Как звук распространяется в пространстве? Звуковые волны и их характеристики. Звуковые волны вокруг нас

Звук распространяется посредством звуковых волн. Эти волны проходят не только сквозь газы и жидкости, но и через твердые тела. Действие любых волн заключается главным образом в переносе энергии. В случае звука перенос принимает форму мельчайших перемещений на молекулярном уровне.

В газах и жидкостях звуковая волна сдвигает молекулы в направлении своего движения, то есть в направлении длины волны. В твердых телах звуковые колебания молекул могут происходить и в направлении перпендикулярном волне.

Звуковые волны распространяются из своих источников во всех направлениях, как это показано на рисунке справа, на котором изображен металлический колокол, периодически сталкивающийся со своим языком. Эти механические столкновения заставляют колокол вибрировать. Энергия вибраций сообщается молекулам окружающего воздуха, и они оттесняются от колокола. В результате в прилегающем к колоколу слое воздуха увеличивается давление, которое затем волнообразно распространяется во все стороны от источника.

Скорость звука не зависит от громкости или тона. Все звуки от радиоприемника в комнате, будь они громкими или тихими, высокого тона или низкого, достигают слушателя одновременно.

Скорость звука зависит от вида среды, в которой он распространяется, и от ее температуры. В газах звуковые волны распространяются медленно, потому что их разреженная молекулярная структура слабо препятствует сжатию. В жидкостях скорость звука увеличивается, а в твердых телах становится еще более высокой, как это показано на диаграмме внизу в метрах в секунду (м/с).

Путь волны

Звуковые волны распространяются в воздухе аналогично показанному на диаграммах справа. Волновые фронты движутся от источника на определенном расстоянии друг от друга, определяемом частотой колебаний колокола. Частота звуковой волны определяется путем подсчета числа волновых фронтов, прошедших через данную точку в единицу времени.

Фронт звуковой волны удаляется от вибрирующего колокола.

В равномерно прогретом воздухе звук распространяется с постоянной скоростью.

Второй фронт следует за первым на расстоянии, равном длине волны.

Сила звука максимальна вблизи источника.

Графическое изображение невидимой волны

Звуковое зондирование глубин

Пучок лучей гидролокатора, состоящий из звуковых волн, легко проходит через океанскую воду. Принцип действия гидролокатора основан на том факте, что звуковые волны отражаются от океанского дна; этот прибор обычно используется для определения особенностей подводного рельефа.

Упругие твердые тела

Звук распространяется в деревянной пластине. Молекулы большинства твердых тел связаны в упругую пространственную решетку, которая плохо сжимается и вместе с тем ускоряет прохождение звуковых волн.

Звук - это механические колебания, которые распространяются в упругой материальной среде преимущественно в виде продольных волн.

B вакууме звук не распространяется, так как для передачи звука необходима материальная среда и механический контакт между собой частиц материальной среды.

В среде звук распространяется в виде звуковых волн. Звуковые волны представляют собой механические колебания, которые передаются в среде при помощи её условных частиц. Под условными частицами среды понимают её микрообъёмы.

Основные физические характеристики акустической волны:

1. Частота.

Частота звуковой волны - это величина, равная числу полных колебаний в единицу времени. Обозначается символом v (ню) и измеряется в герцах. 1 Гц =1 кол/сек = [ с -1 ].

Шкала звуковых колебаний делится на следующие частотные интервалы:

· инфразвук (от 0 до 16 Гц);

· слышимый звук (от 16 до 16 000 Гц);

· ультразвук (свыше 16 000 Гц).

С частотой звуковой волны тесно связана обратная величина – период звуковой волны. Период звуковой волны - это время одного полного колебания частиц среды. Обозначается Т и измеряется в секундах [ с ].

По направлению колебаний частиц среды, переносящих звуковую волну, звуковые волны делятся на:

· продольные;

· поперечные.

У продольных волн направления колебаний частиц среды совпадает с направ­лением распространения в среде звуковой волны (Рис. 1).

У поперечных волн направления колебаний частиц среды перпендикулярны направлению распространения звуковой волны (Рис. 2).


Рис. 1 Рис. 2

Продольные волны распространяются в газах, жидкостях и твердых телах. Поперечные - только в твердых телах.

3. Форма колебаний.

По форме колебаний звуковые волны делятся на:

· простые волны;

· сложные волны.

Графиком простой волны является синусоида.

Графиком сложной волны является любая периодическая несинусоидальная кривая.

4. Длина волны.

Длина волны - величина, равная расстоянию, на которое распространяется звуковая волна за время, равное одному периоду. Обозначается λ (лямбда) и измеряется в метрах (м), сантиметрах (см), миллиметрах (мм), микрометрах (мкм).

Длина волны зависит от среды, в которой распространяется звук.

5. Скорость звуковой волны.

Скорость звуковой волны - это скорость распространения звука в среде при неподвижном источнике звука. Обозначается символом v, вычисляется по формуле:

Скорость звуковой волны зависит от вида среды и температуры. Наибольшая скорость звука в твёрдых упругих телах, меньше - в жидкостях, и самая малая - в газах.

воздух, нормальное атмосферное давление, температура - 20 градусов, v = 342 м/с;

вода, температура 15-20 градусов, v = 1500 м/с;

металлы, v = 5000-10000 м/с.

Скорость звука в воздухе с увеличением температуры на 10 градусов возрастает примерно на 0,6 м/с.

Раскаты грома, музыка, шум прибоя, человеческая речь и все остальное, что мы слышим - это звук. А что такое "звук"?

Источник изображения: pixabay.com

В действительности все, что мы привыкли считаем звуком - это всего лишь одна из разновидностей колебаний (воздуха), которые могут воспринимать наш мозг и органы.

Какая природа у звука

Все звуки, распространяемые в воздухе, представляют собой вибрации звуковой волны. Она возникает посредством колебания объекта и расходится от её источника во всех направлениях. Колеблющийся объект сжимает молекулы в окружающей среде, а затем создаёт разреженную атмосферу, заставляя молекулы отталкиваться друг от друга всё дальше и дальше. Таким образом, изменения в давлении воздуха распространяются от объекта, сами молекулы остаются в неизменной для себя позиции.

Воздействие звуковых волн на барабанную перепонку. Источник изображения:prd.go.th

По мере того, как звуковая волна распространяется в пространстве, она отражается от объектов, встречающихся на её пути, создавая изменения в окружающем воздухе. Когда эти изменения, достигая вашего уха, воздействуют на барабанную перепонку, нервные окончания подают сигнал в мозг, и вы воспринимаете эти колебания как звук.

Основные характеристики звуковой волны

Самой простой формой звуковой волны является синусоида. Синусоидные волны в чистом виде редко встречаются в природе, однако именно с них следует начинать изучение физики звука, так как любые звуки можно разложить на комбинацию синусоидных волн.

Синусоида чётко демонстрирует три основных физических критерия звука – частоту, амплитуду и фазу.

Частота

Чем реже частота колебаний, тем звук ниже, Источник изображения:ReasonGuide.Ru

Частота - это величина, характеризующая количество колебаний в секунду. Она измеряется в количестве периодов колебания либо в герцах (ГЦ). Человеческое ухо может воспринимать звук в диапазоне от 20 Гц (низкочастотные) и до 20 КГц (высокочастотные). Звуки, находящиеся выше данного диапазона называется ультразвуком, а ниже – инфразвуком, и человеческими органами слуха не воспринимаются.

Амплитуда

Чем больше амплитуда звуковой волны, тем громче звук.

Понятие амплитуды (или интенсивности) звуковой волны имеет отношение к силе звука, которую человеческие органы слуха воспринимают как объём или громкость звука. Люди могут воспринимать достаточно широкий спектр громкости звука: от капающего крана в тихой квартире, и до музыки, звучащей на концерте. Для измерения громкости используются фонометры (показатели в децибелах), в которых используется логарифмическая шкала чтобы сделать измерения более удобными.

Фаза звуковой волны

Фазы звуковой волны. Источник изображения: Muz-Flame.ru

Используется для того, чтобы описать свойства двух звуковых волн. Если две волны имеют одинаковую амплитуду и частотность, то говорят, что две звуковые волны находятся в фазе. Фаза измеряется в диапазоне от 0 до 360, где 0 – это значение, показывающее, что две звуковые волны синхронны (в фазе), а 180 – значение, означающее противоположность волн друг к другу (находятся в противофазе). Когда две звуковые волны находятся в фазе, то два звука накладываются и сигналы усиливают друг друга. При совмещении двух сигналов, не совпадающих по амплитуде, из-за разницы давления идёт подавление сигналов, что приводит к нулевому результату, то есть звук исчезает. Этот феномен известен как “подавление фазы”.

При совмещении двух одинаковых аудио сигналов – подавление фазы может стать серьёзной проблемой, так же огромной неприятностью является совмещение оригинальной звуковой волны с волной, отражённой от поверхностей в акустической комнате. Например, когда совмещают левый и правый каналы стерео микшера, чтобы получить гармоничную запись, сигнал может страдать от подавления фаз.

Что такое децибел?

В децибелах измеряется уровень звукового давления или электрического напряжения. Это такая единица, которая показывает коэффициент отношения двух разных величин друг к другу. Бел (названный в честь американского ученого Александра Белла) является десятичным логарифмом, отражающим соотношение двух разных сигналов друг к другу. Это означает, что для каждого последующего бела в шкале, принимаемый сигнал в десять раз мощнее. Например, звуковое давление громкого звука в миллиарды раз выше, чем у тихого. Для того чтобы отображать такие большие величины, стали использовать относительную величину децибел (дБ) – при этом 1.000.000.000 – это 109, или просто 9. Принятие физиками акустиками данной величины позволило сделать работу с огромными числами удобнее.

Шкала громкости различных звуков. Источник изображения: Nauet.ru

На практике получается так, что бел является слишком большой единицей для измерения уровня звука, поэтому вместо него стали использовать децибел, что составляет одну десятую от бела. Нельзя сказать, что применение децибелов вместо белов – это как использование, скажем, сантиметров вместо метров для обозначения размера обуви, белы и децибелы - относительные величины.

Из выше сказанного понятно, что уровень звука принято измерять в децибелах. Некоторые эталоны уровня звука используются в акустике на протяжении многих лет, начиная со времён изобретения телефона, и по сей день. Большинство этих эталонов сложно применить относительно современного оборудования, они используются только для устаревших единиц техники. На сегодняшний день на оборудовании в студиях звукозаписи и вещания используется такая единица, как дБu (децибел относительно уровня 0,775 В), а в бытовой аппаратуре – дБВ (децибел, отсчитываемый относительно уровня 1 В). В цифровой аудио аппаратуре для измерения мощности звука применяется дБFS (децибел полной шкалы).

дБм – “м” обозначает милливатты (мВт), данная единица измерения используется для обозначения электрической мощности. Следует отличать мощность от электрического напряжения, хотя эти два понятия тесно связаны друг с другом. Единицу измерения дБм начали использовать ещё на заре внедрения телефонных коммуникаций, на сегодняшний день её тоже используют в профессиональной аппаратуре.

дБu - в данном случае измеряется напряжение (вместо мощности) относительно эталонного нулевого уровня, за эталонный уровень принято считать 0,75 вольт. В работе с современной профессиональной аудио аппаратуре дБu заменён на дБм. В качестве единицы измерения в сфере звукотехники было удобнее использовать дБu раньше, когда для оценки уровня сигнала было важнее считать электрическую мощность, а не его напряжение.

дБВ – в основе данной единицы измерения так же лежит эталонный нулевой уровень (как и в случае с дБu), однако за эталонный уровень принимают 1 В, что является более удобным, чем цифра 0,775 В. Данная единица измерения звука часто используется для бытовой и полу профессиональной аудио аппаратуры.

дБFS – данная оценка уровня сигнала широко используется в цифровой звукотехнике и сильно отличается от указанных выше единиц измерения. FS (full scale) – полная шкала, которая используется из-за того, что, в отличие от аналогового звукового сигнала, которое имеет оптимальное напряжение, весь диапазон цифровых значений одинаково приемлем при работе с цифровым сигналом. 0 дБFS – это максимально возможный уровень цифрового звукового сигнала, который можно записать без искажения. У аналоговых стандартов измерения таких, как дБu и дБВ, после уровня 0 дБFS нет запаса по динамическому диапазону.

Если Вам понравилась статья, поставьте лайк и подпишитесь на канал НАУЧПОП . Оставайтесь с нами, друзья! Впереди ждёт много интересного!

ЯГМА

Медицинская физика

Педиатрический факультет

Курс

Семестр

Лекция № 4

«Медицинская акустика»

Составил:

Бабенко Н.И.

2010 г.
1. Акустика и её виды. Медицинская акустика, её разделы и задачи.

Дословно "акустика" переводится как учение о слухе. Современное определение термина "акустика" следующее:

Акустика - это наука о получении, свойствах и распространении механических волн в различных средах и взаимодействии этих волн с физическими и биологическими объектами.

Акустика состоит из следующих разделов :

· общая акустика, изучает наиболее общие вопросы, связанные с получением и распространением звука, методами звуковых измерений.

· архитектурная акустика , изучает звуковые явления с точки зрения получения хорошей слышимости и речи в разных помещениях, или защиты помещений от нежелательных звуков.

· техническая акустика, изучает практическое применение звука в разных областях техники.

· биологическая акустика, изучает получение и применение звука живыми организмами (летучие мыши, рыбы, дельфины).

· медицинская акустика , изучает физику и биофизику слуха и речи, условия и особенности восприятия звука человеком, применение звука для диагностики заболеваний и их лечения.

Применение акустики в медицине включает в себя практическое использование свойств слышимого звука и ультразвука:

Основными задачами медицинской акустики являются:

· изучение звуковых явлений, возникающих при работе сердца;

· разработка методов диагностики заболеваний при помощи звука и ультразвука;

· разработка звуковых методов лечения;

· разработка гигиенических норм и норм безопасного использования звука в промышленности, медицине и народном хозяйстве.

Вук как физическое явление.

Виды звуковых волн и их характеристика.

Звук - это механические колебания, которые распространяются в упругой материальной среде преимущественно в виде продольных волн.



B вакууме звук не распространяется, так как для передачи звука необходима материальная среда и механический контакт между собой частиц материальной среды.

В среде звук распространяется в виде звуковых волн. Звуковые волны представляют собой механические колебания, которые передаются в среде при помощи её условных частиц. Под условными частицами среды понимают её микрообъёмы.

Основные физические характеристики акустической волны:

1. Частота.

Частота звуковой волны - это величина,равная числу полных колебаний в единицу времени. Обозначается символом v (ню)и измеряетсяв герцах. 1 Гц =1 кол/сек = [ с -1 ].

Шкала звуковых колебаний делится на следующие частотные интервалы:

· инфразвук (от 0 до 16 Гц);

· слышимый звук (от 16 до 16 000 Гц);

· ультразвук (свыше 16 000 Гц).

С частотой звуковой волны тесно связана обратная величина – период звуковой волны. Период звуковой волны - это время одного полного колебания частиц среды. Обозначается Т и измеряется в секундах [ с ].

По направлению колебаний частиц среды, переносящих звуковую волну, звуковые волны делятся на:

· продольные;

· поперечные.

У продольных волн направления колебаний частиц среды совпадает с направ­лением распространения в среде звуковой волны (Рис. 1).

У поперечных волн направления колебаний частиц среды перпендикулярны направлению распространения звуковой волны (Рис. 2).


Рис. 1 Рис. 2

Продольные волны распространяются в газах, жидкостях и твердых телах. Поперечные - только в твердых телах.

3. Форма колебаний.

По форме колебаний звуковые волны делятся на:

· простые волны;

· сложные волны.

Графиком простой волны является синусоида.

Графиком сложной волны является любая периодическая несинусоидальная кривая.

4. Длина волны.

Длина волны - величина, равная расстоянию, на которое распространяется звуковая волна за время, равное одному периоду. Обозначается λ (лямбда) и измеряется в метрах (м), сантиметрах (см), миллиметрах (мм), микрометрах (мкм).

Длина волны зависит от среды, в которой распространяется звук.

5. Скорость звуковой волны.

Скорость звуковой волны - это скорость распространения звука в среде при неподвижном источнике звука. Обозначается символом v, вычисляется по формуле:

Скорость звуковой волны зависит от вида среды и температуры. Наибольшая скорость звука в твёрдых упругих телах, меньше - в жидкостях, и самая малая - в газах.

воздух,нормальное атмосферное давление, температура - 20 градусов, v = 342 м/с;

вода, температура 15-20 градусов, v = 1500 м/с;

металлы, v = 5000-10000 м/с.

Скорость звука в воздухе с увеличением температуры на 10 градусов возрастает примерно на 0,6 м/с.

Данный урок освещает тему «Звуковые волны». На этом уроке мы продолжим изучать акустику. Вначале повторим определение звуковых волн, затем рассмотрим их частотные диапазоны и познакомимся с понятием ультразвуковых и инфразвуковых волн. Мы также обсудим свойства, присущие звуковым волнам в различных средах, и узнаем, какие им присущи характеристики.

Звуковые волны – это механические колебания, которые, распространяясь и взаимодействуя с органом слуха, воспринимаются человеком (рис. 1).

Рис. 1. Звуковая волна

Раздел, который занимается в физике этими волнами, называется акустика. Профессия людей, которых в простонародье называют «слухачами», – акустики. Звуковая волна – это волна, распространяющаяся в упругой среде, это продольная волна, и, когда она распространяется в упругой среде, чередуются сжатие и разряжение. Передается она с течением времени на расстояние (рис. 2).

Рис. 2. Распространение звуковой волны

К звуковым волнам относятся такие колебания, которые осуществляются с частотой от 20 до 20 000 Гц. Для этих частот соответствуют длины волн 17 м (для 20 Гц) и 17 мм (для 20 000 Гц). Этот диапазон будет называться слышимым звуком. Эти длины волн приведены для воздуха, скорость распространения звука в котором равна .

Существуют еще такие диапазоны, которыми занимаются акустики, – инфразвуковые и ультразвуковые. Инфразвуковые – это те, которые имеют частоту меньше 20 Гц. А ультразвуковые – это те, которые имеют частоту больше 20 000 Гц (рис. 3).

Рис. 3. Диапазоны звуковых волн

Каждый образованный человек должен ориентироваться в диапазоне частот звуковых волн и знать, что если он пойдет на УЗИ, то картинка на экране компьютера будет строиться с частотой больше 20 000 Гц.

Ультразвук – это механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда герц.

Волны, имеющие частоту более миллиарда герц, называют гиперзвуком .

Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником.

Если же в детали есть трещина, воздушная полость или другая неоднородность, то ультразвуковой сигнал отражается от нее и, возвращаясь, попадает в приемник. Такой метод называют ультразвуковой дефектоскопией .

Другими примерами применения ультразвука являются аппараты ультразвукового исследования, аппараты УЗИ, ультразвуковая терапия.

Инфразвук – механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом.

Естественными источниками инфразвуковых волн являются шторм, цунами, землетрясения, ураганы, извержения вулканов, гроза.

Инфразвук – тоже важные волны, которые используют для колебаний поверхности (например, чтобы разрушить какие-нибудь большие объекты). Мы запускаем инфразвук в почву – и почва дробится. Где такое используется? Например, на алмазных приисках, где берут руду, в которых есть алмазные компоненты, и дробят на мелкие частицы, чтобы найти эти алмазные вкрапления (рис. 4).

Рис. 4. Применение инфразвука

Скорость звука зависит от условий среды и температуры (рис. 5).

Рис. 5. Скорость распространения звуковой волны в различных средах

Обратите внимание: в воздухе скорость звука при равна , при скорость увеличивается на . Если вы исследователь, то вам могут пригодиться такие знания. Вы, может быть, даже придумаете какой-нибудь температурный датчик, который будет фиксировать расхождения температуры путем изменения скорости звука в среде. Мы уже знаем, что чем плотнее среда, чем более серьезное взаимодействие между частицами среды, тем быстрее распространяется волна. Мы в прошлом параграфе обсудили это на примере сухого и воздуха влажного воздуха. Для воды скорость распространения звука . Если создать звуковую волну (стучать по камертону), то скорость ее распространения в воде будет в 4 раза больше, чем в воздухе. По воде информация дойдет быстрее в 4 раза, чем по воздуху. А в стали и того быстрее: (рис. 6).

Рис. 6. Скорость распространения звуковой волны

Вы знаете из былин, что Илья Муромец пользовался (да и все богатыри и обычные русские люди и мальчики из РВС Гайдара), пользовались очень интересным способом обнаружения объекта, который приближается, но располагается еще далеко. Звук, который он издает при движении, еще не слышен. Илья Муромец, припав ухом к земле, может ее услышать. Почему? Потому что по твердой земле передается звук с большей скоростью, значит, быстрее дойдет до уха Ильи Муромца, и он сможет подготовиться к встрече неприятеля.

Самые интересные звуковые волны – музыкальные звуки и шумы. Какие предметы могут создать звуковые волны? Если мы возьмем источник волны и упругую среду, если мы заставим источник звука колебаться гармонически, то у нас возникнет замечательная звуковая волна, которая будет называться музыкальным звуком. Этими источниками звуковых волн могут быть, например, струны гитары или рояля. Это может быть звуковая волна, которая создана в зазоре воздушном трубы (органа или трубы). Из уроков музыки вы знаете ноты: до, ре, ми, фа, соль, ля, си. В акустике они называются тонами (рис. 7).

Рис. 7. Музыкальные тоны

У всех предметов, которые могут издавать тоны, будут особенности. Чем они различаются? Они различаются длиной волны и частотой. Если эти звуковые волны создаются не гармонически звучащими телами или не связаны в общую какую-то оркестровую пьесу, то такое количество звуков будет называться шумом.

Шум – беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Понятие шума есть бытовое и есть физическое, они очень схожи, и поэтому мы его вводим как отдельный важный объект рассмотрения.

Переходим к количественным оценкам звуковых волн. Какие у музыкальных звуковых волн характеристики? Эти характеристики распространяются исключительно на гармонические звуковые колебания. Итак, громкость звука . Чем определяется громкость звука? Рассмотрим распространение звуковой волны во времени или колебания источника звуковой волны (рис. 8).

Рис. 8. Громкость звука

При этом, если мы добавили в систему не очень много звука (стукнули тихонечко по клавише фортепиано, например), то будет тихий звук. Если мы громко, высоко поднимая руку, вызовем этот звук, стукнув по клавише, получим громкий звук. От чего это зависит? У тихого звука амплитуда колебаний меньше, чем у громкого звука .

Следующая важная характеристика музыкального звука и любого другого - высота . От чего зависит высота звука? Высота зависит от частоты. Мы можем заставить источник колебаться часто, а можем заставить его колебаться не очень быстро (то есть совершать за единицу времени меньшее количество колебаний). Рассмотрим развертку по времени высокого и низкого звука одной амплитуды (рис. 9).

Рис. 9. Высота звука

Можно сделать интересный вывод. Если человек поет басом, то у него источник звука (это голосовые связки) колеблется в несколько раз медленнее, чем у человека, который поет сопрано. Во втором случае голосовые связки колеблются чаще, поэтому чаще вызывают очаги сжатия и разряжения в распространении волны.

Есть еще одна интересная характеристика звуковых волн, которую физики не изучают. Это тембр . Вы знаете и легко различаете одну и ту же музыкальную пьесу, которую исполняют на балалайке или на виолончели. Чем отличаются эти звучания или это исполнение? Мы попросили в начале эксперимента людей, которые извлекают звуки, делать их примерно одинаковой амплитуды, чтобы была одинакова громкость звука. Это как в случае оркестра: если не требуется выделения какого-то инструмента, все играют примерно одинаково, в одинаковую силу. Так вот тембр балалайки и виолончели отличается. Если бы мы нарисовали звук, который извлекают из одного инструмента, из другого, с помощью диаграмм, то они были бы одинаковыми. Но вы легко отличаете эти инструменты по звуку.

Еще один пример важности тембра. Представьте себе двух певцов, которые заканчивают один и тот же музыкальный вуз у одинаковых педагогов. Они учились одинаково хорошо на пятерки. Почему-то один становится выдающимся исполнителем, а другой всю жизнь недоволен своей карьерой. На самом деле это определяется исключительно их инструментом, который вызывает как раз голосовые колебания в среде, т. е. у них отличаются голоса по тембру.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «eduspb.com» ()
  2. Интернет-портал «msk.edu.ua» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

  1. Как распространяется звук? Что может служить источником звука?
  2. Может ли звук распространяться в космосе?
  3. Всякая ли волна, достигшая органа слуха человека, воспринимается им?


Понравилась статья? Поделитесь ей
Наверх