Клеточный цикл периоды и их значение. Клеточный цикл - митоз: описание фаз G0, G1, G2, S. Жизненный цикл клетки: интерфаза

Для того чтобы клетка смогла полноценно разделиться, она должна увеличиться в размерах и создать достаточное количество органоидов. А для того чтобы не растерять наследственную информацию при делении пополам, она должна изготовить копии своих хромосом. И, наконец, для того чтобы распределить наследственную информацию строго поровну между двумя дочерними клеткам, она должна в правильном порядке расположить хромосомы перед их распределением по дочерним клеткам. Все эти важные задачи решаются в процессе клеточного цикла.

Клеточный цикл имеет важное значение, т.к. он демонстрирует важнейшие : способность к размножению, росту и дифференцировке. Обмен тоже идёт, но его не рассматривают при изучении клеточного цикла.

Определение понятия

Клеточный цикл - это период жизни клетки от рождения до образования дочерних клеток.

У животных клеток клеточный цикл, как промежуток времени между двумя делениями (митозами), длится в среднем от 10 до 24 часов.

Клеточный цикл состоит из нескольких периодов (синоним: фазы), которые закономерно сменяют друг друга. В совокупности первые фазы клеточного цикла (G 1 , G 0 , S и G 2) носят название интерфазы , а последняя фаза называется .

Рис. 1. Клеточный цикл.

Периоды (фазы) клеточного цикла

1. Период первого роста G1 (от английского Growth - рост), составляет 30-40% цикла, и период покоя G 0

Синонимы: постмитотический (наступает после митоза) период, пресинтетический (проходит перед синтезом ДНК) период.

Клеточный цикл начинается от рождения клетки в результате митоза. После деления дочерние клетки уменьшены в размерах и органоидов в них меньше, чем в норме. Поэтому "новорожденная" маленькая клетка в первом периоде (фазе) клеточного цкла (G 1) растёт и увеличивается в размерах, а также формирует недостающие органоиды. Идёт активный синтез белков, необходимых для ввсего этого. В результате клетка становится полноценной, можно сказать, "взрослой".

Чем обычно заканчивается для клетки период роста G 1 ?

  1. Вступллением клетки в процесс . За счёт дифференцировки клетка приобретает специальные особенности для выполнения функций, необходимых всему органу и организму. Запускается дифференцировка управляющими веществами (гормонами), воздействующими на соответствующие молекулярные рецепторы клетки. Клетка, завершившая свою дифференцировку, выпадает из круговорота делений и находится в периоде покоя G 0 . Требуется воздействие активирующих веществ (митогенов) для того, чтобы она претерпела дедифференцировку и вновь вернулась в клеточный цикл.
  2. Гибелью (смертью) клетки.
  3. Вступлением в следующий период клеточного цикла -синтетический.

2. Синтетический период S (от английского Synthesis - синтез), составляет 30-50% цикла

Понятие синтеза в названии этого периода относится к синтезу (репликации) ДНК , а не к каким-либо другим процессам синтеза. Достигнув определенного размера в результате прохождения периода первого роста, клетка вступает в синтетический период, или фазу, S, в котором происходит синтез ДНК. За счёт репликации ДНК клетка удваивает свой генетический материал (хромосомы), т.к. в ядре образуется точная копия каждой хромосомы. Каждая хроммосома становится двойной и весь хромосомный набор становится двойным, или диплоидным . В результате клетка теперь готова поделить наследственный материал поровну между двумя дочерними клетками, не потеряв при этом ни одного гена.

3. Период второго роста G 2 (от английского Growth - рост), составляет 10-20% цикла

Синонимы: премитотический (проходит перед митозом) период, постсинтетический (наступает после синтетического) период.

Период G 2 является подготовительным к очередному делению клетки. Во время второго периода роста G 2 клетка производит белки, требующиеся для митоза, в частности, тубулин для веретена деления; создаёт запас энергии в виде АТФ; проверяет, закончена ли репликация ДНК, и готовится к делению.

4. Период митотического деления M (от английского Mitosis - митоз), составляет 5-10% цикла

После деления клетка оказывается в новой фазе G 1 , и клеточный цикл завершается.

Регуляция клеточного цикла

На молекулярном уровне переход от одной фазы цикла к другой регулируют два белка - циклин и циклинзависимая киназа (CDK).

Для регуляции клеточного цикла используется процесс обратимого фосфорилирования/дефосфорилирования регуляторных белков, т.е. присоединение к ним фосфатов с последующим отщеплением. Ключевым веществом, регулирующим вступление клетки в митоз (т.е. её переход от фазы G 2 к фазе M), является специфическая серин/треонин-протеинкиназа , которая носит название фактор созревания - ФС, или MPF, от английского maturation promoting factor. В активной форме этот белковый фермент катализирует фосфорилирование многих белков, принимающих участие в митозе. Это, например, входящий в состав хроматина гистон H 1 , ламин (компонент цитоскелета, находящийся в ядерной мембране), факторы транскрипции, белки митотического веретена, а также ряд ферментов. Фосфорилирование этих белков фактором созревания MPF активирует их и запускает процесс митоза. После завершения митоза регуляторная субъединица ФС, циклин , маркируется убиквитином и подвергается распаду (протеолизу). Теперь наступает очередь протеинфосфатаз , которые дефосфорилируют белки, принимавшие участие в митозе, чем переводят их в неактивное состояние. В итоге клетка возвращается в состояние интерфазы.

ФС (MPF) - это гетеродимерный фермент, включающий в себя регуляторную субъединицу, а именно циклин, и каталитическую субъединицу, а именно циклинзависимую киназу ЦЗК (CDK от англ. cyclin dependent kinase), она же p34cdc2; 34 кДа. Активной формой этого фермента является лишь димер ЦЗК+циклин. Кроме того, активность ЦЗК регулируется путем обратимого фосфорилирования самого фермента. Циклины получили такое название потому, что их концентрация циклически изменяется в соответствии с периодами клеточного цикла, в частности, она снижается перед началом деления клетки.

В клетках позвоночных присутствует ряд различных циклинов и циклинзависимых киназ. Разнообразные сочетания двух субъединиц фермента регулируют запуск митоза, начало процесса транскрипции в G1-фазе, переход критической точки после завершения транскрипции, начало процесса репликации ДНК в S-периоде интерфазы (стартовый переход) и другие ключевые переходы клеточного цикла (на схеме не приведены).
В ооцитах лягушки вступление в митоз (G2/M-переход) регулируется путем изменения концентрации циклина. Циклин непрерывно синтезируется в интерфазе до достижения максимальной концентрации в фазе М, когда запускается весь каскад фосфорилирования белков, катализируемый ФС. К окончанию митоза циклин быстро разрушается протеиназами, также активируемыми ФС. В других клеточных системах активность ФС регулируется за счет различной степени фосфорилирования самого фермента.

Рост тела человека обусловлен увеличением размера и количества клеток, при этом последнее обеспечивается процессом деления, или митозом. Пролиферация клеток происходит под воздействием внеклеточных факторов роста, а сами клетки проходят через повторяющуюся последовательность событий, известную как клеточный цикл.

Различают четыре основные фазы : G1 (пресинтетическая), S (синтетическая), G2 (постсинтетическая) и М (митотическая). Затем следует разделение цитоплазмы и плазматической мембраны, в результате чего возникают две одинаковые дочерние клетки. Фазы Gl, S и G2 входят в состав интерфазы. Репликация хромосом происходит во время синтетической фазы, или S-фазы.
Большинство клеток не подвержено активному делению, их митотическая активность подавляется во время фазы GO, входящей в состав фазы G1.

Продолжительность М-фазы составляет 30-60 мин, в то время как весь клеточный цикл проходит примерно за 20 ч. В зависимости от возраста нормальные (не опухолевые) клетки человека претерпевают до 80 митотических циклов.

Процессы клеточного цикла контролируются последовательно повторяющимися активацией и инактивацией ключевых ферментов, называемых цик дин зависимыми протеинкиназами (ЦЗК), а также их кофакторов - циклинов. При этом под воздействием фосфокиназ и фосфатаз происходят фосфорилирование и дефосфорилирование особых циклин-ЦЗК-комплексов, ответственных за начало тех или иных фаз цикла.

Кроме того, на соответствующих стадиях подобные ЦЗК-белки вызывают уплотнение хромосом, разрыв ядерной оболочки и реорганизацию микротрубочек цитоскелета в целях формирования веретена деления (митотического веретена).

G1-фаза клеточного цикла

G1-фаза - промежуточная стадия между М- и S-фазами, во время которой происходит увеличение количества цитоплазмы. Кроме того, в конце фазы G1 расположена первая контрольная точка, на которой происходят репарация ДНК и проверка условий окружающей среды (достаточно ли они благоприятны для перехода к S-фазе).

В случае если ядерная ДНК повреждена, усиливается активность белка р53, который стимулирует транскрипцию р21. Последний связывается со специфическим циклин-ЦЗК-комплексом, ответственным за перевод клетки в S-фазу, и тормозит её деление на стадии Gl-фазы. Это позволяет репарационным ферментам исправить повреждённые фрагменты ДНК.

При возникновении патологий белка р53 репликация дефективной ДНК продолжается, что позволяет делящимся клеткам накапливать мутации и способствует развитию опухолевых процессов. Именно поэтому белок р53 часто называют «стражем генома».

G0-фаза клеточного цикла

Пролиферация клеток у млекопитающих возможна только при участии секретируемых другими клетками внеклеточных факторов роста , которые оказывают своё воздействие через каскадную сигнальную трансдукцию протоонкогенов. Если во время фазы G1 клетка не получает соответствующих сигналов, то она выходит из клеточного цикла и переходит в состояние G0, в котором может находиться несколько лет.

Блок G0 происходит при помощи белков - супрессоров митоза, один из которых - ретинобластомный белок (Rb-белок), кодируемый нормальными аллелями гена ретинобластомы. Данный белок прикрепляется кособым регуляторным протеинам, блокируя стимуляцию транскрипции генов, необходимых для пролиферации клеток.

Внеклеточные факторы роста разрушают блок путём активации Gl-специфических циклин-ЦЗК-комплексов , которые фосфорилируют Rb-белок и изменяют его конформацию, в результате чего разрывается связь с регуляторными белками. При этом последние активируют транскрипцию кодируемых ими генов, которые запускают процесс пролиферации.

S фаза клеточного цикла

Стандартное количество двойных спиралей ДНК в каждой клетке, соответствующее диплоидному набору одноцепочечных хромосом, принято обозначать как 2С. Набор 2С сохраняется на протяжении фазы G1 и удваивается (4С) во время S-фазы, когда синтезируется новая хромосомная ДНК.

Начиная с конца S-фазы и до М-фазы (включая фазу G2) каждая видимая хромосома содержит две плотно связанные друг с другом молекулы ДНК, называемые сестринскими хроматидами. Таким образом, в клетках человека начиная с конца S-фазы и до середины М-фазы присутствуют 23 пары хромосом (46 видимых единиц), но 4С (92) двойные спирали ядерной ДНК.

В процессе митоза происходит распределение одинаковых наборов хромосом по двум дочерним клеткам таким образом, чтобы в каждой из них содержалось по 23 пары 2С-молекул ДНК. Следует отметить, что фазы G1 и G0 - единственные фазы клеточного цикла, во время которых в клетках 46 хромосомам соответствует 2С-набор молекул ДНК.

G2-фаза клеточного цикла

Вторая контрольная точка , на которой проверяется размер клетки, находится в конце фазы G2, расположенной между S-фазой и митозом. Кроме того, на данной стадии, прежде чем перейти к митозу, происходит проверка полноты репликации и целостности ДНК. Митоз (М-фаза)

1. Профаза . Хромосомы, каждая из которых состоит из двух одинаковых хроматид, начинают уплотняться и становятся видимыми внутри ядра. На противоположных полюсах клетки вокруг двух центросом из волокон тубулина начинает образовываться веретеноподобный аппарат.

2. Прометафаза . Происходит разделение мембраны ядра. Вокруг центромер хромосом формируются кинетохоры. Волокна тубулина проникают внутрь ядра и концентрируются вблизи кинетохор, соединяя их с волокнами, исходящими из центросом.

3. Метафаза . Натяжение волокон заставляет хромосомы выстраиваться посередине в линию между полюсами веретена, формируя тем самым метафазную пластинку.

4. Анафаза . ДНК центромер, разделённая между сестринскими хроматидами, дуплицируется, хроматиды разделяются и расходятся ближе к полюсам.

5. Телофаза . Разделённые сестринские хроматиды (которые с этого момента считают хромосомами) достигают полюсов. Вокруг каждой из групп возникает ядерная мембрана. Уплотнённый хроматин рассеивается и происходит формирование ядрышек.

6. Цитокинез . Клеточная мембрана сокращается и посередине между полюсами образуется борозда дробления, которая со временем разделяет две дочерние клетки.

Цикл центросомы

Во время фазы G1 происходит разделение пары центриолей, сцепленных с каждой центросомой. На протяжении S- и G2-фаз справа от старых центриолей формируется новая дочерняя центриоль. В начале М-фазы центросома разделяется, две дочерние центросомы расходятся к полюсам клетки.

Деление клетки - совокупность процессов, благодаря которым с одной материнской клетки образуется две или более дочерних клеток. Деление клеток является биологической основой жизни. В случае одноклеточных организмов благодаря делению клеток образуются новые организмы. У многоклеточных организмов с делением клеток связано бесполое и половое рорзмноження, рост и восстановление многих их структур. Первоочередной задачей деления клетки является передача наследственной информации следующему поколению. Клетки прокариот не имеют сформированного ядра, поэтому их деление клеток на две меньших дочерних, известный как бинарный разделение, осуществляется проще и быстрее. У эукариот выделяют несколько типов деления клеток:

митотический разделение - разделение, при котором с одной материнской клетки образуется две дочерних клетки с таким же набором хромосом (для соматических клеток)

мейотическое разделение - разделение, при котором с одной материнской клетки образуется четыре дочерних клетки с половинным (гаплоидным) набором хромосом (у организмов с половым размножением)

почкования - разделение, при котором с одной материнской клетки образуется две дочерних клетки, одна из которых по размерам превосходит другую (например, у дрожжей)

множественный разделение (шизогония) - разделение, при котором с одной материнской клетки образуется много дочерних клеток (например, у малярийного плазмодия).

Деление клетки является частью клеточного цикла. Клеточный цикл - это период существования клетки от одного деления к другому. Продолжительность этого периода различна у разных организмов (например, у бактерий - 20-30 мин, для лейкоцитов человека - 4-5 суток) и зависит от возраста, температуры, количества ДНК, типа клеток и тому подобное. У одноклеточных клеточный цикл совпадает с жизнью особи, а в многоклеточных организмов у клеток тела, которые непрерывно делятся, совпадает с митотическим циклом. Молекулярные процессы, происходящие в течение клеточного цикла, последовательны. Осуществление клеточного цикла в обратном направлении невозможно. Важной чертой всех эукариот является то, что перебигризних фаз клеточного цикла подлежит точной координации. Одна фаза клеточного цикла сменяется другой в строго установленном порядке, причем перед началом следующей фазы имеют должным образом завершиться все биохимические процессы, характерные для предыдущей фазы. Сбои в ходе клеточного цикла могут привести к хромосомных аномалий. Например, часть хромосом может быть потеряна, неадекватно распределена между двумя дочерними клетками и тому подобное. Подобные хромосомные нарушения характерны для раковых клеток. Существует два основных класса регуляторных молекул, которые направляют клеточный цикл. Это циклины и циклин-зависимые ферменты-киназы. Л. Гартвел, Р. Хант и П. Нерс получили Нобелевскую премию в области медицины и физиологии 2001 года при открытии этих центральных молекул в регуляции клеточного цикла.

Основными периодами клеточного цикла является интерфаза, митоз и цитокинез.

Клеточный цикл = Интерфаза + Митоз + Цитокинез

Интерфаза (лат. Inter - между, phasis - появление ) - период между делениями клетки или от деления клетки к ее гибели.

Продолжительность интерфазы, как правило, составляет до 90% времени всего клеточного цикла. Основным признаком интерфазных клеток является деспирализований состояние хроматина. У клеток, которые потеряли способность к делению (например, нейронов), интерфаза будет периодом от последнего митоза к смерти клетки.

Интерфаза обеспечивает рост клеток, удвоение молекул ДНК, синтез органических соединений, размножение митохондрий, в ней происходит накопление энергии в АТФ, которая необходима для обеспечению деления клеток.

Интерфаза включает пресинтетический, синтетический и постсинтетический периоды. Пресинтетический период (G1-фаза) - характеризуется ростом клетки. В этот период, который является самым продолжительным, клетки растут, дифференцируются и выполняют свои функции. В дифференцированных клеток, которые больше не делятся, в клеточном цикле отсутствует G1-фаза. Такие клетки находятся в периоде покоя (G0-фаза). Синтетический период (S-фаза) - это период, основным событием которого является удвоение ДНК. Каждая хромосома в этом периоде становится двохроматидною. Постсинтетический период (G2-фаза) - период непосредственной подготовки к митоза.

Основные события во время интерфазы

период

Основные процессы

Пресинтетический (G1-фаза, самая длительная, от 10 ч до нескольких суток)

■ образования основных органелл;

■ ядрышко производит мРНК, тРНК, рРНК;

■ интенсивные процессы биосинтеза и усиленный рост клеток

Синтетический (S-фаза, ее продолжительность - 6-10 ч)

■ репликация ДНК и синтез гистонов и преобразования хромосоме в двохроматидни структуры;

■ удвоение центриолей

Постсинтетический (G2-фаза, ее продолжительность - 3-4 ч)

■ разделение, формирование основных новых органелл;

■ разрушения цитоскелета;

■ усиленный синтез белков, липидов, углеводов, РНК, АТФ и др. |

Митоз является основным типом разделения эукариотических клеток. Этот раздел состоит из 4 фаз (профаза, метафаза, анафаза, телофаза ) и продолжается от нескольких минут до 2-3 часов.

Цнтокинез (или цитотомия ) - разделение цитоплазмы эукариотической клетки, который происходит после того, как в клетке произошло разделение ядра (кариокинез ). В большинстве случаев цитоплазма и органеллы клетки распределяются между дочерними клетками примерно поровну. Исключением является оогенез, в процессе которого будущая яйцеклетка получает практически всю цитоплазму и органеллы, тогда как полярные тельца их почти не содержат и вскоре отмирают. В тех случаях, когда деление ядра не сопровождается цито- кинез, образуются многоядерные клетки (например, поперечнопосмуговани мышечные волокна). Цитокинез наступает сразу же после телофазы. В животных клетках во время телофазы плазматическая мембрана начинает вгинатись внутрь на уровне экватора (под действием микронитей) и разделяет клетку пополам. В растительных клетках на экваторе с микронитей образуется тельце - фрагмобласт. К нему перемещаются митохондрии, ЭПС, аппарат Гольджи, рибосомы. Пузырьки от аппарата Гольджи сочетаются и образуется клеточная пластинка, которая разрастается и сливается с клеточной стенкой материнской клетки.

БИОЛОГИЯ + Апоптоз - это явление программируемой смерти клеток. В отличие от другого вида клеточной смерти - некроза - при апоптоз и не происходит разрушения цитоплазматической мембраны и, соответственно, содержание клетки не попадает во внеклеточную среду. Характерным признаком является фрагментация ДНК специфическим ферментом ендонуклезою на фрагменты. Процесс апоптоза с необходимым для физиологического регулирования количества клеток организма, для уничтожения старых клеток, для осеннего листопада, для цитоксичнои действия лимфоцитов-киллеров, для эмбриогенеза организма и др. Нарушение нормального апоптоза клеток приводит к неконтролируемому размножению клеток и появления опухоли.

Клеточный цикл

Клеточный цикл - это период существования клетки от момента её образования путем деления материнской клетки до собственного деления или смерти.Содержание [показать]

Длительность клеточного цикла эукариот

Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих, земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.

Фазы клеточного цикла эукариот

Клеточный цикл эукариот состоит из двух периодов:

Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз).

Интерфаза состоит из нескольких периодов:

G1-фазы (от англ. gap - промежуток), или фазы начального роста, во время которой идет синтез мРНК, белков, других клеточных компонентов;

S-фазы (от англ. synthesis - синтетическая), во время которой идет репликация ДНК клеточного ядра, также происходит удвоение центриолей (если они, конечно, есть).

G2-фазы, во время которой идет подготовка к митозу.

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G1 фаза. Такие клетки находятся в фазе покоя G0.

Период клеточного деления (фаза М) включает две стадии:

митоз (деление клеточного ядра);

цитокинез (деление цитоплазмы).

В свою очередь, митоз делится на пять стадий, in vivo эти шесть стадий образуют динамическую последовательность.

Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.

Регуляция клеточного цикла

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков, как циклин-зависимые киназы и циклины. Клетки, находящиеся в G0 фазе, могут вступать в клеточный цикл при действии на них факторов роста. Разные факторы роста, такие как тромбоцитарный, эпидермальный, фактор роста нервов, связываясь со своими рецепторами, запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов и циклин-зависимых киназ. Циклин-зависимые киназы становятся активными лишь при взаимодействии с соответствующими циклинами. Содержание различных циклинов в клетке меняется на протяжении всего клеточного цикла. Циклин является регуляторной компонентой комплекса циклин-циклин-зависимая киназа. Киназа же является каталитическим компонентом этого комплекса. Киназы не активны без циклинов. На разных стадиях клеточного цикла синтезируются разные циклины. Так, содержание циклина B в ооцитах лягушки достигает максимума к моменту митоза, когда запускается весь каскад реакций фосфорилирования, катализируемых комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами.

Контрольные точки клеточного цикла

Для определения завершения каждой фазы клеточного цикла необходимо наличие в нем контрольных точек. Если клетка «проходит» контрольную точку, то она продолжается «двигаться» по клеточному циклу. Если же какие-либо обстоятельства, например повреждение ДНК, мешают клетке пройти через контрольную точку, которую можно сравнить со своего рода контрольным пунктом, то клетка останавливается и другой фазы клеточного цикла не наступает по крайней мере до тех пор, пока не будут устранены препятствия, не позволявшие клетке пройти через контрольный пункт. Существует как минимум четыре контрольных точки клеточного цикла: точка в G1, где проверяется интактность ДНК, перед вхождением в S-фазу, сверочная точка в S-фазе, в которой проверяется правильность репликации ДНК, сверочная точка в G2, в которой проверяются повреждения, пропущенные при прохождении предыдущих сверочных точек, либо полученные на последующих стадиях клеточного цикла. В G2 фазе детектируется полнота репликации ДНК и клетки, в которых ДНК недореплицирована, не входят в митоз. В контрольной точке сборки веретена деления проверяется, все ли кинетохоры прикреплены к микротрубочкам.

Нарушения клеточного цикла и образование опухолей

Увеличение синтеза белка p53 ведет к индукции синтеза белка p21 - ингибитора клеточного цикла

Нарушение нормальной регуляции клеточного цикла является причиной появления большинства твердых опухолей. В клеточном цикле, как уже говорилось, прохождение контрольных пунктов его возможно только в случае нормального завершения предыдущих этапов и отсутствия поломок. Для опухолевых клеток характерны изменения компонентов сверочных точек клеточного цикла. При инактивации сверочных точек клеточного цикла наблюдается дисфункция некоторых опухолевых супрессоров и протоонкогенов, в частности p53, pRb, Myc и Ras. Белок p53 является одним из факторов транскрипции, который инициирует синтез белка p21, являющегося ингибитором комплекса CDK-циклин, что приводит к остановке клеточного цикла в G1 и G2 периоде. Таким образом клетка, у которой повреждена ДНК, не вступает в S-фазу. При мутациях, приводящих к потере генов белка p53, или при их изменениях, блокады клеточного цикла не происходит, клетки вступают в митоз, что приводит к появлению мутантных клеток, большая часть из которых нежизнеспособна, другая - дает начало злокачественным клеткам.

Циклины - семейство белков, являющихся активаторами циклин-зависимых протеинкиназ (CDK) (CDK - cyclin-dependent kinases) - ключевых ферментов, участвующих в регуляции клеточного цикла эукариот. Циклины получили свое название в связи с тем, что их внутриклеточная концентрация периодически изменяется по мере прохождения клеток через клеточный цикл, достигая максимума на его определенных стадиях.

Каталитическая субъединица циклин-зависимой протеинкиназы частично активируется в результате взаимодействия с молекулой циклина, которая образует регуляторную субъединицу фермента. Образование этого гетеродимера становится возможным после достижения циклином критической концентрации. В ответ на уменьшение концентрации циклина происходит инактивация фермента. Для полной активации циклин-зависимой протеинкиназы должно произойти специфическое фосфорилирование и дефосфорилирование определенных аминокислотных остатков в полипептидных цепях этого комплекса. Одним из ферментов, осуществляющих подобные реакции, является киназа CAK (CAK - CDK activating kinase).

Циклин-зависимая киназа

Циклин-зависимые киназы (англ. cyclin-dependent kinases, CDK) - группа белков, регулируемых циклином и циклиноподобными молекулами. Большинство CDK участвуют в смене фаз клеточного цикла; также они регулируют транскрипцию и процессинг мРНК. CDK являются серин\треониновыми киназами, фосфорилируя соответствующие остатки белков. Известно несколько CDK, каждая из которых активируется одним или более циклинами и иными подобными молекулами после достижения их критической концентрации, притом по большей части CDK гомологичны, отличаясь в первую очередь конфигурацией сайта связывания циклинов. В ответ на уменьшение внутриклеточной концентрации конкретного циклина происходит обратимая инактивация соответствующей CDK. Если CDK активируются группой циклинов, каждый из них как бы передавая протеинкиназы друг другу, поддерживает CDK в активированном состоянии длительное время. Такие волны активации CDK возникают на протяжении G1- и S- фаз клеточного цикла.

Список CDK и их регуляторов

CDK1; циклин A, циклин B

CDK2; циклин A, циклин E

CDK4; циклин D1, циклин D2, циклин D3

CDK5; CDK5R1, CDK5R2

CDK6; циклин D1, циклин D2, циклин D3

CDK7; циклин H

CDK8; циклин C

CDK9; циклин T1, циклин T2a, циклин T2b, циклин K

CDK11 (CDC2L2) ; циклин L

Амитоз (или прямое деление клетки), происходит в соматических клетках эукариот реже, чем митоз. Впервые он описан немецким биологом Р. Ремаком в 1841г., термин предложен гистологом. В. Флеммингом позднее – в 1882г. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и др.). При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

Это понятие ещё фигурировало в некоторых учебниках до 1980-х гг. В настоящее время считается, что все явления, относимые к амитозу - результат неверной интерпретации недостаточно качественно приготовленных микроскопических препаратов, или интерпретации как деления клетки явлений, сопровождающих разрушение клеток или иные патологические процессы. В то же время некоторые варианты деления ядер эукариот нельзя назвать митозом или мейозом. Таково, например, деление макронуклеусов многих инфузорий, где без образования веретена происходит сегрегация коротких фрагментов хромосом.

Клеточный цикл - это период существования клетки от момента её образования путем деления материнской клетки до собственного деления или гибели.

Длительность клеточного цикла

Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12-36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яиц иглокожих, земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10-24 ч.

Фазы клеточного цикла

Клеточный цикл эукариот состоит из двух периодов:

    Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

    Периода клеточного деления, называемый «фаза М» (от слова mitosis - митоз).

Интерфаза состоит из нескольких периодов:

    G 1 -фазы (от англ. gap - промежуток), или фазы начального роста, во время которой идет синтез мРНК, белков, других клеточных компонентов;

    S-фазы (от англ. synthesis - синтез), во время которой идет репликация ДНК клеточного ядра, также происходит удвоение центриолей (если они, конечно, есть).

    G 2 -фазы, во время которой идет подготовка к митозу.

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G 1 фаза. Такие клетки находятся в фазе покоя G 0 .

Период клеточного деления (фаза М) включает две стадии:

    кариокинез (деление клеточного ядра);

    цитокинез (деление цитоплазмы).

В свою очередь, митоз делится на пять стадий.

Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.

Регуляция клеточного цикла

Закономерная последовательность смены периодов клеточного цикла осуществляется при взаимодействии таких белков, как циклин-зависимые киназы и циклины. Клетки, находящиеся в G 0 фазе, могут вступать в клеточный цикл при действии на нихфакторов роста. Разные факторы роста, такие как тромбоцитарный, эпидермальный, фактор роста нервов, связываясь со своими рецепторами, запускают внутриклеточный сигнальный каскад, приводящий в итоге к транскрипции генов циклинов ициклин-зависимых киназ. Циклин-зависимые киназы становятся активными лишь при взаимодействии с соответствующими циклинами. Содержание различных циклинов в клетке меняется на протяжении всего клеточного цикла. Циклин является регуляторной компонентой комплекса циклин-циклин-зависимая киназа. Киназа же является каталитическим компонентом этого комплекса. Киназы не активны без циклинов. На разных стадиях клеточного цикла синтезируются разные циклины. Так, содержание циклина B в ооцитах лягушки достигает максимума к моменту митоза, когда запускается весь каскад реакций фосфорилирования, катализируемых комплексом циклин-В/циклин-зависимая киназа. К окончанию митоза циклин быстро разрушается протеиназами.



Понравилась статья? Поделитесь ей
Наверх