Классификация органических веществ – основа изучения органической химии. Органические вещества. Классы органических веществ

Органических соединений много, но среди них имеются соединения с общими и сходными свойствами. Поэтому все они по общим признакам классифицированы, объединены в отдельные классы и группы. В основе классификации лежат углеводороды соединения, которые состоят только из атомов углерода и водорода. Остальные органические вещества относятся к «Другим классам органических соединений».

Углеводороды делятся на два больших класса: ациклические и циклические соединения.

Ациклические соединения (жирные или алифатические) соединения, молекулы которых содержат открытую (незамкнутую в кольцо) неразветвленную или разветвленную углеродную цепь с простыми или кратными связями. Ациклические соединения подразделяются на две основные группы:

насыщенные (предельные) углеводороды (алканы), у которых все атомы углерода связаны между собой только простыми связями;

ненасыщенные (непредельные) углеводороды, у которых между атомами углерода кроме одинарных простых связей, имеются также и двойные, и тройные связи.

Ненасыщенные (непредельные) углеводороды делятся на три группы: алкены, алкины и алкадиены.

Алкены (олефины, этиленовые углеводороды) ациклические непредельные углеводороды, которые содержат одну двойную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ен». Например, пропен, бутен, изобутилен или метилпропен.

Алкины (ацетиленовые углеводороды) углеводороды, которые содержат тройную связь между атомами углерода, образуют гомологический ряд с общей формулой C n H 2n-2 . Названия алкенов образуются от названий соответствующих алканов с заменой суффикса «-ан» на суффикс «-ин». Например, этин (ацителен), бутин, пептин.

Алкадиены органические соединения, которые содержат две двойные связи углерод-углерод. В зависимости от того, как располагаются двойные связи относительно друг друга диены делятся на три группы: сопряженные диены, аллены и диены с изолированными двойными связями. Обычно к диенам относят ациклические и циклические 1,3-диены, образующие с общими формулами C n H 2n-2 и C n H 2n-4 . Ациклические диены являются структурными изомерами алкинов.

Циклические соединения в свою очередь делятся на две большие группы:

  1. карбоциклические соединения соединения, циклы которых состоят только из атомов углерода; Карбоциклические соединения подразделяются на алициклические насыщенные (циклопарафины) и ароматические;
  2. гетероциклические соединения соединения, циклы которых состоят не только из атомов углерода, но атомов других элементов: азота, кислорода, серы и др.

В молекулах как ациклических, так и циклических соединений атомы водорода можно замещать на другие атомы или группы атомов, таким образом, с помощью введения функциональных групп можно получать производные углеводородов. Это свойство ещё больше расширяет возможности получения различных органических соединений и объясняет их многообразие.

Наличие тех или иных групп в молекулах органических соединений обуславливает общность их свойств. На этом основана классификация производных углеводородов.

К «Другим классам органических соединений» относятся следующие:

Спирты получаются замещением одного или нескольких атомов водорода гидроксильными группами OH. Это соединение с общей формулой R (OH) х, где х число гидроксильных групп.

Альдегиды содержат альдегидную группу (С = О), которая всегда находится в конце углеводородной цепи.

Карбоновые кислоты содержат в своём составе одну или несколько карбоксильных групп COOH.

Сложные эфиры производные кислородосодержащих кислот, которые формально являются продуктами замещения атомов водорода гидроокислов OH кислотной функции на углеводородный остаток; рассматриваются также как ацилпроизводные спиртов.

Жиры (триглицериды) природные органические соединения, полные сложные эфиры глицерина и односоставных жирных кислот; входят в класс липидов. Природные жиры содержат в своём составе три кислотных радикала с неразветвлённой структурой и, обычно, чётное число атомов углерода.

Углеводы органические вещества, которые содержат содержащими неразветвленную цепь из нескольких атомов углерода, карбоксильную группу и несколько гидроксильных групп.

Амины содержат в своём составе аминогруппу NH 2

Аминокислоты органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

Белки высокомолекулярные органические вещества, которые состоят состоящие из альфа – аминокислот, соединённых в цепочку пептидной связью.

Нуклеиновые кислоты высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов.

Остались вопросы? Хотите знать больше о классификации органических соединений?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

Органические вещества - это такие соединения, которые имеют в своем составе атом Карбона. Еще на ранних этапах развития химии все вещества разделяли на две группы: минеральные и органические. В те времена считали, что для того, чтобы синтезировать органическое веществонеобходимо иметь небывалую «жизненную силу», которая присущая только живым биосистемам. Поэтому осуществить синтез органических веществ из минеральных невозможен. И лишь в начале 19 века Ф. Веллер опровергнул существующее мнение и синтезировал карбамид из цианата аммония, то есть он получил органическое вещество из минерального. После чего рядом ученных были синтезированы хлороформ, анилин, ацетатная кислота и множество других химических соединений.

Органические вещества лежат в основе существования живой материи, а также являются основными продуктами питания для человека и животных. Большинство органических соединений являются сырьем для разных отраслей промышленности - пищевой, химической, легкой, фармацевтической и т.д.

На сегодня известно более 30 млн. разнообразных органических соединений. Поэтому органические веществапредставляют наиболее обширный класс Разнообразие органических соединений связано с уникальными свойствами и структурой Карбона. Соседние атомы Карбона связываются между собой одинарными или кратными (двойной, тройной) связями.

Характеризируются наличием ковалентных связей С-С, а также полярных ковалентных связей С-N, C-O, C-Hal, C-металл и т.д. Реакции, проходящие с участием органических веществ, имеют некоторые особенности по сравнению с минеральными. В реакциях неорганических соединений, как правило, участвуют ионы. Зачастую такие реакции очень быстро проходят, иногда мгновенно при оптимальной температуре. В реакциях с обычно участвуют молекулы. Следует сказать, что в этом случае одни ковалентные связи разрываются, а другие при этом образуются. Как правило, данные реакции протекают значительно медленнее, а для их ускорения необходимо повысить температуру или использовать катализатор (кислота или основание).

Как образуются органические вещества в природе? Большая часть органических соединений в природе синтезируется в из диоксида карбона и воды в хлорофиллах зеленых растений.

Классы органических веществ.

Основана на теории О. Бутлерова. Систематическая классификация является фундаментом научной номенклатуры, что дает возможность назвать органическое вещество, исходя из существующей структурной формулы. Классификация основана на двух основных признаках - структуре карбонового скелета, количеству и размещению функциональных групп в молекуле.

Карбоновый скелет - это стабильная в разных часть молекулы органического вещества. В зависимости от его строения все органические вещества разделяются на группы.

К ациклическим соединениям относят вещества с прямой или разветвленной углеродной цепью. К карбоциклическим соединениям относят вещества с циклами, их разделяют на две подгруппы - алициклические и ароматические. Гетероциклические соединения - вещества, в основе молекул которых циклы, образованы атомами Карбона и атомами других химических элементов (Оксиген, Нитроген, Сульфур), гетероатомами.

Также органические вещества классифицируют по наличию функциональных групп, которые входят в состав молекул. Например, классы углеводородов (исключение - в их молекулах нет функциональных групп), фенолов, спиртов, кетонов, альдегидов, аминов, эфиров, карбоновых кислот, и т.д. Следует помнить, что каждая функциональная группа (СООН, OH, NH2, SH, NH, NO) обуславливает физико-химические свойства данного соединения.

Известно, что свойства органических веществ определяются их составом и химическим строением. Поэтому неудивительно, что в основе классификации органических соединений лежит именно теория строения - теория Л. М. Бутлерова. Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органического вещества является ее скелет - цепь атомов углерода. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цени (циклы) в молекулах.
Помимо атомов углерода и водорода молекулы органических веществ могут содержать атомы и других химических элементов. Вещества, в молекулах которых эти так называемые гетероатомы включены в замкнутую цепь, относят к гетероциклическим соединениям.
Гетероатомы (кислород, азот и др.) могут входить в состав молекул и ациклических соединений, образуя в них функциональные группы, например, гидроксильную - ОН, карбонильную, карбоксильную, аминогруппу -NН2.
Функциональная группа - группа атомов, которая определяет наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.

Углеводороды - это соединения, состоящие только из атомов водорода и углерода.

В зависимости от строения углеродной цепи органические соединения разделяют на соединения с открытой цепью - ациклические (алифатические) и циклические - с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения (циклы образованы только атомами углерода) и гетероциклические (в циклы входят и другие атомы, такие как кислород, азот, сера).

Карбоциклические соединения, в свою очередь, включают два ряда соединений: алицикличвские и ароматические.

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие циклы с особой замкнутой системой р-электронов, образующих общую π-систему (единое π-электронное облако). Ароматичность характерна и для многих гетероциклических соединений.

Все остальные карбоциклические соединения относятся к алициклическому ряду.

Как ациклические (алифатические), так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными) в отличие от предельных (насыщенных), содержащих только одинарные связи.

Предельные алифатические углеводороды называют алканами , они имеют общую формулу С n Н 2 n +2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее время - парафины.

Содержащие одну двойную связь , получили название алкены . Они имеют общую формулу С n Н 2 n .

Непредельные алифатические углеводороды с двумя двойными связями называют алкадиенами

Непредельные алифатические углеводороды с одной тройной связью называют алкинами . Их общая формула С n Н 2 n — 2 .

Предельные алициклические углеводороды - циклоалканы , их общая формула С n Н 2 n .

Особая группа углеводородов, ароматических , или аренов (с замкнутой общей π-электронной системой), известна из примера углеводородов с общей формулой С n Н 2 n -6.

Таким образом, если в их молекулах один или большее число атомов водорода заменить на другие атомы или группы атомов (галогены, гидроксильные группы, аминогруппы и др.), образуются производные углеводородов : галогенопроизводные, кислородсодержащие, азотсодержащие и другие органические соединения.

Галогенопроизводные углеводородов можно рассматривать как продукты замещения в углеводородах одного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предельные и непредельные моно-, ди-, три- (в общем случае поли-) галогенопроизводные.

Общая формула моногалогенопроизводных предельных углеводородов:

а состав выражается формулой

C n H 2 n +1 Г,

где R - остаток от предельного углеводорода (алкана), углеводородный радикал (это обозначение используется и далее при рассмотрении других классов органических веществ), Г - атом галогена (F, Сl, Вг, I).

Спирты - производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.

Спирты называют одноатомными , если они имеют одну гидроксильную группу, и предельными, если они являются производными алканов.

Общая формула предельных одноатомных спиртов:

а их состав выражается общей формулой:
С n Н 2 n +1 ОН или С n Н 2 n +2 О

Известны примеры многоатомных спиртов, т. е. имеющих несколько гндроксильных групп.

Фенолы - производные ароматических углеводородов (ряда бензола), в которых один или несколько атомов водорода в бензольном кольце замещены на гидроксильные группы.

Простейший представитель с формулой С 6 Н 5 ОН называется фенолом.

Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу атомов (карбонил).

В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углеводородным радикалом.

В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами.

Состав предельных альдегидов и кетонов выражается формулой С n Н 2л О.

Карбоновые кислоты - производные углеводородов, содержащие карбоксильные группы (-СООН).

Если в молекуле кислоты одна карбоксильная группа, то карбоновая кислота является одноосновной. Общая формула предельных одноосновных кислот (R-СООН). Их состав выражается формулой С n Н 2 n O 2 .

Простые эфиры представляют собой органические вещества, содержащие два углеводородных радикала, соединенных атомом кислорода: R-О-R или R 1 -O-R 2 .

Радикалы могут быть одинаковыми или разными. Состав простых эфиров выражается формулой С n Н 2 n +2 O

Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной группы в карбоновых кислотах на углеводородный радикал.

Нитросоединения - производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO 2 .

Общая формула предельных мононитросоединений:

а состав выражается общей формулой

С n Н 2 n +1 NO 2 .

Амины - соединения, которые рассматривают как производные аммиака (NН 3), в котором атомы водорода замещены на углеводородные радикалы.

В зависимости от природы радикала амины могут быть алифатическими и ароматическими .

В зависимости от числа замещенных на радикалы атомов водорода различают:

Первичные амины с общей формулой: R-NН 2

Вторичные - с общей формулой: R 1 -NН-R 2

Третичные - с общей формулой:

В частном случае у вторичных, а также третичных аминов радикалы могут быть и одинаковыми.

Первичные амины можно также рассматривать как производные углеводородов (алканов), в которых один атом водорода замещен на аминогруппу -NН 2 . Состав предельных первичных аминов выражается формулой С n Н 2 n +3 N.

Аминокислоты содержат две функциональные группы, соединенные с углеводородным радикалом: аминогруппу -NН 2 , и карбоксил -СООН.

Состав предельных аминокислот, содержащих одну аминогруппу и один карбоксил, выражается формулой С n Н 2 n +1 NO 2 .

Известны и другие важные органические соединения, которые имеют несколько разных или одинаковых функциональных групп, длинные линейные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлежности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы веществ: углеводы, белки, нуклеиновые кислоты, антибиотики, алкалоиды и др.

Для названия органических соединений используют 2 номенклатуры — рациональную и систематическую (ИЮПАК) и тривиальные названия.

Составление названий по номенклатуре ИЮПАК

1) Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь.

2) К корню добавляют суффикс, характеризующий степень насыщенности:

Ан (предельный, нет кратных связей);
-ен (при наличии двойной связи);
-ин (при наличии тройной связи).

Если кратных связей несколько, то в суффиксе указывается число таких связей (-диен, -триен и т.д.), а после суффикса обязательно указывается цифрами положение кратной связи, например:
СН 3 –СН 2 –СН=СН 2 СН 3 –СН=СН–СН 3
бутен-1 бутен-2

СН 2 =СН–СН=СН 2
бутадиен-1,3

Такие группы как нитро-, галогены, углеводородные радикалы, не входящие в главную цепь выносятся в приставку. При этом они перечисляются по алфавиту. Положение заместителя указывается цифрой перед приставкой.

Порядок составления названия следующий:

1. Найти самую длинную цепь атомов С.

2. Последовательно пронумеровать атомы углерода главной цепи, начиная с ближайшего к разветвлению конца.

3. Название алкана складывается из названий боковых радикалов, перечисленных в алфавитном порядке с указанием положения в главной цепи, и названия главной цепи.

Номенклатура некоторых органических веществ (тривиальная и международная)


Цель лекции: знакомство с классификацией и номенклатурой органических соединений

План:

1. Предмет и задачи органической химии. Значение её для фармации.

2. Классификация органических соединений.

3. Принципы тривиальной и рациональной номенклатуры.

4. Принципы номенклатуры ИЮПАК.

Предмет и задачи органической химии.

Органическая химия - это раздел химии, посвященный изучению строения, способов синтеза и химических превращений углеводородов и их функциональных производных.

Термин «органическая химия » впервые ввел шведский химик Йенс Якоб Берцеллиус в 1807 г.

Благодаря особенностям своего строения органические вещества очень многочисленны. Сегодня их число достигает 10 млн.

В настоящее время состояние органической химии таково, что позволяет научно спланировать и осуществить синтез любых сложных молекул (белков, витаминов, ферментов, лекарственных препаратов и т. д.).

Органическая химия тесно связана с фармацией. Она позволяет осуществлять выделение индивидуальных лекарственных веществ из растительного и животного сырья, синтезирует и проводит очистку лекарственного сырья, определяет структуру вещества и механизм химического действия, позволяет определять подлинность того или иного лекарственного препарата. Достаточно сказать, что 95 % лекарственных средств имеют органическую природу.

Классификация органических соединений

В классификации принимаются за основу два важнейших признака: строение углеродного скелета и наличие в молекуле функциональных групп.

По строению углеродного скелета органические. соединения делятся на три большие группы.

I Ациклические (алифатические) соединения, имеющие открытую углеродную цепь как неразветвлённую, так и разветвлённую.

Родоначальными соединениями в органической химии признаны углеводороды , состоящие только из атомов углерода и водорода. Разнообразные органические соединения можно рассматривать как производные углеводородов, полученные введением в них функциональных групп.


Функциональной группой называют структурный фрагмент молекулы, характерный для данного класса органических соединений и определяющий его химические свойства.

Например, свойства спиртов определяются наличием гидроксогруппы (- ОН ), свойства аминов - аминогруппы (- NH 2 ), карбоновых кислот наличием в молекуле карбоксильной группы (- СООН ) и так далее.

Таблица 1 . Основные классы органических соединений

Такая классификация важна потому, что функциональные группы во многом определяют химические свойства данного класса соединений.

Если соединения содержат несколько функциональных групп и они одинаковые, то такие соединения называют полифункциональными (СН 2 ОН - СНОН - СН 2 ОН - глицерин), если молекула содержит разные функциональные группы, то это гетерофункциональное соединение (СН 3 - СН(ОН) - СООН - молочная кислота). Гетерофункциональные соединения можно сразу отнести к нескольким классам соединений.



Понравилась статья? Поделитесь ей
Наверх