Хим свойства оснований в таблице. Гидроксиды


Нерастворимое основание: гидроксид меди

Основания - называют электролиты, в растворах которых отсутствуют анионы, кроме гидроксид-ионов (анионы - это ионы, которые имеют отрицательный заряд, в данном случае - это ионы OH -). Названия оснований состоят из трёх частей: слова гидроксид , к которому добавляют название металла (в родительном падеже). Например, гидроксид меди (Cu(OH) 2). Для некоторых оснований могут используются старые названия, например гидроксид натрия (NaOH) - натриевая щелочь .

Едкий натр , гидроксид натрия , натриевая щелочь , каустическая сода - всё это одно и тоже вещество, химическая формула которого NaOH. Безводный гидроксид натрия - это белое кристаллическое вещество. Раствор - прозрачная жидкость, на вид ничем не отличимая от воды. При использовании будьте осторожны! Едкий натр сильно обжигает кожу!

В основу классификации оснований положена их способность растворяться в воде. От растворимости в воде зависят некоторые свойства оснований. Так, основания , растворимые в воде, называют щелочью . К ним относятся гидроксиды натрия (NaOH), гидроксид калия (KOH), лития (LiOH), иногда к их числу прибавляют и гидроксид кальция (Ca(OH) 2)), хотя на самом деле - это малорастворимое вещество белого цвета (гашенная известь).

Получение оснований

Получение оснований и щелочей может производиться различными способами. Для получения щелочи можно использовать химическое взаимодействие металла с водой. Такие реакции протекают с очень большим выделением тепла, вплоть до воспламенения (воспламенение происходит по причине выделения водорода в процессе реакции).

2Na + 2H 2 O → 2NaOH + H 2

Негашенная известь - CaO

CaO + H 2 O → Ca(OH) 2

Но в промышленности эти методы не нашли практического значения, конечно кроме получения гидроксида кальция Ca(OH) 2 . Получение гидроксида натрия и гидроксида калия связано с использованием электрического тока. При электролизе водного раствора хлорида натрия или калия на катоде выделяются водород, а на аноде - хлор , при этом в растворе, где происходит электролиз, накапливается щелочь !

KCl + 2H 2 O →2KOH + H 2 + Cl 2 (эта реакция проходит при пропускании электрического тока через раствор).

Нерастворимые основания осаждают щелочами из растворов соответствующих солей.

CuSO 4 + 2NaOH → Cu(OH) 2 + Na 2 SO 4

Свойства оснований

Щелочи устойчивы к нагреванию. Гидроксид натрия можно расплавить и расплав довести до кипения, при этом он разлагаться не будет. Щелочи легко вступают в реакцию с кислотами, в результате которого образуется соль и вода. Эта реакция ещё носит название - реакция нейтрализации

KOH + HCl → KCl + H 2 O

Щёлочи взаимодействуют с кислотными оксидами, в результате которой образуется соль и вода.

2NaOH + CO 2 → Na 2 CO 3 + H 2 O

Нерастворимые основания , в отличии от щелочей, термически не стойкие вещества. Некоторые из них, например, гидроксид меди , разлагаются при нагревании,

Cu(OH) 2 + CuO → H 2 O
другие - даже при комнатной температуре (например, гидроксид серебра - AgOH).

Нерастворимые основания взаимодействуют с кислотами, реакция происходит лишь в том случае, если соль, которая образуется при реакции, растворяется в воде.

Cu(OH) 2 + 2HCl → CuCl 2 + 2H 2 O

Растворение щелочного металла в воде с изменение цвета индикатора на ярко-красный

Щелочные металлы - такие металлы, которые при взаимодействии с водой образуют щелочь . К типичному представителю щелочных металлов относится натрий Na. Натрий легче воды, поэтому его химическая реакция с водой происходит на её поверхности. Активно растворяясь в воде, натрий вытесняет из неё водород, при этом образуя натриевую щелочь (или гидроксид натрия) - едкий натр NaOH. Реакция протекает следующим образом:

2Na + 2H 2 O → 2NaOH + H 2

Подобным образом ведут себя все щелочные металлы. Если перед началом реакцией в воду добавить индикатор фенолфталеин, а затем опустить в воду кусочек натрия, то натрий будет скользить по воде, оставляя за собой ярко розовый след образовавшейся щелочи (щелочь окрашивает фенолфталеин в розовый цвет)

Гидроксид железа

Гидроксид железа является основанием. Железо, в зависимости от степени его окисления, образует два разных основания: гидроксид железа, где железо может иметь валентности (II) - Fe(OH) 2 и (III) - Fe(OH) 3 . Как и основания, образованные большинством металлов, оба основания железа не растворимы в воде.


Гидроксид железа (II) - белое студенистое вещество (осадок в растворе), которое обладает сильными восстановительными свойствами. К тому же, гидроксид железа (II) очень не стойкий. Если к раствору гидроксида железа (II) добавить немного щёлочи, то выпадет зелёный осадок, который достаточно быстро темнеет о превращается в бурый осадок железа (III).

Гидроксид железа (III) имеет амфотерные свойства, но кислотные свойства у него выражены значительно слабее. Получить гидроксид железа (III) можно в результате химической реакции обмена между солью железа и щёлочью. Например

Fe 2 (SO 4) 3 + 6 NaOH → 3 Na 2 SO 4 +2 Fe(OH) 3

Основания представляют собой сложные соединения, включающие два основных структурных компонента:

  1. Гидроксогруппа (одна или несколько). Отсюда, кстати и второе название этих веществ - «гидроксиды».
  2. Атом металла или ион аммония (NH4+).

Название оснований происходит из объединения наименований обоих его компонентов: например, гидроксид кальция, гидроксид меди, гидроксид серебра и т. д.

Единственным исключением из общего правила образования оснований следует считать когда гидроксогруппа присоединяется не к металлу, а к катиону аммония (NH4+). Это вещество образуется в том случае, когда происходит растворение в воде аммиака.

Если говорить о свойствах оснований, то сразу следует отметить, что валентность гидроксогруппы равна единице, соответственно, количество этих групп в молекуле будет напрямую зависеть от того, какой валентностью обладают вступающие в реакцию металлы. Примерами в данном случае могут служить формулы таких веществ, как NaOH, Al(OH)3, Ca(OH)2.

Химические свойства оснований проявляются в их реакциях с кислотами, солями, другими основаниями, а также в их действии на индикаторы. В частности, щелочи можно определить, если воздействовать их раствором на определенный индикатор. В этом случае он заметно поменяет свою окраску: например, из белой станет синей, а фенолфталеин - малиновым.

Химические свойства оснований, проявляясь в их взаимодействии с кислотами, приводят к знаменитым реакциям нейтрализации. Суть такой реакции в том, что атомы металла, присоединяясь к кислотному остатку, образуют соль, а гидроксогруппа и ион водорода, соединяясь, превращаются в воду. Реакцией нейтрализации эта реакция называется потому, что после нее не остается ни щелочи, ни кислоты.

Характерные химические свойства оснований проявляются и в их реакции с солями. При этом стоит отметить, что с растворимыми солями в реакцию вступают только щелочи. Особенности строения этих веществ приводят к тому, что в результате реакции образуется новая соль и новое, чаще всего нерастворимое, основание.

Наконец, химические свойства оснований прекрасно проявляют себя во время термического воздействия на них - нагревания. Здесь, осуществляя те или иные опыты, стоит иметь в виду, что практически все основания, за исключением щелочей, при нагревании ведут себя крайне неустойчиво. Подавляющее их большинство почти мгновенно распадается на соответствующий оксид и воду. А если взять основания таких металлов, как серебро и ртуть, то в нормальных условиях они не могут быть получены, так как начинают распадаться уже при комнатной температуре.

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH) 2 . Однако существуют исключения. Так, гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH) 2 , Be(OH) 2 , Pb(OH) 2 , Sn(OH) 2 . Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH) 2 могут образовывать основные соли при недостатке кислоты, например:

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P 2 O 5 , SO 3 , N 2 O 5 , с образованием средних соле1:

Нерастворимые основания вида Me(OH) 2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na образуется соль Na 3 :

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH) 2 , устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH) 2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000 o C:

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 o C:

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с сильными кислотами:

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3, не реагируют с такими кислотами, как H 2 S, H 2 SO 3 и H 2 СO 3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO 3 , P 2 O 5 , N 2 O 5):

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH) 3 , не реагируют с кислотными оксидами SO 2 и СO 2 .

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду.

После прочтения статьи Вы сможете разделять вещества на соли, кислоты и основания. В статье описано, что такое pH раствора, какими общими свойствами обладают кислоты и основания.

Как металлы и неметаллы, кислоты и основания - это разделение веществ по схожим свойствам. Первая теория кислот и оснований принадлежала швецкому учёному Аррениусу. Кислота по Аррениусу - это класс веществ, которые в реакции с водой диссоциируют (распадаются), образовывая катион водорода H + . Основания Аррениуса в водном растворе образуют анионы OH - . Следующая теория в 1923 году была предложена учёными Бренстедом и Лоури. Теория Бренстеда-Лоури определяет кислотами вещества, способные в реакции отдавать протон (протоном в реакциях называют катион водорода). Основания, соответственно, - это вещества, способные принять протон в реакции. Актуальная на данный момент теория - теория Льюиса. Теория Льюиса определяет кислоты как молекулы или ионы, способные принимать электронные пары, тем самым формируя аддукты Льюиса (аддукт - это соединение, образующееся соединением двух реагентов без образования побочных продуктов).

В неорганической химии, как правило, под кислотой имеют ввиду кислоту Бренстеда-Лоури, то есть вещества, способные отдать протон. Если имеют ввиду определение кислоты по Льюису, то в тексте такую кислоту называют кислотой Льюиса. Данные правила справедливы для кислот и оснований.

Диссоциация

Диссоциация – это процесс распада вещества на ионы в растворах или расплавах. Например, диссоциация соляной кислоты - это распад HCl на H + и Cl - .

Свойства кислот и оснований

Основания, как правило, мыльные на ощупь, кислоты, в большинстве своём, имеют кислый вкус.

При реакции основания со многими катионами формируется осадок. При реакции кислоты с анионами, как правило, выделяется газ.

Часто используемые кислоты:
H 2 O, H 3 O + , CH 3 CO 2 H, H 2 SO 4 , HSO 4 − , HCl, CH 3 OH, NH 3
Часто используемые основания:
OH − , H 2 O, CH 3 CO 2 − , HSO 4 − , SO 4 2− , Cl −

Сильные и слабые кислоты и основания

Сильные кислоты

Такие кислоты, которые полностью диссоциируют в воде, производя катионы водорода H + и анионы. Пример сильной кислоты - соляная кислота HCl:

HCl (р-р) + H 2 O (ж) → H 3 O + (р-р) + Cl - (р-р)

Примеры сильных кислот: HCl, HBr, HF, HNO 3 , H 2 SO 4 , HClO 4

Список сильных кислот

  • HCl - соляная кислота
  • HBr - бромоводород
  • HI - йодоводород
  • HNO 3 - азотная кислота
  • HClO 4 - хлорная кислота
  • H 2 SO 4 - серная кислота

Слабые кислоты

Растворяются в воде только частично, например, HF:

HF (р-р) + H2O (ж) → H3O + (р-р) + F - (р-р) - в такой реакции более 90% кислоты не диссоциирует:
= < 0,01M для вещества 0,1М

Сильную и слабую кислоту можно различить измеряя проводимость растворов: проводимость зависит от количества ионов, чем сильнее кислота тем она более диссоциирована, поэтому чем сильнее кислота тем выше проводимость.

Список слабых кислот

  • HF фтороводородная
  • H 3 PO 4 фосфорная
  • H 2 SO 3 сернистая
  • H 2 S сероводородная
  • H 2 CO 3 угольная
  • H 2 SiO 3 кремниевая

Сильные основания

Сильные основания полностью диссоциируют в воде:

NaOH (р-р) + H 2 O ↔ NH 4

К сильным основаниям относятся гидроксиды металлов первой (алкалины, щелочные металы) и второй (алкалинотеррены, щёлочноземельные металлы) группы.

Список сильных оснований

  • NaOH гидроксид натрия (едкий натр)
  • KOH гидроксид калия (едкое кали)
  • LiOH гидроксид лития
  • Ba(OH) 2 гидроксид бария
  • Ca(OH) 2 гидроксид кальция (гашеная известь)

Слабые основания

В обратимой реакции в присутствии воды образует ионы OH - :

NH 3 (р-р) + H 2 O ↔ NH + 4 (р-р) + OH - (р-р)

Большинство слабых оснований - это анионы:

F - (р-р) + H 2 O ↔ HF (р-р) + OH - (р-р)

Список слабых оснований

  • Mg(OH) 2 гидроксид магния
  • Fe(OH) 2 гидроксид железа (II)
  • Zn(OH) 2 гидроксид цинка
  • NH 4 OH гидроксид аммония
  • Fe(OH) 3 гидроксид железа (III)

Реакции кислот и оснований

Сильная кислота и сильное основание

Такая реакция называется нейтрализацией: при количестве реагентов достаточном для полной диссоциации кислоты и основания, результирующий раствор будет нейтральным.

Пример:
H 3 O + + OH - ↔ 2H 2 O

Слабое основание и слабая кислота

Общий вид реакции:
Слабое основание (р-р) + H 2 O ↔ Слабая кислота (р-р) + OH - (р-р)

Сильное основание и слабая кислота

Основание полностью диссоциирует, кислота диссоциирует частично, результирующий раствор имеет слабые свойства основания:

HX (р-р) + OH - (р-р) ↔ H 2 O + X - (р-р)

Сильная кислота и слабое основание

Кислота полностью диссоциирует, основание диссоциирует не полностью:

Диссоциация воды

Диссоциация - это распад вещества на составляющие молекулы. Свойства кислоты или основания зависят от равновесия, которое присутствует в воде:

H 2 O + H 2 O ↔ H 3 O + (р-р) + OH - (р-р)
K c = / 2
Константа равновесия воды при t=25°: K c = 1.83⋅10 -6 , также имеет место следующее равенство: = 10 -14 , что называется константой диссоциации воды. Для чистой воды = = 10 -7 , откуда -lg = 7.0.

Данная величина (-lg) называется pH - потенциал водорода. Если pH < 7, то вещество имеет кислотные свойства, если pH > 7, то вещество имеет основные свойства.

Способы определения pH

Инструментальный метод

Специальный прибор pH-метр - устройство, трансформирующее концентрацию протонов в растворе в электрический сигнал.

Индикаторы

Вещество, которое изменяет цвет в некотором интервале значений pH в зависимости от кислотности раствора, используя несколько индикаторов можно добиться достаточно точного результата.

Соль

Соль - это ионное соединение образованное катионом отличным от H + и анионом отличным от O 2- . В слабом водном растворе соли полностью диссоциируют.

Что бы определить кислотно-щелочные свойства раствора соли , необходимо определить, какие ионы присутствуют в растворе и рассмотреть их свойства: нейтральные ионы, образованные из сильных кислот и оснований не влияют на pH: не отдают ионы ни H + , ни OH - в воде. Например, Cl - , NO - 3 , SO 2- 4 , Li + , Na + , K + .

Анионы, образованные из слабых кислот, проявляют щелочные свойства (F - , CH 3 COO - , CO 2- 3), катионов с щелочными свойствами не существует.

Все катионы кроме металлов первой и второй группы имеют кислотные свойства.

Буфферный раствор

Растворы, которые сохраняют уровень pH при добавлении небольшого количества сильной кислоты или сильного основания, в основном состоят из:

  • Смесь слабой кислоты, соответствующей соли и слабого основания
  • Слабое основание, соответствующая соль и сильная кислота

Для подготовки буфферного раствора определённой кислотности необходимо смешать слабую кислоту или основание с соответствующей солью, при этом необходимо учесть:

  • Интервал pH в котором буфферный раствор будет эффективен
  • Ёмкость раствора - количество сильной кислоты или сильного основания, которые можно добавить не повлияв на pH раствора
  • Не должно происходить нежелаемых реакций, которые могут изменить состав раствор

Тест:

Основания, амфотерные гидроксиды

Основания - это сложные вещества, состоя­щие из атомов металла и одной или нескольких гидроксогрупп (-OH). Общая формула Me +y (OH) y , где у - число гидроксогрупп, равное степени окисления металла Me. В таблице представлена классификация осно­ваний.


Свойства щелочей гидроксидов щелочных и щелочноземельных металлов

1. Водные растворы щелочей мылкие на ощупь, изменяют окраску индикаторов: лакмуса - в синий цвет, фенолфталеина - в малиновый.

2. Водные растворы диссоциируют:

3. Взаимодействуют с кислотами, вступая в реак­цию обмена:

Многокислотные основания могут давать сред­ние и основные соли:

4. Взаимодействуют с кислотными оксидами, об­разуя средние и кислые соли в зависимости от основности кислоты, соответствующей этому оксиду:

5. Взаимодействуют с амфотерными оксидами и гидроксидами:

а) сплавление:

б) в растворах:

6. Взаимодействуют с растворимыми в воде соля­ми, если образуется осадок или газ:

Нерастворимые основания (Cr(OH) 2 , Mn(OH) 2 и др.) взаимодействуют с кислотами и разлага­ются при нагревании:

Амфотерные гидроксиды

Амфотерными называют соединения, которые в зависимости от условий могут быть как доно­рами катионов водорода и проявлять кислотные свойства, так и их акцепторами, т. е. проявлять основные свойства.

Химические свойства амфотерных соединений

1. Взаимодействуя с сильными кислотами, они об­наруживают основные свойства:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

2. Взаимодействуя со щелочами - сильными ос­нованиями, они обнаруживают кислотные свой­ства:

Zn(OH) 2 + 2NaOH = Na 2 ( комплексная соль)

Al(OH) 3 + NaOH = Na ( комплексная соль)

Комплексными называют соединения, в кото­рых хотя бы одна ковалентная связь образовалась по донорно-акцепторному механизму.


Общий метод получения оснований бази­руется на реакциях обмена, с помощью которых могут быть полу­чены как нерастворимые, так и растворимые основания.

CuSО 4 + 2КОН = Cu(OH) 2 ↓ + K 2 SО 4

К 2 СО 3 + Ва(ОН) 2 = 2 КОН + BaCO 3 ↓

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих ам­фотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например:

АlСl 3 + 4КОН = К[Аl(ОН) 4 ] + 3КСl

В подобных случаях для получения гидроксидов используют гид­роксид аммония, в котором амфотерные гидроксиды не растворяются:

АlСl 3 + 3NH 3 + ЗН 2 О = Аl(ОН) 3 ↓ + 3NH 4 Cl

Гидроксиды серебра и ртути настолько легко разлагаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNО 3 + 2КОН = Ag 2 О↓ + Н 2 О + 2KNO 3

В промышленности щелочи обычно получают электролизом вод­ных растворов хлоридов.

2NaCl + 2Н 2 О → ϟ → 2NaOH + H 2 + Cl 2

Щелочи можно также получить взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой.

2Li + 2Н 2 О = 2LiOH + Н 2

SrO + Н 2 О = Sr(OH) 2


Кислоты

Кислотами называются сложные вещества, мо­лекулы которых состоят из атомов водорода, спо­собных замещаться на атомы металла, и кислот­ных остатков. При обычных условиях кислоты могут быть тверды­ми (фосфорная H 3 PO 4 ; крем­ниевая H 2 SiO 3) и жидкими (в чистом виде жидкостью будет серная кислота H 2 SO 4).

Такие газы, как хлороводород HCl, бромоводо­род HBr, сероводород H 2 S, в водных растворах об­разуют соответствующие кислоты. Числом ионов водорода, образуемых каждой молекулой кислоты при диссоциации, определяет­ся заряд кислотного остатка (аниона) и основность кислоты.

Согласно протолитической теории кислот и оснований, предло­женной одновременно датским химиком Брёнстедом и английским химиком Лоури, кислотой называют вещество, отщепляющее при данной реакции протоны, а основанием - вещество, способное при­нимать протоны.

кислота → основание + Н +

На основе таких представлений понятны основные свойства ам­миака, который благодаря наличию неподеленной электронной пары при атоме азота эффективно принимает протон при взаимо­действии с кислотами, образуя ион аммония посредством донорно­акцепторной связи.

HNO 3 + NH 3 ⇆ NH 4 + + NO 3 —

кислота основание кислота основание

Более общее определение кислот и оснований предложил амери­канский химик Г. Льюис. Он предположил, что кислотно-основные взаимодействия совсем не обязательно происходят с переносом про тона. В определении кислот и оснований по Льюису основная роль в химических реакциях отводится электронным парам.

Катионы, анионы или нейтральные молекулы, способные принять одну или несколько пар электронов, называют кислотами Льюиса.

Так, например, фторид алюминия AlF 3 - это кислота, так как он способен принимать электронную пару при взаимодействии с аммиаком.

AlF 3 + :NH 3 ⇆ :

Катионы, анионы или нейтральные молекулы, способные отда­вать электронные пары, называют основаниями Льюиса (аммиак - основание).

Определение Льюиса охватывает все кислотно-основные про­цессы, которые рассматривались ранее предложенными теориями. В таблице сопоставлены определения кислот и оснований, ис­пользуемые в настоящее время.

Номенклатура кислот

Поскольку существуют разные определения кислот, их классификация и номенклатура до­вольно условны.

По числу атомов водорода, способных к отщеплению в водном растворе, кислоты делят на одноосновные (например, HF, HNO 2), двухосновные (H 2 CO 3 , H 2 SO 4) и трехосновные (Н 3 РO 4).

По составу кислоты делят на бескислородные (НСl, H 2 S) и кисло­родсодержащие (НСlO 4 , HNO 3).

Обычно названия кислородсодержащих кислот производятся от названия неметалла с прибавлением окончаний -кая, -вая, если сте­пень окисления неметалла равна номеру группы. По мере понижения степени окисления суффиксы меняются (в порядке уменьшения сте­пени окисления металла): -оватая, истая, -оватистая:




Если рассмотреть полярность связи водород-неметалл в пределах периода, легко можно связать полярность этой связи с положени­ем элемента в Периодической системе. От атомов металлов, легко теряющих валентные электроны, атомы водорода принимают эти электроны, образуя устойчивую двухэлектронную оболочку типа оболочки атома гелия, и дают ионные гидриды металлов.

В водородных соединениях элементов III-IV групп Периодиче­ской системы бора, алюминия, углерода, кремния образуют кова­лентные, слабополярные связи с атомами водорода, не склонные к диссоциации. Для элементов V-VII групп Периодической системы в пределах периода полярность связи неметалл-водород увеличи­вается с зарядом атома, но распределение зарядов в возникающем диполе иное, чем в водородных соединениях элементов, склонных отдавать электроны. Атомы неметаллов, у которых для завершения электронной оболочки необходимо несколько электронов, оттяги­вают к себе (поляризуют) пару электронов связи тем сильнее, чем больше заряд ядра. Поэтому в рядах СН 4 - NH 3 - Н 2 O - HF или SiH 4 - PH 3 - H 2 S - НСl связи с атомами водорода, оставаясь кова­лентными, приобретают более полярный характер, а атом водорода в диполе связи элемент-водород становится более электроположи­тельным. Если полярные молекулы оказываются в полярном рас­творителе, может происходить процесс электролитической диссо­циации.

Обсудим поведение кислородсодержащих кислот в водных рас­творах. У этих кислот имеется связь Н-О-Э и, естественно, на по­лярность связи Н-О влияет связь О-Э. Поэтому эти кислоты диссо­циируют, как правило, легче, чем вода.

H 2 SO 3 + H 2 O ⇆ H з O + + HSO 3

HNO 3 + H 2 O ⇆ H з O + + NO 3

На нескольких примерах рассмотрим свойства кислородсодержа­щих кислот, образованных элементами, которые способны прояв­лять разную степень окисления. Известно, что хлорноватистая кис­лота НСlO очень слабая, хлористая кислота НСlO 2 также слабая, но сильнее хлорноватистой, хлорноватая кислота НСlO 3 сильная. Хлор­ная кислота НСlO 4 - одна из самых сильных неорганических кислот.


Для диссоциации по кислотному типу (с отщеплением иона Н) необходим разрыв связи О-Н. Как можно объяснить уменьшение прочности этой связи в ряду НСlO - НСlO 2 - НСlO 3 - НСClO 4 ? В этом ряду увеличивается число атомов кислорода, связанных с цен­тральным атомом хлора. Каждый раз, когда образуется новая связь кислорода с хлором, от атома хлора, а следовательно, и от одинар­ной связи О-Cl оттягивается электронная плотность. В результате электронная плотность частично уходит и от связи О-Н, которая из- за этого ослабляется.

Такая закономерность - усиление кислотных свойств с возрас танием степени окисления центрального атома - характерна не только для хлора, но и для других элементов. Например, азотная кис­лота HNO 3 , в которой степень окисления азота +5, более сильная, чем азотистая кислота HNO 2 (степень окисления азота +3); серная кислота H 2 SO 4 (S +6) более сильная, чем сернистая кислота H 2 SO 3 (S +4).

Получение кислот

1. Бескислородные кислоты могут быть полу­чены при непосредственном соединении неметаллов с водородом .

Н 2 + Сl 2 → 2НСl,

H 2 + S ⇆ H 2 S

2. Некоторые кислородсодержащие кислоты могут быть получе­ны взаимодействием кислотных оксидов с водой .

3. Как бескислородные, так и кислородсодержащие кислоты мож­но получить по реакциям обмена между солями и другими кислотами.

BaBr 2 + H 2 SO 4 = BaSO 4 ↓ + 2НВr

CuSO 4 + H 2 S = H 2 SO 4 + CuS↓

FeS + H 2 SO 4(pa зб) = H 2 S+FeSO 4

NaCl (T) + H 2 SO 4(конц) = HCl + NaHSO 4

AgNO 3 + HCl = AgCl↓ + HNO 3

CaCO 3 + 2HBr = CaBr 2 + CO 2 + H 2 O

4. Некоторые кислоты могут быть получены с помощью окислительно-восстановительных реакций.

Н 2 O 2 + SO 2 = H 2 SO 4

3Р + 5HNO 3 + 2Н 2 O = ЗН 3 РO 4 + 5NO 2

Кислый вкус, действие на индикаторы, элек­трическая проводимость, взаимодействие с метал­лами, основными и амфотерными оксидами, осно­ваниями и солями, образование сложных эфиров со спиртами - эти свойства являются общими для неорганических и органических кислот.

можно разделить на два типа ре­акций:

1) общие для кислот реакции связаны с образованием в водных рас­творах иона гидроксония Н 3 O + ;

2) специфические (т. е. характерные) реакции конкретных кислот.

Ион водорода может вступать в окислителъно-восстановительные реакции, восстанавливаясь до водорода, а также в реакции соединения с отрицательно заряженными или нейтральными ча­стицами, имеющими неподеленные пары электронов, т. е. в кис­лотно-основные реакции.

К общим свойствам кислот относятся реакции кислот с металла­ми, стоящими в ряду напряжений до водорода, например:

Zn + 2Н + = Zn 2+ + Н 2

К кислотно-основным реакциям относятся реакции с основными оксидами и основаниями, а также со средними, основными, а ино­гда и кислыми солями.

2 CO 3 + 4HBr = 2CuBr 2 + CO 2 + 3Н 2 O

Mg(HCO 3) 2 + 2НСl = MgCl 2 + 2СO 2 + 2Н 2 O

2KHSO 3 + H 2 SO 4 = K 2 SO 4 + 2SO 2 + 2H 2 O

Заметим, что многоосновные кислоты диссоциируют ступенчато, причем на каждой следующей ступени диссоциация проходит труд­нее, поэтому при избытке кислоты чаще всего образуются кислые соли, а не средние.

Са 3 (РO 4) 2 + 4Н 3 РO 4 = 3Са(Н 2 РO 4) 2

Na 2 S + Н 3 РО 4 = Na 2 HPO 4 + H 2 S

NaOH + H 3 PO 4 = NaH 2 PO 4 + Н 2 O

КОН + H 2 S = KHS + Н 2 O

На первый взгляд, может показаться удивительным образование кислых солей одноосновной фтороводородной (плавиковой) кислотой. Однако этот факт можно объяснить. В отличие от всех других галогеноводород­ных кислот плавиковая кислота в растворах частично полимеризована (благодаря образованию водородных связей) и в ней могут при­сутствовать разные частицы (HF) X , а именно H 2 F 2 , H 3 F 3 и т. д.

Частный случай кислотно-основного равновесия - реакции кис­лот и оснований с индикаторами, которые изменяют свою окраску в зависимости от кислотности раствора. Индикаторы использу­ются в качественном анализе для обнаружения кислот и основа­ний в растворах.

Самые часто применяемые индикаторы - лакмус нейтральной среде фиолетовый цвет, в кислой - красный, в щелочной - си­ний), метилоранж кислой среде красный, в нейтральной - оран­жевый, в щелочной - желтый), фенолфталеин сильнощелочной среде малиново-красный, в нейтральной и кислой - бесцветный).

Специфические свойства различных кислот могут быть двух типов: во-первых, реакции, приводящие к образованию нерастворимых солей, и, во-вторых, окислительно-восстановительные превращения. Если реакции, связанные с наличием у них иона Н + , общие для всех кислот (качественные реакции для обнаружения кислот), специфические реакции используются как качественные на отдельные кислоты:

Ag + + Cl — = AgCl (белый осадок)

Ва 2+ + SO 4 2- = BaSO 4(белый осадок)

3Ag + + PO 4 3 — = Ag 3 PO 4(желтый осадок)

Некоторые специфические реакции кислот обусловлены их окис­лительно-восстановительными свойствами.

Бескислородные кислоты в водном растворе могут только окисляться.

2КМnO 4 + 16НСl = 5Сl 2 + 2КСl + 2МnСl 2 + 8Н 2 O

H 2 S + Вг 2 = S + 2НВг

Кислородсодержащие кислоты могут окисляться только в том случае, если центральный атом в них находится в низшей или про­межуточной степени окисления, как, например, в сернистой кисло­те:

H 2 SO 3 + Сl 2 + Н 2 O = H 2 SO 4 + 2НСl

Многие кислородсодержащие кислоты, в которых центральный атом имеет максимальную степень окисления (S +6 , N +5 , Сг +6), прояв­ляют свойства сильных окислителей. Концентрированная H 2 SO 4 - сильный окислитель.

Сu + 2H 2 SO 4(конц) = CuSO 4 + SO 2 + 2Н 2 O

Pb + 4HNO 3 = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

C + 2H 2 SO 4(конц) = CO 2 + 2SO 2 + 2H 2 O

Следует запомнить, что:

  • Растворы кислот реагируют с металлами, стоящими в электрохимическом ряду напряже­ний левее водорода, при соблюдении ряда усло­вий, важнейшим из которых является образование в результате реакции растворимой соли. Взаимо­действие HNO 3 и Н 2 SO 4 (конц.) с металлами проте­кает иначе.

Концентрированная серная кислота на холоде пассивирует алюминий, железо, хром.

  • В воде кислоты диссоциируют на катионы водорода и анионы кислотных остатков, например:


  • Неорганические и органические кислоты взаимодействуют с основными и амфотерными оксидами при условии, что образуется раствори­мая соль:
  • И те, и другие кислоты вступают в реакцию с основаниями. Многоосновные кислоты могут об­разовывать как средние, так и кислые соли (это реакции нейтрализации):

  • Реакция между кислотами и солями идет только в том случае, если образуется осадок или газ:


Взаимодействие H 3 PO 4 с известняком прекра­тится из-за образования на поверхности последнего нерастворимого осадка Ca 3 (PO 4) 2 .

Особенности свойств азотной HNO 3 и концен­трированной серной H 2 SO 4 (конц.) кислот обуслов­лены тем, что при их взаимодействии с простыми веществами (металлами и неметаллами) окислите­лями будут выступать не катионы H + , а нитрат- и сульфат-ионы. Логично ожидать, что в резуль­тате таких реакций образуется не водород H 2 , а получаются другие вещества: обязательно соль и вода, а также один из продуктов восстановле­ния нитрат- или сульфат-ионов в зависимости от концентрации кислот, положения металла в ряду напряжений и условий реакции (температуры, сте­пени измельченности металла и т. д.).

Эти особенности химического поведения HNO 3 и H 2 SO 4 (конц.) наглядно иллюстрируют тезис те­ории химического строения о взаимном влиянии атомов в молекулах веществ.


Часто путают понятия летучесть и устойчи­вость (стабильность). Летучими называют кисло­ты, молекулы которых легко переходят в газо­образное состояние, то есть испаряются. Например, соляная кислота является летучей, но устойчивой, стабильной кислотой. О летучести нестабильных кислот судить нельзя. На­пример, нелетучая, нераство­римая кремниевая кислота разлагается на воду и SiO 2 . Водные растворы соляной, азотной, серной, фосфорной и ряда других кислот не име­ют окраски. Водный раствор хромовой кислоты H 2 CrO 4 имеет желтую окраску, марганцевой кислоты HMnO 4 - малиновую.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости



Понравилась статья? Поделитесь ей
Наверх