Молекулярный состав мембран митохондрий. Как митохондрии влияют на здоровье

О СЛОЖНОМ ПРОСТЫМ ЯЗЫКОМ.

Тема эта сложная и комплексная, затрагивающая сразу же огромное количество биохимических процессов происходящих в нашем организме. Но давайте все таки попробуем разобраться, что же такое митохондрии и как они работают.

И так, митохондрии это одна из самых важных составляющих живой клетки. Если говорить простым языком то можно сказать, что это энергетическая станция клетки . Их деятельность основана на окисление органических соединений и генерации электрического потенциала (энергии освободившейся при распаде молекулы АТФ) для осуществления мышечного сокращения.

Все мы знаем, что работа нашего организма происходит в строгом соответствии с первым законом термодинамики. Энергия не создается в нашем организме, а лишь превращается. Организм только выбирает форму трансформации энергии, не производя ее, от химической к механической и тепловой. Основным источником всей энергии на планете Земля является Солнце. Приходя к нам в форме света, энергия поглощается хлорофиллом растений, там она возбуждает электрон атома водорода и таким образом дает энергию живой материи.

Своей жизнью мы обязаны энергии маленького электрона.

Работа митохондрии заключается в ступенчатом переносе энергии электрона водорода между атомами металлов, присутствующих в группах белковых комплексов дыхательной цепи (электронно-транспортной цепи белков), где каждый последующий комплекс обладает более высоким сродством к электрону притягивая его, чем предыдущий, до тех пор, пока электрон не соединиться с молекулярным кислородом, обладающим наибольшим сродством к электрону.

Каждый раз при передачи электрона по цепи высвобождается энергия которая аккумулируется в виде электрохимического градиента и затем реализовывается в виде мышечного сокращения и выделения тепла.

Серия окислительных процессов в митохондрии позволяющая перенести энергетический потенциал электрона называется «внутриклеточным дыханием» или часто «дыхательной цепью» , так как электрон по цепочки передается от атома к атому до тех пор пока не достигнет своей конечной цели атома кислорода.

Митохондриям нужен кислород для переноса энергии в процессе окисления.

Митохондрии потребляют до 80% кислорода который мы вдыхаем.

Митохондрия представляет из себя постоянную структуру клетки, расположенную в ее цитоплазме. Размер митохондрии обычно составляет от 0,5 до 1 мкм в диаметре. По форме она имеет зернистую структуру и может занимать до 20% объема клетки. Такая постоянная органическая структура клетки называется органелла . К органеллам относятся и миофибриллы – сократительные единицы мышечной клетки; и ядро клетки это тоже органелла. Вообще, любая постоянная структура клетки является органоидом-органеллой.

Открыл митохондрии и впервые описал немецкий анатом и гистолог Рихард Альтман в 1894 году, а название этой органелле дал другой немецкий гистолог К. Бенд в 1897 году. Но только в 1920 году, опять же немецкий биохимик Отто Вагбург, доказал, что с митохондриями связаны процессы клеточного дыхания.

Существует теория, согласно которой митохондрии появились в результате захвата примитивными клетками, клетками которые сами не могли использовать кислород для генерации энергии, бактерий протогенотов, которые могли это делать. Именно потому, что митохондрия ранее представляла из себя отдельный живой организм она и по сей день обладает собственным ДНК.

Митохондрии ранее представляли из себя самостоятельный живой организм.

В ходе эволюции прогеноты предали множество своих генов сформировавшемуся, благодаря повысившейся энергоэффективности, ядру и перестали быть самостоятельными организмами. Митохондрии присутствуют во всех клетках. Даже в сперматозоиде есть митохондрии. Именно благодаря им приводится в движение хвостик сперматозоида осуществляющий его движение. Но особенно много митахондрий в тех местах, где необходима энергия для любых жизненных процессов. И это конечно прежде всего мышечные клетки.

В мышечных клетках митохондрии могут объединяться в группы гигантских разветвленных митохондрий, связанных друг с другом с помощью межмитохондриальных контактов, в которых они создают согласованную работающую кооперативную систему . Пространство в такой зоне имеет повышенную электронную плотность. Новые митохондрии образуются путем простого деления предыдущих органелл. Наиболее «простой» и доступный всем клеткам механизм энергетического обеспечения чаще всего называют общим понятием гликолиз .

Это процесс последовательного разложения глюкозы до пировиноградной кислоты. Если этот процесс происходит без участия молекулярного кислорода или с недостаточным его присутствием, то он называется анаэробный гликолиз . При этом глюкоза расщепляется не до конечных продуктов, а до молочной и пировиноградной кислоты которая далее претерпевает дальнейшие превращения в ходе брожения. Поэтому высвобождающейся энергии бывает меньше, но и скорость получения энергии быстрее. В результате анаэробного гликолиза из одной молекулы глюкозы клетка получает 2 молекулы АТФ и 2 молекулы молочной кислоты. Такой «базовый» энергетический процесс может протекать внутри любой клетки без участия митохондрий .

В присутствии молекулярного кислорода внутри митохондрий осуществляется аэробный гликолиз в рамках «дыхательной цепи». Пировиноградная кислота в аэробных условиях вовлекается в цикл трикарбоновых кислот или цикл Кребса . В результате этого многостадийного процесса из одной молекулы глюкозы образуется 36 молекул АТФ. Сравнение энергетического баланса клетки, имеющей развитые митохондрии и клетки, где они не развиты показывает (при достаточном количестве кислорода) различие в полноте использования энергии глюкозы внутри клетки почти в 20 раз!

У человека, волокна скелетных мышц можно условно разделить на три типа исходя из механических и метаболических свойств: - медленные окислительные; - быстрые гликолитические; - быстрые окислительно-гликолитические.


Быстрые мышечные волокна предназначены для выполнения быстрой и тяжелой работы. Для своего сокращения они используют в основном быстрые источники энергии, а именно криатинфосфот и анаэробный гликолиз. Содержание митохондрий в таких типах волокон значительно меньше чем в медленных мышечных волокнах.

Медленные мышечные волокна выполняют медленные сокращения, но способны работать длительное время. В качестве энергии они используют аэробный гликолиз и синтез энергии из жиров. Это дает гораздо больше энергии чем анаэробный гликолиз, но требует в замен больше времени, так как цепочка деградации глюкозы более сложная и требует присутствия кислорода, транспортировка которого к месту преобразования энергии тоже занимает время. Медленные мышечные волокна называют красными из-за миоглобина – белка, ответственный за доставку кислорода внутрь волокна. Медленные мышечные волокна содержат значительное количество митохондрий.

Возникает вопрос, каким образом и с помощью каких упражнений можно развить в мышечных клетках разветвленную сеть митохондрий? Существуют различные теории и методики тренировок и о них в материале по .

Бытует крепко укрепившееся мнение, что выносливость человека связано с тренировкой сердечной мышцы, и что для этого нужно длительное время выполнять невысокую по интенсивности работу.
На самом деле всё не так: выносливость неразрывно связано с митохондриями внутри мышечных волокон. Поэтому тренировка выносливости есть не что иное, как развитие максимального количества митохондрии внутри каждого мышечного волокна.
А т.к. максимальное количество митохондрий ограничено пространством внутри мышечного волокна, то и развитие выносливости ограничено тем количеством мышц, которые присутствуют у конкретного человека.
Короче: чем больше у человека митохондрий внутри конкретных мышечных групп, тем более выносливыми являются эти конкретные мышечные группы.
И самое важное: не существует общей выносливости. Есть только локальная выносливость конкретных мышечных групп.

Митохондрии. Что это такое

Митохондрии – это особенные органеллы (структуры) внутри клеток человеческого организма, которые отвечают за производство энергии для мышечных сокращений. Иногда их называют энергетическими станциями клетки.
При этом процесс производства энергии внутри митохондрий происходит в присутствии кислорода. Кислород делает процесс получения энергии внутри митохондрий максимально эффективным, если сравнивать процесс получения энергии без кислорода.
Топливом для производства энергии могут являются совершенно различные вещества: жир, гликоген, глюкоза, лактат, ионы водорода.

Митохондрии и выносливость. Как это происходит

При мышечном сокращении всегда появляется остаточный продукт. Обычно это молочная кислота – химическое соединение из лактата и ионов водорода.
По мере накопления внутри мышечного волокна (мышечной клетки) ионы водорода начинают вмешиваться в процесс получения энергии для сокращения мышечного волокна. А как только уровень концентрации ионов водорода достигает критической отметки, мышечное сокращение прекращается. И данный момент может свидетельствовать об максимальном уровне выносливости конкретной мышечной группы.
Митохондрии обладают способностью поглощать ионы водорода и перерабатывать их внутри себя.
Получается следующая ситуация. Если внутри мышечных волокон присутствует большое количество митохондрий, то они способны утилизировать и большее количество ионов водорода. А это означает более длительную работу конкретной мышцы без необходимости прекратить усилие.
В идеале, если митохондрий внутри работающих мышечных волокон достаточно для утилизации всего количества образующихся ионов водорода, то такое мышечное волокно становится практически неутомимым и способным продолжать работу до тех пор, пока будет достаточное количество питательных веществ для сокращения мышц.
Пример.
Почти каждый из нас способен длительное время идти быстрым темпом, но довольно скоро бывает вынужден прекратить бег быстрым темпом. Почему так выходит?
При быстрой ходьбе работают т.н. окислительные и промежуточные мышечные волокна. Окислительные мышечные волокна характеризуются максимально возможным количеством митохондрий, грубо говоря, митохондрий там 100 %.
В промежуточных мышечных волокнах митохондрий ощутимо меньше, пусть это будет 50 % от максимального количества. В итоге, постепенно внутри промежуточных мышечных волокон начинают накапливаться ионы водорода, которые должны бы привести к прекращению сокращения мышечных волокон.
Но этого не происходит по причине того, что ионы водорода проникают внутрь окислительных мышечных волокон, где митохондрии без труда справляются с их утилизацией.
В итоге, мы способны продолжать движения до тех пор, пока в организме достаточно гликогена, а также запасов жира внутри работающих окислительных мышечных волокон. Затем мы будем вынуждены сделать отдых для пополнения запасов энергии.
В случае с быстрым бегом в работу, помимо упомянутых окислительных и промежуточных мышечных волокон, включаются и т.н. гликолитические мышечные волокна, в которых почти отсутствуют митохондрии. Поэтому гликолитические мышечные волокна способны работать лишь короткое время, зато крайне интенсивно. Именно таким образом повышается скорость бега.
Потом общее количество ионов водорода становится таким, что всё количество имеющихся там же митохондрий уже не способно утилизировать их. Наступает отказ от выполнения работы предложенной интенсивности.
Но что было бы, если бы все мышечные группы имели внутри себя только окислительные мышечные волокна?
В этом случае мышечная группа с окислительными волокнами становится неутомимой. Ее выносливость становится равной бесконечности (при условии достаточного количества питательных веществ – жиров и гликогена).
Делаем следующий вывод: Для тренировки выносливости первоочередное значение имеет развитие митохондрий внутри рабочих мышечных волокон. Именно благодаря митохондриям достигается выносливость мышечных групп.
Не существует общей выносливости организма, потому что выносливость (способность выполнять работу предложенной интенсивности) связана с присутствием в работающих мышцах митохондрий. Чем митохондрий там больше, тем большую выносливость способны показать мышцы.

Еще в далеком XIX веке с интересом изучая посредством первых не совершенных еще тогда , строение живой клетки, биологи заметили в ней некие продолговатые зигзагоподобные объекты, которые получили название «митохондрии». Сам термин «митохондрия» составлен из двух греческих слов: «митос» — нитка и «хондрос» — зернышко, крупинка.

Что такое митохондрии и их роль

Митохондрии представляют собой двумембранный эукариотической клетки, основное задание которого – окисление органических соединений, синтез молекул АТФ, с последующим применением энергии, образованной после их распада. То есть по сути митохондрии это энергетическая база клеток, говоря образным языком, именно митохондрии являются своего рода станциями, которые вырабатывают необходимую для клеток энергию.

Количество митохондрий в клетках может меняться от нескольких штук, до тысяч единиц. И больше их естественно именно в тех клетках, где интенсивно идут процессы синтеза молекул АТФ.

Сами митохондрии также имеют разную форму и размеры, среди них встречаются округлые, вытянутые, спиральные и чашевидные представители. Чаще всего их форма округлая и вытянутая, с диаметром от одного микрометра и до 10 микрометров длинны.

Примерно так выглядит митохондрия.

Также митохондрии могут, как перемещаться по клетке (делают они это благодаря току ), так и неподвижно оставаться на месте. Перемещаются они всегда в те места, где наиболее требуется выработка энергии.

Происхождение митохондрии

Еще в начале прошлого ХХ века была сформирована так званая гипотеза симбиогенеза, согласно которой митохондрии произошли от аэробных бактерий, внедренных в другую прокариотическую клетку. Бактерии эти стали снабжать клетку молекулами АТФ взамен получая необходимые им питательные вещества. И в процессе эволюции они постепенно потеряли свою автономность, передав часть своей генетической информации в ядро клетки, превратившись в клеточную органеллу.

Митохондрии состоят из:

  • двух , одна из них внутренняя, другая внешняя,
  • межмембранного пространства,
  • матрикса – внутреннего содержимого митохондрии,
  • криста – это часть мембраны, которая выросла в матриксе,
  • белок синтезирующей системы: ДНК, рибосом, РНК,
  • других белков и их комплексов, среди которых большое число всевозможных ферментов,
  • других молекул

Так выглядит строение митохондрии.

Внешняя и внутренняя мембраны митохондрии имеют разные функции, и по этой причине различается их состав. Внешняя мембрана своим строением схожа с мембраной плазменной, которая окружает саму клетку и выполняет в основном защитную барьерную роль. Тем не менее, мелкие молекулы могут проникать через нее, а вот проникновение молекул покрупнее уже избирательно.

На внутренней мембране митохондрии, в том числе на ее выростах – кристах, располагаются ферменты, образуя мультиферментативные системы. По химическому составу тут преобладают белки. Количество крист зависит от интенсивности синтезирующих процессов, к примеру, в митохондриях клеток мышц их очень много.

У митохондрий, как впрочем, у и хлоропластов, имеется своя белоксинтезирующая система – ДНК, РНК и рибосомы. Генетический аппарат имеет вид кольцевой молекулы – нуклеотида, точь в точь как у бактерий. Часть необходимых белков митохондрии синтезируют сами, а часть получают извне, из цитоплазмы, поскольку эти белки кодируются ядерными генами.

Функции митохондрии

Как мы уже написали выше, основная функция митохондрий – снабжение клетки энергией, которая путем многочисленных ферментативных реакций извлекается из органических соединений. Некоторые подобные реакции идут с участием , а после других выделяется углекислый газ. И реакции эти происходят, как внутри самой митохондрии, то есть в ее матриксе, так и на кристах.

Если сказать иначе, то роль митохондрии в клетке заключается в активном участии в «клеточном дыхании», к которому относится множество окисления органических веществ, переносов протонов водорода с последующим выделением энергии и т. д.

Ферменты митохондрий

Ферменты транслоказы внутренней мембраны митохондрий осуществляют транспортировку АДФ в АТФ. На головках, что состоят из ферментов АТФазы идет синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи. В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот

Митохондрии, видео

И в завершение интересное образовательное видео о митохондриях.


Основной функцией митохондрий является синтез АТФ - универсальной формы химической энергии в любой живой клетке. Как иг у прокариот, данная молекула может образовываться двумя путями: в результате гликолизе) или в процессе мембранного фосфорилирования, связанного с использованием энергии трансмембранного электрохимического градиента (англ.)русск. протонов (ионов водорода). Митохондрии реализуют оба эти пути, первый из которых характерен для начальных процессов окисления субстрата и происходит в матриксе, а второй завершает процессы энергообразования и связан с кристами митохондрий. При этом своеобразие митохондрий как энергообразующих органелл эукариотической клетки определяет именно второй путь генерации АТФ, получивший название «хемиосмотического сопряжения». По сути это последовательное превращение химической энергии восстанавливающих эквивалентов НАДН в электрохимический протонный градиент AjiH+ по обе стороны внутренней мембраны митохондрии, что приводит в действие мембранно-связанную АТФ-синтетазу и завершается образованием макроэргической связи в молекуле АТФ.

В основе всех мембран клетки лежит двойной слой молекул липидов. Их гидрофобные «хвосты», состоящие из остатков молекул жирных кислот, обращены внутрь двойного слоя. Снаружи располагаются гидрофильные «головки», состоящие из остатка молекулы спирта глицерина. В состав мембран чаще всего входят фосфолипиды и гликолипиды (их молекулы наиболее полярны), а также жиры и жироподобные вещества (например, холестерин). Липиды являются основой мембраны, обеспечивают ее устойчивость и прочность, т.е. выполняют структурную (строительную) функцию. Эта функция возможна благодаря гидрофобности липидов.

Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение хлоропластов, их функции, расположение их в органах

Пластиды - органоиды эукариотических растений и некоторых фотосинтезирующих простейших (например, эвглены зеленой). Покрыты двойной мембраной и имеют в своём составе множество копий кольцевой ДНКВ целом организмы можно разделить на две группы: на организмы, клетки которых содержат настоящие клеточные ядра, и организмы, которые этим свойством не обладают. Первые называются эукариотами, вторые - прокариотами. К прокариотам относятся бактерии и сине-зеленые водоросли. Эукариоты объединяют все остальные одно- и многоклеточные живые существа. В противоположность прокариотам, кроме обладания клеточными ядрами, эти существа отличаются выраженной способностью к образованию органоидов. Органоиды - это разделенные мембранами составные части клеток. Так, самыми большими клеточными органоидами (по крайней мере, различимыми в световой микроскоп), которыми обладают эукариоты, являются митохондрии, а растительные организмы обладают еще и пластидами. Митохондрии и пластиды большей частью отделены от цитоплазмы клетки двумя мембранами. (Некоторые подробности строения. Митохондрии часто называют "силовыми станциями" эукариотических клеток, так как они играют большую роль в образовании и превращении энергии в клетке. Пластиды для растений не менее важны: хлоропласта, которые являют собой основной тип пластид, заключают в себе механизм фотосинтеза, который осуществляет превращение солнечного Света в химическую энергию.

У различных групп организмов хлоропласты значительно различаются по размерам, строению и количеству в клетке. Особенности строения хлоропластов имеют большое таксономическое значение

Основная функция хлоропластов, состоит в улавливании и преобразовании световой энергии.

В состав мембран, образующих граны, входит зеленый пигмент - хлорофилл. Именно здесь происходят световые реакции фотосинтеза - поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение

воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином.

2. Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение хромопластов, их функции, расположение их в органах

Хромопласт (окрашенные пласты) - окрашенные незелёные тела, заключающиеся в телах высших растений, в отличие от зелёных тел (хлоропластов).

Хромопласты содержат лишь жёлтые, оранжевые и красноватые пигменты из ряда каротинов (см. хлорофилл). Чисто-красные, синие и фиолетовые пигменты (антоциан) и некаротинного характера - жёлтые (антохлор) у высших растений растворены в клеточном соке. Форма хромопластов разнообразна: они бывают круглые, многоугольные, палочковидные, веретенообразные, серповидные, трёхрогие и т. - д. Хромопласты происходят большей частью из хлоропластов (хлорофилльных зёрен), которые теряют хлорофилл и крахмал, что заметно в лепестках, в ткани плодов и т. д. Развитие каротина в хлоропласте понятно из того, что первый в них содержится вместе с хлорофиллом. Так же как и у хлоропластов, у хромопластов пигмент образует в протоплазматической, бесцветной основе лишь отдельные включения, причём иногда в виде настоящих кристаллов, игольчатых, волосовидных, прямых или изогнутых и т. д.

Функция хлоропластов: фотосинтез. Полагают, что хлороплас"гы произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение лейкопластов, их функции, расположение их в органах

Лейкопласты - бесцветные сферические пластиды в клетках растений.

Лейкопласты образуются в запасающих тканях (клубнях, корневищах), клетках эпидермы и других частях растений. Синтезируют и накапливают крахмал (так называемые амилопласты), жиры, белки. Лейкопласты содержат ферменты, с помощью которых из глюкозы, образованной в процессе фотосинтеза, синтезируется крахмал. На свету лейкопласты превращаются в хлоропласты.

Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы TOS-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты - лейкопласты, которые синтезируют и накапливают крахмал, элайопласты - масла, протеинопласты

белки. В одном и том же лейкопласте могут накапливаться разные вещества.

1 - наружная мембрана;

3 - матрикс;

2 - внутренняя мембрана;

4 - перимитохондриальное пространство.

Свойства митохондрий (белки, структура) закодированы частично в ДНК митохондрий, а частично в ядре. Так, митохондриальный геном кодирует белки рибосом и частично систему переносчиков электронотранспортной цепи, а в геноме ядра кодирована информация о белках-ферментах цикла Кребса. Сопоставление размеров митохондриальной ДНК с числом и размером мито-хондриальных белков показывает, что в ней заложено информации почти для половины белков. Это и позволяет считать митохондрии, как и хлоропласты, полуавтономными, т. е. не полностью зависящими от ядра. Они имеют собственную ДНК и собственную белоксинтезирующую систему, и именно с ними и с пластидами связана так называемая цитоплазматическая наследственность. В большинстве случаев это наследование по материнской линии, так как инициальные частицы митохондрий локализованы в яйцеклетке. Таким образом, митохондрии всегда образуются от митохондрий. Широко обсуждается вопрос, как рассматривать митохондрии и хлоропласты с эволюционной точки зрения. Еще в 1921 г. русский ботаник Б.М. Козо-Полянский высказал мнение, что клетка - это симбиотрофная система, в которой сожительствует несколько организмов. В настоящее время эндосимбиотическая теория происхождения митохондрий и хлоропластов является общепринятой. Согласно этой теории, митохондрии - это в прошлом самостоятельные организмы. По мнению Л. Маргелис (1983), это могли быть эубактерии, содержащие ряд дыхательных ферментов. На определенном этапе эволюции они внедрились в примитивную, содержащую ядро, клетку. Оказалось, что ДНК митохондрий и хлоропластов по своей структуре резко отличается от ядерной ДНК высших растений и сходна с бактериальной ДНК (кольцевое строение, нуклеотидная последовательность). Сходство обнаруживается и по величине рибосом. Они мельче цитоплазматических рибосом. Синтез белка в митохондриях, подобно бактериальному, подавляется антибиотиком хлорамфениколом, который не влияет на синтез белка на рибосомах эукариот. Кроме того, система переноса электронов у бактерий расположена в плазматической мембране, что напоминает организацию электронтранспортной цепи во внутренней митохондриальной мембране.



Понравилась статья? Поделитесь ей
Наверх