Белки, жиры, углеводы. Справка. Зачем нужны белки, жиры и углеводы

1.В органах пищеварения не расщепляются А – углеводы Б – води и минеральные соли В – жиры Г – белки 2. Белки расщепля

А – пищеводе

Б – ротовой полости

В – печени

Г – желудке, кишечнике

3. Конечный продукт обмена белков

А – аминокислоты

Б – углеводы

В – мочевина

Г – кислород

4. Процессы окисления органических веществ с освобождением энергии протекают в

А – хлоропластах

Б – митохондриях

Г – рибосомах

5. В организме невосполним недостаток

Б – углеводов

В – белков

Г – глюкозы

6. Пластический обмен это –

А – синтез органических веществ из неорганических

Б – окисление органических веществ

В – синтез минеральных веществ

Г – окисление минеральных веществ

7. С энергетическим обменом связано

А – накопление органических веществ

Б – поступление кислорода в организм

В – образование органических веществ

Г – выделение кислорода

8. Люди не могут обходится только растительной пищей, так как

А – в ней мало углеводов

Б – в ней нет жиров

В – в ней нет белков

Г – растений не содержат всех необходимых аминокислот

9. Много витамина С содержится в

А – семенах бобовых растений

Б – печени

В – плодах шиповника

Г – рыбьем жире

10. при недостатке витамина с развивается

А – цинга

Б – «куриная слепота»

В – расстройства деятельности нервной системы

Г – рахит

11. При недостатке витамина В1 развивается

А – цинга

Б – расстройство деятельности нервной системы

В – рахит

Г – «куриная слепота»

12. Конечные продукты распада удаляются из организма

А – только через почки

Б – только через легкие

В – только через кожу

Г – через легкие, почки, кожу

13. Передачу нервного импульса по нервным волокнам обеспечивает энергия

А – механическая

Б – электрическая

В – световая

Г – химическая

14. Люди, ведущие малоподвижный образ жизни, должны больше потреблять

В – мясной пищи

Г – продуктов, богатых клетчаткой

15. Под влиянием солнечных лучей в коже человека может образоваться витамин

16. Дети реже болеют рахитом летом, чем зимой, так как под влиянием солнца образуется витамин

17. Глюкоза откладывается в запас в виде гликогена, так как

А – он не растворим в воде

Б – он растворим в воде

В – его молекулы очень мелкие

Г – его молекулы очень большие

1.Что такое пищеварение? а) предварительная обработка пищи; б) механическая обработка пищи; в) механическая и химическая обработка пищи. 2.Какое

значение для организма имеет пища? а) строительная функция; б) энергетическая функция; в) строительная и энергетическая функция. 3.Где вырабатывается желчь? а) в печени; б) в поджелудочной железе; в) в желудке. 4.К инфекционным заболеваниям кишечника относят? а) цирроз печени; б) гастрит; в) дизентерию. 5.Где начинается процесс пищеварения? а) в кишечнике; б) в ротовой полости; в) в желудке. 6.Как называется мягкая часть в центре зуба? а) эмаль; б) пульпа; в) дентин. 7.Где располагается центр глотания? а) в продолговатом мозге; б) в больших полушариях; в) в промежуточном мозге. 8.Пищеварительная система состоит: а) из органов, образующих пищеварительный канал; б) из органов, образующих пищеварительный канал, и пищеварительных желез; в) из органов пищеварения и выделения. 9.Ученый, изучавший работу пищеварительной системы: а) И.П. Павлов; б) И.М. Сеченов; в) И.И. Мечников. 10. Источником заболевания глистовыми заболеваниями может быть: а) недоваренная рыба, плохо прожаренная; б) недоброкачественная рыба; в) несвежие продукты. 11. Где происходит расщепление некоторых белков и молочного жира? а) в желудке; б) в тонком кишечнике; в) в 12-ти – перстной кишке. 12. Где вырабатывается обеззараживающее вещество – лизоцим? а) в слюнных железах; б) в желудочных железах; в) в кишечных железах. 13. Функция ферментов слюнных желез – это: а) расщепление сложных углеводов; б) расщепление жиров; в) расщепление белков. 14. Где завершается расщепление питательных веществ? а) в желудке; б) в тонком кишечнике; в) в толстом кишечнике. 15. Какова функция ферментов кишечных железок? а) расщепление белков, жиров и углеводов; б) дробление жиров на капельки; в) всасывание продуктов расщепления. 16. Где происходит всасывание воды? а) в желудке; б) в тонком кишечнике; в) в толстом кишечнике. 17. Функция нервной ткани в стенках кишечника: а) волнообразное сокращение мышц; б) вырабатывает ферменты; в) проводит пищу. 18. Какова причина слюноотделения? а) рефлекс; б) измельчение пищи; в) наличие пищи. 19. Какие условия необходимы для расщепления белков в желудке? а) кислая среда, наличие ферментов, t = 370; б) щелочная среда, ферменты, t = 370 в) слабо-щелочная среда, наличие ферментов, t = 370. 20. В каком отделе пищеварительного тракта всасывается алкоголь? а) в тонком кишечнике; б) в толстом кишечнике; в) в желудке. 21. Почему ранки в полости рта быстро заживают? а) из-за слабощелочной среды; б) из-за фермента лизоцима; в) из-за слюны. 22. За счет чего происходит всасывание веществ в тонком кишечнике? а) длинная; б) тонкая кишка ворсистая; в) много ферментов в тонкой кишке. 23. Почему физиологи печень называют продовольственным складом? а) вырабатывается желчь и хранится; б) регулирует обмен белков, жиров, углеводов; в) превращается глюкоза в гликоген и хранится. 24. Какой фермент желудочного сока является основным и какие вещества он расщепляет? а) амилоза, расщепляет белки и углеводы; б) пепсин, расщепляет белки и молочный жир; в) мальтоза, расщепляет жиры и углеводы. 25. Почему не перевариваются стенки желудка? а) толстый мышечный слой; б) толстая слизистая оболочка; в) большое обилие слизи. 26. Отделение желудочного сока действием пищи в ротовой полости является: а) безусловным сокоотделительным рефлексом; б) условным рефлексом; в) гуморальной регуляцией. 27. Где обитает бактерия кишечная палочка, назовите ее значение. а) в тонкой кишке, помогают расщеплению углеводов; б) в толстой кишке, расщепляет клетчатку; в) в слепой кишке, вызывает заболевание аппендицит. 28. Почему физиологи образно называют печень «химической лабораторией»? а) обезвреживаются вредные вещества; б) образуется желчь; в) вырабатываются ферменты. 29. Каково значение желчи в процессе пищеварения? а) расщепляются белки, жиры и углеводы; б) обезвреживает ядовитые вещества; в) дробление жиров на капельки. 30. В чем выражается соответствие строения пищевода его функции? а) стенки мускулистые, мягкие и слизистые; б) стенки плотные, хрящевые; в) стенки плотные, наличие соединительной ткани, внутри слизистая.

1) хлеб, молоко, овощи, фрукты относятся к...а белки, жиры, углеводы-к..??

2) Пищевые белки, жиры и углеводы не могут быть сразу усвоенными организмом из-за...реакции??
3) крахмал ферментами слюны разлагается до...Белок ферментами желудочного сока и поджелудочной железы разлагается до....
4) коронка зуба покрыта, ..под ней расположен....а внутри зуба находится...?
5) печень в двенадцатипёрстную кишку выделяет....её избыток запасается в...?
6) в плохо проваренном и прожаренном мясе могут оказаться живыми....если мясо не проходило досмотр ветеринарной службы?

заполните пожалуйста пропуски

1)Слой кожи,где образуются волосы и ногти

2)Витамин образующийся в коже под влиянием ультрафиолетовых лучей
3)Наружный слой кожи
4)Органы,выделяющие тепло во внешнюю среду
5)Эпидермис состоит
6)При высокой температуре кровеносные сосуды в коже
7)название внутреннего слоя эпидермиса
8)Сухость и трещины кожи наблюдаются при недостатке витамина
9)Жиры откладываются в запас
10)Сетчатый слой дермы выполняет роль
11)Дерма образуется из
12)Кожный врач
13)Название среднего слоя кожи
14)Температура тела человека в норме
15)Слой кожи,который содержит много жировых включений
16)название наружного слоя эпидермиса
17)железа,проток которой открывается в волосяной мешочек
18)железы,чаще встречающиеся на коже головы и лица
19)кожные железы с внешней секрецией
20)кожная железа,выделяющая питательное вещество
21)количество тепла,выделяемое кожей за сутки

Помогите пожалуйста!

1.Наука изучающая клетки называется:
А) Генетика;
Б) Селекция;
В) экология;
В) Цитология.
2. Органические вещества клетки:
А) Вода, минеральные вещества, жиры;
Б) Углеводы, липиды, белки, нуклеиновые кислоты;
В) Углеводы, минеральные вещества, жиры;
Г) Вода, минеральные вещества, белки.
3. Из всех органических веществ основную массу в клетке составляют:
А) Белки.
Б)Углеводы
В) Жиры
Г) Вода.
4. Замените выделенные слова одним словом:
А) Малые молекулы органических веществ образуют в клетке сложные молекулы.
Б)Постоянные структурные компоненты клетки выполняют жизненно важные для клетки функции.
В) Высокоупорядоченная, полужидкая внутренняя среда клетки обеспечивает химическое взаимодействие всех клеточных структур.
Г)Главный фотосинтезирующий пигмент придаёт зелёную окраску хлоропластам.
5. Накопление и упаковку химических соединений в клеке осуществляют:
А) Митохондрии;
Б) Рибосомы;
В) Лизосомы;
Г) Комплекс Гольджи.
6. Функции внутриклеточного пищеварения выполняют:
А) Митохондрии;
Б) Рибосомы;
В) Лизосомы;
Г) Комплекс Гольджи.
7. «Сборку» полимерной молекулы белка производят:
А) Митохондрии;
Б) Рибосомы;
В) Лизосомы;
Г) Комплекс Гольджи.
8. Совокупность химических реакций в результате которых происходит распад органических веществ и высвобождение энергии называют:
А) Катаболизм;
Б) анаболизм;
В) Метаболизм;
Г) Ассимиляция
9. «Списывание» генетической информации с молекулы ДНК путём создания и-РНК называют:
А) Трансляцией;
Б) Транскрипцией;
В) Биосинтезом;
Г) Гликолизом.
10. Процес образования органических веществ на свету в хлоропластах с использованием воды и углекислого газа называют:
А) Фотосинтезом;
Б) Транскрипцией;
В) Биосинтезом;
Г) Гликолизом.
11. Ферментативный и бескислородный процесс распада органических веществ называют:
А) Фотосинтезом;
Б) Транскрипцией;
В) Биосинтезом;
Г) Гликолизом.
12. Назовите основные положения клеточной теории.

Белки, жиры, углеводы и все остальные нутриенты мы будем рассматривать с точки зрения питания человека, ведущего активный образ жизни, т.е. регулярно тренирующегося. Нам бы хотелось донести до вас что-то новое, а не заниматься перечислением и так всем известных истин. Но какие-то базовые вещи мы не можем опустить ибо будет не понятно, что откуда берётся. И начинаем наш рассказ о белке - самом противоречивом и недооценённом нутриенте.

Белок

Со школьной скамьи нам известна фраза, что "жизнь есть способ существования белковых тел". Т.е. мы с вами и есть те самые белковые тела. Наши волосы, ногти, кожа, внутренние органы и мышцы - всё из белка. Таким образом, белок -главный строительный материал нашего организма. В отличие от жиров и углеводов он не образуются из других веществ и не накапливается в организме. Но белок не только строительный материал клеток, тканей и органов. Он служит основой для создания ферментов, гормонов и других соединений. Особенно необходимо отметить такой фермент, как глутатион, обладающий детоксицирующим действием и являющимся самым распостраненным антиоксидантом в человеческом организме и, возможно, наиболее важным. Не только глюкоза, но и белки- это пища для мозга. Они снабжают аминокислотами нейромедиаторы, которые проводят нервные импульсы в головной мозг человека. Т.е. значение белка для организма человека трудно переценить.

Аминокислоты

Наш организм не может использовать чужеродный белок для строительства собственных клеток. В процессе усвоения белки расщепляются до составляющих их аминокислот, которые используются затем для синтеза белков человека. Все аминокислоты делятся на заменимые, т.е. которые могут быть синтезированы самим организмом, и незаменимые, которые не образуются в организме и обязательно должны поступать с пищей. Идеальным с точки зрения содержания и соотношения аминокислот служит белок яйца и молока. Далеки от идеального растительные белки, имеющие дефицит незаменимых аминокислот. Исключение составляет соевые бобы. Поэтому для вегетарианцев очень важно правильно составлять смесь белков из разных растительных источников, имеющих дефицит различных аминокислот, чтобы составить относительно "здоровую" диету.

Сколько нужно?

Это самый главный вопрос. Хроническая недостаточность белка в пищевом рационе приводит к мышечной дистрофии, малокровию, снижению иммунитета. А избыток- вреден, т.к. ведет к перегрузке печени и почек продуктами распада (пуринами и кетонами). Так сколько же нужно? Ответ на этот вопрос будет таким: потребление белка должно быть АДЕКВАТНО вашему полу, возрасту, физической активности и вашим целям. Например, молодая женщина, ставящая своей целью построение красивой фигуры и избавления от излишнего жира, должна потреблять от 1,6 до 2,2 гр белка на кг. собственного веса. Естественно, такое количество белка должно быть вызвано тренировочным процессом, а не одним желанием "похудеть к лету".Тогда практически весь белок будет утилизироваться в работающих мышцах, т.к. увеличится скорость его преобразования. И его токсическое действие будет нейтрализовано. К тому же организм легко адаптируется к увеличению введения белка.

Вывод

Здоровое питание тренирующегося человека подразумевает включение белка в каждый приём пищи. А приёмов этих должно быть не менее 5-6. Источником белка должны служить постная говядина, куриные грудки (без кожицы), индейка, рыба, яйца, обезжиренные молоко и молочные продукты, сыр 17%, бобовые, соя (особенно для женщин за 45), протеиновые коктейли.

Углеводы

Если белки это строительный материал, "кирпичики", из которых строится наше тело, то это те строители, которые всё возводят. Углеводы главный поставщик энергии в наш организм, причём в самой легкодоступной форме. В комплексе с белками они образуют некоторые гормоны и ферменты, а также биологически важные соединения. Углеводы подразделяются на простые и сложные, усваиваемые и неусваиваемые. К простым углеводам относятся моносахариды (глюкоза, галактоза, фруктоза), состоящие из одного вида сахара; и дисахариды (сахароза, мальтоза, лактоза), содержащие в своём составе 2 вида сахаров. А к сложным углеводам относятся полисахариды (крахмал, гликоген, клетчатка и пектин), состоящие более чем из двух сахаров. Для нас важным является тот факт, что простые углеводы, не требующие долгого усваивания, быстро впитываются в кровь и пополняют потребности организма в энергии. Но если же этих потребностей в организме нет, то более 30% углеводов способно переходить в жиры, в качестве резервного топлива. Именно поэтому простые углеводы надо употреблять перед тренировкой и сразу после. Тогда их энергия пойдет на восполнение затрат организма и не создаст никакой угрозы для талии. И ни в коем случае не употребляйте простые углеводы совместно с жиром (например торт) и особенно на ночь, когда потребности в энергии минимальны. Дело в том, что впитываясь, простые углеводы повышают уровень сахара в крови, на что поджелудочная железа реагирует выбросом инсулина- транспортным гормоном, который прямиком завезёт жир и избыточные сахара в жировые депо. Оно нам надо? Другое дело сложные углеводы. Они долго перевариваются, а значит не провоцируют мгновенный выброс инсулина. Напротив, медленно подпитывают энергией весь организм. Поэтому сложные углеводы - наш выбор. Найти мы их можем в кашах, коричневом рисе, макаронах из твёрдых сортов пшеницы, зерновом хлебе, овощах и бобовых, вареном молодом картофеле.

Жиры

Жиры являются концентратами энергии (они более чем вдвое превосходят белки и углеводы по калорийности). В организме жиры служат для хранения энергии, теплоизоляции, участвуют в водном обмене, обеспечивают перенос жирорастворимых витаминов А, Е, Д, К, входят в состав клеток и используются организмом для построения клеточных мембран. Все делятся на две большие группы- насыщенные и ненасыщенные. Насыщенные это твёрдые животные жиры. При температуре тела насыщенные жиры размягчаются, но не плавятся, и поэтому могут скапливаться на внутренней стенке сосудов, приводя к образованию атеросклеротических бляшек. Ненасыщенные жиры в свою очередь разделяются на две подгруппы- мононенасыщенные и полиненасыщенные. Мононенасыщенные жиры содержаться преимущественно в оливковом масле, авокадо, маслинах. А в полиненасыщенных жирах следует ещё различать Омега-6 (подсолнечное, кукурузное, соевое масла, орехи и семечки) и Омега-3 (рыба, рыбий жир, льняное масло, масло грецкого ореха, масло зародышей пшеницы). Важно отметить, что Омега-3 жирные кислоты относятся к незаменимым, т.е. они организмом не синтезируются (аналогично незаменимым аминокислотам) и должны регулярно поступать в организм с пищей. Ещё существуют жиры, полученные из растительных жиров путём гидрирования, так называемые трансжиры. Гидрогенизированные масла, маргарины, а также кондитерские изделия на их основе (печенье, торты, вафли, чипсы и т.д.) влияют на жировой обмен. В результате повышается уровень "плохого" холестерина и понижается содержание "хорошего". Накапливаются данные о том, что трансжиры оказывают вредное воздействие на рост плода и новорожденных, ухудшают качество грудного молока у кормящих матерей, отрицательно влияют на иммунитет.

Вывод

Здоровое питание подразумевает полный отказ от трансжиров и почти полный отказ от прямого потребления насыщенных (животных) жиров. Их мы в достаточном количестве получаем в скрытой форме (в том же самом оливковом или подсолнечном маслах, а также в молочных и мясных продуктах). Обязательно ежедневное потребление незаменимых Омега-3 жиров в виде рыбьего жира и льняного масла. И тогда вы станете стройными, а ваши кожа и волосы скажут вам спасибо.


16.04.2019 15:56:00
6 способов убрать жир на животе
Многие люди мечтают убрать жир на животе. Почему именно там? Потому что лишние килограммы оседают в первую очередь на животе, портят вид тела и создают опасность для здоровья. Но следующие способы помогут исправить ситуацию!

16.04.2019 15:35:00
12 привычек, которые сокращают жизнь
Многие люди старшего возраста ведут себя как подростки. Они считают себя неуязвимыми и принимают решения, которые вредны для их здоровья. Но какие именно привычки сокращают жизнь? Давайте узнаем вместе!

15.04.2019 22:22:00
Похудеть на 10 кг за 30 дней: 3 правила
Всем хочется похудеть как можно быстрее и как можно больше. Если Вы тоже мечтаете об этом, то предлагаем ознакомиться с 3 правилами, которые позволят похудеть на 10 кг за 30 дней.

15.04.2019 22:10:00
Этот простой коктейль поможет стать стройнее
Скоро лето - нужно готовиться к пляжному сезону. И в этом Вам поможет модный напиток на основе яблочного уксуса. Давайте узнаем, насколько он эффективен и как его нужно пить.

13.04.2019 11:55:00
Быстрое похудение: лучшие советы и способы
Конечно, здоровая потеря веса требует терпения и дисциплины, а жесткие диеты не приносят долговременных результатов. Но иногда нет времени на длительную программу. Чтобы похудение произошло как можно скорее, но без голода, нужно следовать советам и способам в нашей статье!

13.04.2019 11:43:00
ТОП-10 продуктов против целлюлита
Полное отсутствие целлюлита для многих женщин остается несбыточной мечтой. Но это не значит, что надо опустить руки. Следующие 10 продуктов стягивают и укрепляют соединительную ткань – ешь их как можно чаще!

Химические свойства клеток, входящих в состав живых организмов, зависят прежде всего от количества атомов углерода, составляющих до 50% сухой массы. Атомы карбона находятся в главных органических веществах: белках, нуклеиновых кислотах, липидах и углеводах. К последней группе относятся соединения карбона и воды, соответствующие формуле (CH 2 O) n , где n равно или больше трех. Кроме углерода, гидрогена и оксигена, в состав молекул могут входить атомы фосфора, азота, серы. В данной статье мы изучим роль углеводов в организме человека, а также особенности их строения, свойств и функций.

Классификация

Данную группу соединений в биохимии разделяют на три класса: простые сахара (моносахариды), полимерные соединения с гликозидной связью - олигосахариды и биополимеры с большой молекулярной массой - полисахариды. Вещества вышеназванных классов встречаются в различных видах клеток. Например, крахмал и глюкоза имеются в растительных структурах, гликоген - в гепатоцитах человека и клеточных стенках грибов, хитин - в наружном скелете членистоногих. Все вышеперечисленные вещества - это углеводы. Роль углеводов в организме универсальна. Они - основной поставщик энергии для жизненных проявлений бактерий, животных и человека.

Моносахариды

Имеют общую формулу C n H 2 n O n и делятся на группы в зависимости от количества атомов карбона в молекуле: триозы, тетрозы, пентозы и так далее. В составе клеточных органелл и цитоплазме простые сахара имеют две пространственные конфигурации: циклическую и линейную. В первом случае атомы углерода соединяются друг с другом ковалентными сигма-связями и образуют замкнутые циклы, во втором случае углеродный скелет не замкнут и может иметь разветвления. Чтобы определить, какова роль углеводов в организме, рассмотрим наиболее распространенные из них - пентозы и гексозы.

Изомеры: глюкоза и фруктоза

Они имеют одинаковую молекулярную формулу C 6 H 12 O 6 , но различные структурные виды молекул. Ранее мы уже называли главную роль углеводов в живом организме - энергетическую. Вышеназванные вещества расщепляются клеткой. В результате происходит выделение энергии (17,6 кДж из одного грамма глюкозы). Кроме этого, синтезируется 36 молекул АТФ. Распад глюкозы происходит на мембранах (кристах) митохондрий и представляет собой цепь ферментативных реакций - Цикл Кребса. Он является важнейшим звеном диссимиляции, протекающей во всех без исключения клетках гетеротрофных эукариотических организмов.

Глюкоза образуется также в миоцитах млекопитающих вследствие расщепления в мышечной ткани запаса гликогена. В дальнейшем она используется как легко распадающееся вещество, так как обеспечение клеток энергией - это основная роль углеводов в организме. Растения являются фототрофами и самостоятельно образуют глюкозу в процессе фотосинтеза. Эти реакции называются циклом Кальвина. Исходным веществом служит углекислый газ, а акцептором - риболёзодифосфат. Синтез глюкозы происходит в матриксе хлоропластов. Фруктоза, имея такую же молекулярную формулу, как и глюкоза, содержит в молекуле функциональную группу кетонов. Она более сладкая, чем глюкоза, и находится в меде, а также соке ягод и фруктов. Таким образом, биологическая роль углеводов в организме заключается прежде всего в использовании их в качестве быстрого источника получения энергии.

Роль пентоз в наследственности

Остановимся еще на одной группе моносахаридов - рибозе и дезоксирибозе. Их уникальность заключается в том, что они входят в состав полимеров - нуклеиновых кислот. Для всех организмов, включая неклеточные формы жизни, ДНК и РНК являются главными носителями наследственной информации. Рибоза входит в молекулы РНК, а дезоксирибоза содержится в нуклеотидах ДНК. Следовательно, биологическая роль углеводов в организме человека состоит в том, что они участвуют в образовании единиц наследственности - генов и хромосом.

Примерами пентоз, содержащих альдегидную группу и распространенных в растительном мире, являются ксилоза (содержится в стеблях и семенах), альфа-арабиноза (находится в камеди косточковых плодовых деревьев). Таким образом, распространение и биологическая роль углеводов в организме высших растений достаточно велики.

Что такое олигосахариды

Если остатки молекул моносахаридов, например, таких как глюкоза или фруктоза, связаны ковалентными связями, то образуются олигосахариды - полимерные углеводы. Роль углеводов в организме как растений, так и животных разнообразна. Особенно это касается дисахаридов. Наиболее распространены среди них сахароза, лактоза, мальтоза и трегалоза. Так, сахароза, иначе называемая тростниковым или содержится в растениях в виде раствора и запасается в их корнеплодах или стеблях. В результате гидролиза образуются молекулы глюкозы и фруктозы. имеет животное происхождение. У некоторых людей наблюдается непереносимость этого вещества, связанная с гипосекрецией фермента лактазы, который расщепляет молочный сахар на галактозу и глюкозу. Роль углеводов жизнедеятельности организма разнообразна. Например, дисахарид трегалоза, состоящий из двух остатков глюкозы, входит в состав гемолимфы ракообразных, пауков, насекомых. Также он встречается в клетках грибов и некоторых водорослей.

Еще один дисахарид - мальтоза, или солодовый сахар, содержится в зерновках ржи или ячменя при их прорастании, представляет собой молекулу, состоящую из двух остатков глюкозы. Она образуется в результате распада растительного или животного крахмала. В тонком кишечнике человека и млекопитающих мальтоза расщепляется под действием фермента - мальтазы. При его отсутствии в панкреатическом соке возникает патология, обусловленная непереносимостью в продуктах питания гликогена или растительного крахмала. В этом случае используют специальную диету и добавляют в рацион питания сам фермент.

Сложные углеводы в природе

Они распространены очень широко, особенно в растительном мире, являются биополимерами и имеют большую молекулярную массу. Например, в крахмале она равна 800 000, а в целлюлозе - 1 600 000. Полисахариды отличаются между собой составом мономеров, степенью полимеризации, а также длиной цепей. В отличие от простых сахаров и олигосахаридов, которые хорошо растворяются в воде и имеют сладковатый вкус, полисахариды гидрофобны и безвкусны. Рассмотрим роль углеводов в организме человека на примере гликогена - животного крахмала. Он синтезируется из глюкозы и резервируется в гепатоцитах и клетках скелетных мышц, где его содержание в два раза выше, чем в печени. К образованию гликогена способны также подкожная жировая клетчатка, нейроциты и макрофаги. Другой полисахарид - растительный крахмал, является продуктом фотосинтеза и образуется в зеленых пластидах.

С самого начала человеческой цивилизации главными поставщиками крахмала были ценные сельскохозяйственные культуры: рис, картофель, кукуруза. Они до сих пор являются основой пищевого рациона подавляющего большинства жителей Земли. Именно поэтому так ценны углеводы. Роль углеводов в организме состоит, как мы видим, в их применении в качестве энергоемких и быстро усваиваемых органических веществ.

Существует группа полисахаридов, мономерами которых являются остатки гиалуроновой кислоты. Они называются пектинами и являются структурными веществами клеток растений. Особенно богаты ими кожура яблок, жом свеклы. Клеточные вещества пектины регулируют внутриклеточное давление - тургор. В кондитерской промышленности они используются как желеобразующие вещества и загустители при производстве высококачественных сортов зефира и мармелада. В диетическом питании применяются как биологически активные вещества, хорошо выводящие токсины из толстого кишечника.

Что такое гликолипиды

Это интересная группа комплексных соединений углеводов и жиров, находящихся в нервной ткани. Из неё состоит головной и спинной мозг млекопитающих. Гликолипиды встречаются также в составе клеточных мембран. Например, у бактерий они участвуют в Часть этих соединений является антигенами (вещества, выявляющие группы крови системы Ландштейнера АБ0). В клетках животных, растений и человека, кроме гликолипидов, присутствуют и самостоятельные молекулы жиров. Они выполняют прежде всего энергетическую функцию. При расщеплении одного грамма жира выделяется 38,9 кДж энергии. Для липидов характерна также структурная функция (входят в состав клеточных мембран). Таким образом, эти функции выполняют углеводы и жиры. Их роль в организме исключительно велика.

Роль углеводов и липидов в организме

В клетках человека и животных могут наблюдаться взаимные превращения полисахаридов и жиров, происходящие в результате обмена веществ. Учеными-диетологами установлено, что излишнее потребление крахмалистой пищи приводит к накоплению жира. Если человек имеет нарушения со стороны поджелудочной железы в плане выделения амилазы или ведет малоподвижный образ жизни, его вес может сильно увеличиться. Стоит помнить, что богатая углеводами пища расщепляется в основном в двенадцатиперстной кишке до глюкозы. Она всасывается капиллярами ворсинок тонкого кишечника и депонируется в печени и мышцах в виде гликогена. Чем более интенсивный обмен веществ в организме, тем активнее он расщепляется до глюкозы. Затем она используется клетками как основной энергетический материал. Данная информация служит ответом на вопрос о том, какую роль играет углеводы организме человека.

Значение гликопротеидов

Соединения этой группы веществ представлены комплексом углевод + белок. Их еще называют гликоконъюгатами. Это антитела, гормоны, мембранные структуры. Новейшими биохимическими исследованиями установлено: если гликопротеиды начинают изменять свою нативную (природную) структуру, это приводит к развитию таких сложнейших заболеваний, как астма, ревматоидный артрит, рак. Роль гликоконъюгатов в метаболизме клетки велика. Так, интерфероны подавляют размножение вирусов, иммуноглобулины защищают организм от патогенных агентов. Белки крови также относятся к этой группе веществ. Они обеспечивают защитные и буферные свойства. Все вышеперечисленные функции подтверждает тот факт, что физиологическая роль углеводов в организме разнообразна и чрезвычайно важна.

Где и как образуются углеводы

Основные поставщики простых и сложных сахаров - это зеленые растения: водоросли, высшие споровые, голосеменные и цветковые. Все они содержат в клетках пигмент хлорофилл. Он входит в состав тилакоидов - структур хлоропластов. Российский ученый К. А Тимирязев изучил процесс фотосинтеза, в результате которого образуются углеводы. Роль углеводов в организме растения заключается в накоплении крахмала в плодах, семенах и луковицах, то есть в вегетативных органах. Механизм фотосинтеза достаточно сложен и состоит из серии ферментативных реакций, протекающих как на свету, так и в темноте. Глюкоза синтезируется из углекислого газа под действием ферментов. Гетеротрофные организмы используют зеленые растения в качестве источника пищи и энергии. Таким образом, именно растения являются первым звеном во всех и называются продуцентами.

В клетках гетеротрофных организмов углеводы синтезируются на каналах гладкой (агранулярной) эндоплазматической сети. Затем они используются как энергетический и строительный материал. В растительных клетках углеводы дополнительно образуются в комплексе Гольджи, а затем идут на формирование целлюлозной клеточной стенки. В процессе пищеварения позвоночных животных соединения, богатые углеводами, частично расщепляются в ротовой полости и желудке. Основные же реакции диссимиляции происходят в двенадцатиперстной кишке. В неё выделяется поджелудочный сок, содержащий фермент амилазу, расщепляющий крахмал до глюкозы. Как уже было ранее сказано, глюкоза всасывается в кровь в тонком кишечнике и разносится по всем клеткам. Здесь она используется как источник энергии и структурное вещество. Это объясняет, какую роль в организме играют углеводы.

Надмембранные комплексы гетеротрофных клеток

Они характерны для животных и грибов. Химический состав и молекулярная организация этих структур представлены такими соединениями, как липиды, белки и углеводы. Роль углеводов в организме - это участие в и построении мембран. В клетках человека и животных есть особый структурный компонент, называемый гликокаликсом. Этот тонкий поверхностный слой состоит из гликолипидов и гликопротеидов, связанных с цитоплазматической мембраной. Он обеспечивает непосредственную связь клеток с внешней средой. Здесь же происходит восприятие раздражений и внеклеточное пищеварение. Благодаря своей углеводной оболочке клетки слипаются друг с другом, образуя ткани. Это явление называется адгезией. Добавим также, что «хвосты» углеводных молекул находятся над поверхностью клетки и направлены в межтканевую жидкость.

Другая группа гетеротрофных организмов - грибы, также имеет поверхностный аппарат, называемый клеточной стенкой. В неё входят сложные сахара - хитин, гликоген. Некоторые виды грибов содержат также растворимые углеводы, например трегалозу, называемую грибным сахаром.

У одноклеточных животных, таких как инфузории, поверхностный слой - пелликула, также содержит комплексы олигосахаридов с белками и липидами. У некоторых простейших пелликула достаточно тонкая и не мешает изменению формы тела. А у других она утолщается и становится прочной, как панцирь, выполняя защитную функцию.

Клеточная стенка растений

Она также содержит большое количество углеводов, особенно целлюлозы, собранной в виде пучков волокон. Эти структуры формируют каркас, погруженный в коллоидный матрикс. Он состоит в основном из олиго- и полисахаридов. Клеточные стенки растительных клеток могут одревесневать. В этом случае промежутки между пучками целлюлозы заполняются другим углеводом - лигнином. Он усиливает опорные функции клеточной оболочки. Часто, особенно у многолетних древесных растений, наружный слой, состоящий из целлюлозы, покрывается жироподобным веществом - суберином. Он препятствует попаданию внутрь растительных тканей воды, поэтому нижележащие клетки быстро отмирают и покрываются слоем пробки.

Суммируя вышесказанное, мы видим, что в клеточной стенке растений тесно взаимосвязаны углеводы и жиры. Их роль в организме фототрофов трудно недооценить, так как гликолипидные комплексы обеспечивают опорную и защитную функции. Изучим разнообразие углеводов, характерных для организмов царства Дробянки. К нему относятся прокариоты, в частности бактерии. Их клеточная стенка содержит углевод - муреин. В зависимости от строения поверхностного аппарата бактерии разделяют на грамположительные и грамотрицательные.

Строение второй группы более сложное. Эти бактерии имеют два слоя: пластичный и ригидный. Первый содержит мукополисахариды, например муреин. Его молекулы имеют вид крупных сетчатых структур, образующих капсулу вокруг бактериальной клетки. Второй слой состоит из пептидогликана - соединения полисахаридов и белков.

Липополисахариды клеточной стенки позволяют бактериям прочно прикрепляться к различным субстратам, например, к зубной эмали или к мембране эукариотических клеток. Кроме этого, гликолипиды способствуют слипанию бактериальных клеток между собой. Таким путем образуются, например, цепочки стрептококков, грозди стафилококков, более того, некоторые виды прокариот имеют дополнительную слизистую оболочку - пеплос. Она содержит в своем составе полисахариды и легко разрушается под действием жесткого радиационного излучения или при контакте с некоторыми химическими веществами, например антибиотиками.

Жиры. В тканях живых организмов и растений содержатся нейтральные жиры и жироподобные соединения (общее название - липиды). Липиды построены по типу сложных эфиров. К нейтральным жирам относятся триглицериды - сложные эфиры трехатомного спирта глицерина (стр. 94) и высших жирных кислот: пальмитиновой, стеариновой, олеиновой и др., например:

Наиболее часто в жирах содержатся жирные кислоты с числом углеродных атомов от четырех до 24.

К липидам относятся также фосфатиды - соединения, построенные по типу сложных эфиров и содержащие остатки спирта (обычно глицерина), высших жирных кислот, азотистого основания и фосфорной кислоты. К фосфатиам относится, например, лецитин:

Жиры играют большую роль в процессах жизнедеятельности. Они являются важным источником энергии, способствуют обмену веществ в клетках, защищают внутренние органы от механических повреждений и др.

Жиры подразделяются на внутриклеточные и запасные. Запасные жиры содержатся в специальных жировых депо: в подкожной клетчатке и сальнике, атакже в виде жировой подкладки

под почками и некоторыми другими внутренними органами. По мере расходования жиров в тканях и клетках расход их восполняется из жирового депо.

Жиры как источник энергии являются необходимым элементом питания. Расщепление поступающих с пищей жиров происходит в основном в кишечнике под действием фермента липазы. При этом нейтральные жиры расщепляются на глицерин и жирные кислоты, а фосфатиды - на глицерин, фосфорную кислоту, жирные кислоты и азотистые соединения (этаноламин, серин; и др.). Глицерин, хорошо растворимый в воде, всасывается в кишечнике непосредственно, а нерастворимые в воде жирные кислоты образуют с желчными кислотами, поступающими из желчного пузыря, комплексные соединения - холеиновые кислоты.

Холеиновые кислоты растворимы в воде. Они всасываются в кишечнике и затем распадаются на составляющие их жирные и желчные кислоты. Таким образом, глицерин и жирные кислоты поступают в ткани организма и используются им для синтеза жиров, но уже специфических для данного организма. Наряду с этим глицерин и жирные кислоты претерпевают в тканях сложный процесс постепенного окисления до двуокиси углерода и воды. В результате этих процессов йроисходит постепенное выделение энергии. Эта энергия, выделяющаяся небольшими порциями, используется клешами тканей.

Углеводы. Углеводы играют большую роль в процессах жизнедеятельности, так как они легко окисляются в организме с выделением энергии, которая используется клетками. Кроме того, полисахариды, находящиеся в соединительных тканях в виде комплексов с белками (гликопротеиды), оказывают большое влияние на проницаемость клеток. В связи с этим углеводы наряду с жирами являются необходимой составной частью пищи.

Сложные углеводы, поступающие в организм вместе с пищей, под действием ферментов распадаются в кишечнике на различные моносахариды, которые всасываются и разносятся током крови по всему телу. Особенно большую роль в жизнедеятельности организма играет глюкоза (стр. 189), образующаяся из различных Сахаров и гликопротеидов. Поступая с током крови в печень, часть глюкозы подвергается сложному процессу окисления до двуокиси углерода и воды, а освобождающаяся при этом энергия расходуется клеткам печени при многочисленных протекающих в ней химических реакциях. Часть глюкозы превращается в печени в жиры, а часть - в полисахарид гликоген (животный крахмал).

Гликоген содержится также в мышцах и играет большую: роль в качестве запасного источника энергии.

Глюкоза является основным источником мышечной энергии, причем между печенью и мышцами существует такое взаимодействие в потреблении глюкозы, при котором поддерживается постоянное содержание глюкозы в крови.

Между обменом жиров и углеводов в организме существует тесная связь. Например, при избыточном поступлении углеводов в организм значительная часть, их превращается в жиры путем альдольной конденсации ацетальдегида, образующегося при расщеплении глюкозы.

Введение

углеводы гликолипиды биологический

Углеводы - обширный наиболее распространенный на Земле класс органических соединений, входящих в состав всех организмов и необходимых для жизнедеятельности человека и животных, растений и микроорганизмов. Углеводы являются первичными продуктами фотосинтеза, в кругообороте углерода они служат своеобразным мостом между неорганическими и органическими соединениями. Углеводы и их производные во всех живых клетках играют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов для специфических биохимических процессов. Углеводы выполняют не только питательную функцию в живых организмах, они также выполняют опорную и структурную функции. Во всех тканях и органах обнаружены углеводы или их производные. Они входят в состав оболочек клеток и субклеточных образований. Принимают участие в синтезе многих важнейших веществ.

Актуальность

В настоящее время данная тема актуальна, потому что углеводы необходимы организму, так как входят в состав его тканей и выполняют важные функции: - являются главным поставщиком энергии для всех процессов в организме (они могут расщепляться и давать энергию даже в отсутствии кислорода); - необходимы для рационального использования белков (белки при дефиците Углеводов используются не по назначению: они становятся источником энергии и участниками некоторых важных химических реакций); - тесно связаны с обменом жиров (если вы употребляете слишком много Углеводов, больше, чем может преобразоваться в глюкозу или гликоген (который откладывается в печени и мышцах), то в результате образуется жир. Когда телу нужно больше топлива, жир преобразуется обратно в глюкозу, и вес тела снижается); - особенно необходимы мозгу для нормальной жизнедеятельности (если мышечные ткани могут накапливать энергию в виде жировых отложений, то мозг не может так делать, он всецело зависит от регулярного поступления в организм углеводов); - являются составной частью молекул некоторых аминокислот, участвуют в построении ферментов, образовании нуклеиновых кислот и т.д.

Понятие и классификация углеводов

Углеводами называют вещества с общей формулой Cn(H2O)m, где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

·моносахариды или простые сахара;

·олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).

·полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C3), тетрозы (C4), пентозы (C5), гексозы (C6), гептозы (C7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются, прежде всего, альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками в-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами в-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH3. Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки. Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Краткая характеристика эколого-биологической роли углеводов

Обобщая рассмотренный выше материал, относящийся к характеристике углеводов, можно сделать следующие выводы об их эколого-биологической роли.

1. Они выполняют строительную функцию, как в клетках, так и в организме в целом за счет того, что входят в состав структур, образующих клетки и ткани (особенно это характерно для растений и грибов), например, клеточные оболочки, различные мембраны и т. д., кроме того, углеводы участвуют в образовании биологически необходимых веществ, образующих ряд структур, например в образовании нуклеиновых кислот, составляющих основу хромосом; углеводы входят в состав сложных белков - гликопротеидов, имеющих определенное значение в формировании клеточных структур и межклеточного вещества.

2. Важнейшей функцией углеводов является трофическая функция, состоящая в том, что многие из них являются продуктами питания гетеротрофных организмов (глюкоза, фруктоза, крахмал, сахароза, мальтоза, лактоза и др.). Эти вещества в комплексе с другими соединениями образуют пищевые продукты, используемые человеком (различные крупы; плоды и семена отдельных растений, включающие в свой состав углеводы, являются кормом для птиц, а моносахара, вступая в цикл различных превращений, способствуют образованию как собственных углеводов, характерных для данного организма, так и других органо-биохимических соединений (жиров, аминокислот (но не их белков), нуклеиновых кислот и т. д.).

3. Для углеводов характерна и энергетическая функция, состоящая в том, что моносахара (в частности глюкоза) в организмах легко окисляются (конечным продуктом окисления является СO2 и Н2O), при этом происходит выделение большого количества энергии, сопровождающееся синтезом АТФ.

4. Им присуща и защитная функция, состоящая в том, что из углеводов возникают структуры (и определенные органоиды в клетке), защищающие или клетку, или организм в целом от различных повреждений, в том числе и механических (например, хитиновые покровы насекомых, образующие внешний скелет, оболочки клеток растений и многих грибов, включающих целлюлозу и т. д.).

5. Большую роль играют механическая и формообразующая функции углеводов, представляющие собой способность структур, образованных либо углеводами, либо в сочетании их с другими соединениями, придавать организму определенную форму и делать их механически прочными; так, клеточные оболочки механической ткани и сосудов ксилемы создают каркас (внутренний скелет) древесных, кустарниковых и травянистых растений, хитином образован внешний скелет насекомых и т. д.

Краткая характеристика обмена углеводов в гетеротрофном организме (на примере организма человека)

Важную роль в понимании процессов обмена веществ играет знание о превращениях, которым подвергаются углеводы в гетеротрофных организмах. В организме человека этот процесс характеризуется приведенным ниже схематическим описанием.

Углеводы в составе пищи попадают в организм через ротовую полость. Моносахара в пищеварительной системе практически не подвергаются превращениям, дисахариды - гидролизуются до моносахаридов, а полисахариды подвергаются достаточно значительным превращениям (это относится к тем полисахаридам, которые организмом употребляются в пищу, а углеводы, не являющиеся пищевыми веществами, например, целлюлоза, некоторые пектины, удаляются из организма с каловыми массами).

В ротовой полости пища измельчается и гомогенизируется (становится более однородной, чем до попадания в нее). На пищу воздействует слюна, выделяемая слюнными железами. Она содержит фермент птиалин и имеет щелочную реакцию среды, за счет чего начинается первичный гидролиз полисахаридов, приводящий к образованию олигосахаридов (углеводов с небольшой величиной n).

Часть крахмала может превращаться даже в дисахариды, что можно заметить при длительном пережевывании хлеба (кислый черный хлеб становится сладким).

Пережеванная пища, обильно обработанная слюной и размельченная зубами, через пищевод в виде пищевого комка поступает в желудок, где подвергается воздействию желудочного сока с кислой реакцией среды, содержащего ферменты, воздействующие на белки и нуклеиновые кислоты. В желудке с углеводами практически ничего не происходит.

Затем пищевая кашица поступает в первый отдел кишечника (тонкий кишечник), начинающийся двенадцатиперстной кишкой. В нее поступает панкреатический сок (секрет поджелудочной железы), содержащий комплекс ферментов, способствующих и перевариванию углеводов. Углеводы превращаются в моносахариды, которые растворимы в воде и способны к всасыванию. Пищевые углеводы окончательно перевариваются в тонком кишечнике, а в той его части, где содержатся ворсинки, они всасываются в кровь и поступают в кровеносную систему.

С током крови моносахара разносятся к различным тканям и клеткам организма, но предварительно вся кровь проходит через печень (там она очищается от вредных продуктов обмена). В крови моносахара присутствуют преимущественно в виде альфа-глюкозы (но возможно наличие и других изомеров гексоз, например фруктозы).

Если глюкозы в крови меньше нормы, то часть гликогена, содержащегося в печени, гидролизуется до глюкозы. Избыточное содержание углеводов характеризует тяжелое заболевание человека - диабет.

Из крови моносахариды поступают в клетки, где большая их часть расходуется на окисление (в митохондриях), при котором синтезируется АТФ, содержащая энергию в «удобном» для организма виде. АТФ расходуется на различные процессы, которые требуют энергии (синтез нужных организму веществ, реализация физиологических и других процессов).

Часть углеводов пищи используется для синтеза углеводов данного организма, требующихся для формирования структур клетки, или соединений, необходимых для образования веществ других классов соединений (так из углеводов могут получиться жиры, нуклеиновые кислоты и т. д.). Способность углеводов превращаться в жиры является одной из причин возникновения ожирения - заболевания, влекущего за собой комплекс других заболеваний.

Следовательно, потребление избыточного количества углеводов вредно для человеческого организма, что необходимо учитывать при организации рационального питания.

В растительных организмах, являющихся автотрофами, обмен углеводов несколько иной. Углеводы (моносахара) синтезируются самим организмом из углекислого газа и воды с использованием солнечной энергии. Ди-, олиго- и полисахариды синтезируются из моносахаридов. Часть моносахаридов включается в синтез нуклеиновых кислот. Определенное количество моносахаридов (глюкозы) растительные организмы используют в процессах дыхания на окисление, при котором (как и в гетеротрофных организмах) синтезируется АТФ.

Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки углеводов

Гликопротеины - это белки, содержащие олигосахаридные (гликановые) цепи, ковалентно присоединенные к полипептидной основе. Гликозаминогликаны представляют собой полисахариды, построенные из повторяющихся дисахаридных компонентов, которые обычно содержат аминосахара (глюкоза-мин или галактозамин в сульфированном или несульфированном виде) и уроновую кислоту (глюкуро-новую или идуроновую). Раньше гликозаминогликаны называли мукополисахаридами. Они обычно ковалентно связаны с белком; комплекс одного или более гликозаминогликанов с белком носит название протеогликана. Гликоконъюгаты и сложные углеводы-эквивалентные термины, обозначающие молекулы, которые содержат углеводные цепи (одну или более), ковалентно связанные с белком или липидом. К этому классу соединений относятся гликопротеины, протеогликаны и гликолипиды.

Биомедицинское значение

Почти все белки плазмы человека, кроме альбумина, представляют собой гликопротеины. Многие белки клеточных мембран содержат значительные количества углеводов. Вещества групп крови в ряде случаев оказываются гликопротеинами, иногда в этой роли выступают гликосфинголипиды. Некоторые гормоны (например, хорионический гонадотропин) имеют гликопротеиновую природу. В последнее время рак все чаще характеризуется как результат аномальной генной регуляции. Главная проблема онкологических заболеваний, метастазы, - феномен, при котором раковые клетки покидают место своего происхождения (например, молочную железу), переносятся с кровотоком в отдаленные части тела (например, в мозг) и неограниченно растут с катастрофическими последствиями для больного. Многие онкологи полагают, что метастазирование, по крайней мере частично, обусловлено изменениями в структуре гликоконъюгатов на поверности раковых клеток. В основе целого ряда заболевений (мукополисахаридозы) лежит недостаточная активность различных лизосомных ферментов, разрушающих отдельные гликоза-миногликаны; в результате один или несколько из них накапливаются в тканях, вызывая различные патологические признаки и симптомы. Одним из примеров таких состояний является синдром Хурлера.

Распространение и функции

Гликопротеины имеются у большинства организмов - от бактерий до человека. Многие вирусы животных также содержат гликопротеины, некоторые из этих вирусов интенсивно изучались, отчасти в силу удобства их использования для исследований.

Гликопротеины-это многочисленная группа белков с разнообразными функциями содержание в них углеводов варьирует от 1 до 85% и более (в единицах массы). Роль олигосахаридных цепей в функции гликопротеинов до сих пор точно не определена, несмотря на интенсивное изучение этого вопроса

Гликолипиды - сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран.

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

Гликосфинголипиды, являющиеся компонентами наружного слоя плазматической мембраны, могут участвовать в межклеточных взаимодействиях и контактах. Некоторые из них являются антигенами, например антиген Форссмана и вещества, определяющие группы крови системы АВ0. Сходные олигосахаридные цепи обнаружены и у других гликопротеинов плазматической мембраны. Ряд ганглиозидов функционирует в качестве рецепторов бактериальных токсинов (например, холерного токсина, который запускает процесс активации аденилатциклазы).

Гликолипиды в отличие от фосфолипидов не содержат остатков ортофосфорной кислоты. В их молекулах к диацилглицерину гликозидной связью присоединяются остатки галактозы или сульфоглюкозы

Наследственные нарушения обмена моносахаридов и дисахаридов

Галактоземия - наследственная патология обмена веществ, обусловленная недостаточностью активности ферментов, принимающих участие в метаболизме галактозы. Неспособность организма утилизировать галактозу приводит к тяжелым поражениям пищеварительной, зрительной и нервной системы детей в самом раннем возрасте. В педиатрии и генетике галактоземия относится к редким генетическим заболеваниям, встречающимся с частотой один случай на 10 000 - 50 000 новорожденных. Впервые клиника галактоземии была описана в 1908 году уребенка, страдавшего сильным истощением, гепато- и спленомегалией, галактозурией; при этом заболевание исчезло сразу после отмены молочного питания. Позднее, в 1956 г. ученый Герман Келкер определил, что в основе заболевания лежит нарушение метаболизма галактозы. Причины болезни Галактоземия является врожденной патологией, наследуемой по аутосомно-рецессивному типу, т. е. заболевание проявляется только в том случае, если ребенок наследует две копии дефектного гена от каждого из родителей. Лица, гетерозиготные по мутантному гену, являются носителями заболевания, однако у них тоже могут развиваться отдельные признаки галактоземии в легкой степени. Превращение галактозы в глюкозу (метаболический путь Лелуара) происходит при участии 3-х ферментов: галактоза-1-фосфатуридилтрансферазы (GALT), галактокиназы (GALK) и уридиндифосфат-галактозо-4-эпимеразы (GALE). В соответствии с дефицитом этих ферментов различают 1 (классический вариант), 2 и 3 тип галактоземии.Выделение трех типов галактоземии не совпадает с порядком действия ферментов в процессе метаболического пути Лелуара. Галактоза поступает в организм с пищей, а также образуется в кишечнике в процессе гидролиза дисахарида лактозы. Путь метаболизма галактозы начинается с ее превращения под действием фермента GALK в галактозо-1-фосфат. Затем при участии фермента GALT галактозо-1-фосфат преобразуется в УДФ-галактозу (уридилдифосфогалактозу). После этого с помощью GALE метаболит превращается в УДФ - глюкозу (уридилдифосфоглюкозу).При недостаточности одного из названных ферментов (GALK, GALT или GALE) концентрация галактозы в крови значительно повышается, в организме накапливаются промежуточные метаболиты галактозы, которые вызывают токсическое поражение различных органов: ЦНС, печени, почек, селезенки, кишечника, глаз и др. Нарушение метаболизма галактозы и составляет суть галактоземии. Наиболее часто в клинической практике встречается классический (1 тип) галактоземии, обусловленный дефектом фермента GALT и нарушением его активности. Ген, кодирующий синтез галактоза-1-фосфатуридилтрансферазы, находится воколоцентромерном участке 2-ой хромосомы. По тяжести клинического течения выделяют тяжелую, среднюю и легкую степени галактоземии. Первые клинические признаки галактоземии тяжелой степени развиваются очень рано, в первые дни жизни ребенка. Вскоре после кормления новорожденного грудным молоком или молочной смесью возникает рвота и расстройство стула (водянистый понос), нарастает интоксикация. Ребенок становится вялым, отказывается от груди или бутылочки; у него быстро прогрессируют гипотрофия и кахексия. Ребенка могут беспокоить метеоризм, кишечные колики, обильное отхождение газов.В процессе обследования ребенка с галактоземией неонатологом выявляется угасание рефлексов периода новорожденности. При галактоземии рано появляется стойкая желтуха различной степени выраженности и гепатомегалия, прогрессирует печеночная недостаточность. К 2-3 месяцу жизни возникают спленомегалия, цирроз печени, асцит. Нарушения процессов свертывания крови приводит к появлению кровоизлияний на коже и слизистых оболочках. Дети рано начинают отставать в психомоторном развитии, однако степень интеллектуальных нарушений при галактоземии не достигает такой тяжести, как при фенилкетонурии. К 1-2 месяцам у детей с галактоземией выявляется двусторонняя катаракта. Поражение почек при галактоземии сопровождается глюкозурией, протеинурией, гипераминоацидурией. В терминальной фазе галактоземии ребенок погибает от глубокого истощения, тяжелой печеночной недостаточности и наслоения вторичных инфекций. При галактоземии средней тяжести также отмечается рвота, желтуха, анемия, отставание в психомоторном развитии, гепатомегалия, катаракта, гипотрофия. Галактоземия легкой степени характеризуется отказом от груди, рвотой после приема молока, задержкой речевого развития, отставанием ребенка в массе и росте. Однако даже при легком течении галактоземии продукты обмена галактозы токсическим образом воздействуют на печень, приводя к ее хроническим заболеваниям.

Фруктоземия

Фруктоземия - это наследственное генетическое заболевание, заключающееся в непереносимости фруктозы (фруктового сахара, содержащегося во всех фруктах, ягодах и некоторых овощах, а также в мёде). При фруктоземии в организме человека мало или практически нет ферментов(энзимов, органических веществ белковой природы, ускоряющих химические реакции, происходящие в организме), принимающих участие в ращеплении и усвоении фруктозы. Заболевание, как правило, обнаруживается в первые недели и месяцы жизни ребенка или с того момента, когда ребенок начинает получать соки и пищу, содержащую фруктозу: сладкий чай, фруктовые соки, овощные и фруктовые пюре. Фруктоземия передается по аутосомно-рецессивному типу наследования (заболевание проявляется, если у обоих родителей есть заболевание). Мальчики и девочки болеют одинаково часто.

Причины болезни

В печени имеется недостаточное количество специального фермента (фруктозо-1-фосфат-альдолазы), который преобразовывает фруктозу. В результате продукты обмена (фруктозо-1-фосфат) накапливаются в организме (печени, почках, слизистых оболочках кишечника) и оказывают повреждающее действие. При этом установлено, что фруктозо-1-фосфат никогда не откладывается в клетках мозга и хрусталике глаза. Симптомы заболевания проявляются после употребления в пищу фруктов, овощей или ягод в любом виде (соки, нектары, пюре, свежие, замороженные или сушеные), а также мёда. Тяжесть проявления зависит от количества употребления продуктов.

Вялость, бледность кожных покровов. Повышенное потоотделение. Сонливость. Рвота. Диарея (частый объемный (большие порции) жидкий стул). Отвращение к сладкой пище. Гипотрофия (дефицит (недостаточность) массы тела) развивается постепенно. Увеличение размеров печени. Асцит (скопление жидкости в брюшной полости). Желтуха (пожелтение кожных покровов) - развивается иногда. Острая гипогликемия (состояние, при котором значительно снижается уровень глюкозы (сахара) в крови) может развиться при одномоментном употреблении большого количества продуктов, содержащих фруктозу. Характеризуется: Дрожанием конечностей; судорогами (приступообразными непроизвольными сокращениями мышц и крайней степенью их напряжения); Потерей сознания вплоть до комы (отсутствия сознания и реакции на любые раздражители; состояние представляет опасность для жизни человека).

Заключение


Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений вместе взятых Таким образом: углеводы играют огромную роль в жизни живых организмов на планете ученые считают, что примерно когда появилось первое соединение углевода, появилась и первая живая клетка.


Литература


1. Биохимия: учебник для вузов/ под ред. Е.С.Северина - 5-е изд., - 2009. - 768 с.

2. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия».

3. П.А. Верболович «Практикум по органической, физической, коллоидной и биологической химии».

4. Ленинджер А. Основы биохимии // М.: Мир, 1985

5. Клиническая эндокринология. Руководство / Н. Т. Старкова. - издание 3-е, переработанное и дополненное. - Санкт-Петербург: Питер, 2002. - С. 209-213. - 576 с.

6. Детские болезни (том 2) - Шабалов Н.П. - учебник, Питер, 2011

Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.



Понравилась статья? Поделитесь ей
Наверх