что он находится в состоянии длительного постоянного возбуждения (тонуса). Устранение его влияния вызывает расширение сосудов и падение артериального давления. Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне 4 желудочка и состоит из двух отделов: прессорного и депрессорного. Раздражение первого вызывает сужение артерии и подъем кровяного давления, а раздражение второго - расширение артерий и падение давления. Импульсы от сосудосуживающего центра продолговатого мозга поступают к нервным центрам симпатической нервной системы, расположенными в боковых рогах спинного мозга. 0ни образуют сосудосуживающие центры, связанные с сосудами отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол. Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших участков промежуточного мозга в области гипоталамуса, в котором расположены высшие центры вегетативной нервной системы, вызывает сужение артерий и артериол и повышение кровяного давления.



Понравилась статья? Поделитесь ей
Наверх